

CBSE Sample Paper-02 (unsolved) SUMMATIVE ASSESSMENT -I MATHEMATICS Class - IX

Time allowed: 3 hours Maximum Marks: 90

General Instructions:

- a) All questions are compulsory.
- b) The question paper comprises of 31 questions divided into four sections A, B, C and D. You are to attempt all the four sections.
- c) Questions 1 to 4 in section A are one mark questions. These are MCQs. Choose the correct option.
- d) Questions 5 to 10 in section B are two marks questions.
- e) Questions 11 to 20 in section C are three marks questions.
- f) Questions 21 to 31 in section D are four marks questions.
- g) There is no overall choice in the question paper. Use of calculators is not permitted.

Section A

Q1. If $x=y-y^2-1$, then the value of yin terms of xis

a)
$$x^{2} - 1$$

b)
$$x^2 - x + 1$$

c)
$$x^{2} - x$$

d)
$$x^{2} + 1$$

Q2. Zero of a zero polynomial is

- a) 0
- b) Not defined
- c) Any real number
- d) Any integer

Q3. The number of dimensions, a solid has:

- a) 7
- b) 5

- c) 3
- d) 1
- Q4. If one of the angles of a triangle is 130° , then the angle between the bisectors of the other two angles can be
 - a) 50°
 - b) 65°
 - c) 145°
 - d) 155°

SECTION-B

- Q5. Is zero a rational number ? Can you write it in the form of $\frac{p}{q}$, where p and q are integers and $q\Box 0$.
- Q6. Find p(0), p(1) for the polynomial p(t)=2+t+2t
- Q7. Prove or disprove: Euclidean geometry is valid only for curved surfaces.
- Q8. In the following figure, *AB CD* and $\Box F = 30^{\circ}$, find $\Box FCD$.

- Q9. In the following figure, prove that m + n = x.
- Q10. If , $\Delta PQR \cong \Delta ABC$, then is it true to say that PR = AC? Give reason for your answer.

SECTION - C

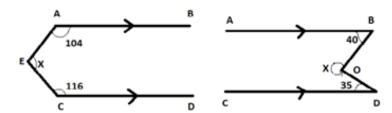
- Q11. Examine, whether $(\sqrt{3}+2)_2$ is an irrational number or a rational number.
- Q12. Represent $\sqrt{3}$ on a number line. Write steps of drawing number line also.
- Q13. Without actual division, prove that $2x^4 6x^3 + 3x^2 + 3x 2$ is exactly divisible by $x^2 3x + 2$.
- Q14. Find the value of 'a', if (x+1) is a factor of polynomial $ax^3 9x^2 + x + 6a$.

Q15. In the following figure, R is the midpoint of the segment AB. P and Q are mid points of the segments AR and BR respectively. Prove that $AP = BQ = \frac{1}{A}AB$.

- Q16. If two parallel lines are intersected by a transversal prove that the bisectors of the two pairs of interior angles enclose a rectangle.
- Q17. In the following figure, if AB CD, CD EF and y: z=3:7, find x.

- Q18. In a $\triangle PQR$, if PQ = QR and L, M and N are the mid-points of the sides PQ, QR and RP respectively. Prove that LN = MN.
- Q19. Points A(5,3), B(-2,3) and D(5,-4) are three vertices of a square ABCD. Plot these points on a graph paper and hence find the coordinates of the vertex C.
- Q20. Find the area of triangle, two sides are 18cm and 10cm and the perimeter is 42cm.

SECTION - D


- Q21. If $x = \begin{cases} 2p+3q + 2p-3q \\ 2p+3q 2p-3q \end{cases}$, then find the value of $3x^2q^2 4pqx + 3q^2$
- Q22. A) Taking 3=1.732(approx.) and 5=2.236(approx.), evaluate $\begin{bmatrix} 1 \\ 4 \\ 3-3 \\ 5 \end{bmatrix}$ correct to three places of decimals.

B) Prove that:
$$8 \ ^{3} *2^{2} *25^{4} \square 32^{5} *125^{6} = 2$$

- Q23. If a, b, c are all non-zero and a+b+c=0, prove that $\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} = 3$
- Q24. Prove that: $(a+b+c)^{3} a^{3} b^{3} c^{3} = 3(a+b)(b+c)(c+a)$
- Q25. What must be subtracted from $4x^{-4} 2x^{-3} 6x^{-2} + x 5$ so that the result is exactly divisible by $2x^{-2} + x 1$?

- Q26. Factorise: $x^3 3x^2 9x 5$
- Q27. Prove that the bisectors of two adjacent supplementary angles include a right angle.
- Q28. In the following figures, $AB \ CD$. Find the value of x.

- Q29. In a triangle, prove that the greater angle has the longer side opposite to it.
- Q30. If two isosceles triangles have a common base, prove that the line joining their vertices bisects them at right angles.
- Q31. $\triangle ABC$ is an equilateral triangle where each side is of length x units. Find the area of the $\triangle ABC$, using Heron's formula. Hence find the area of equilateral $\triangle ABC$ if its perimeter is 120m.