

FREE SAMPLE TEST PAPER SET - B

MATHEMATICS CBSE EXAMINATIONS 2012-13

Max. Marks: 100 Time: 180 Minutes

SECTION - A

Q01. If
$$f: \mathbb{R} \to \mathbb{R}$$
 be defined by $f(x) = (7 - x^5)^{1/5}$, then find $f \circ f(x)$.

Q02. Evaluate:
$$\int \frac{1}{\left[\sqrt{1-x^2} \left(16-\sin^{-1} x\right)^{1/2}\right]} dx.$$

Q03. Write one of the range of $\csc^{-1}x$ other than its principal branch.

Q04. In the matrix equation
$$\begin{pmatrix} 11 & 16 \\ 7 & 10 \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
, apply $C_2 \rightarrow C_2 - C_1$ on both the sides.

Q05. Evaluate:
$$\begin{vmatrix} a+ib & c+id \\ -c+id & a-ib \end{vmatrix}$$
.

Q06. If
$$A = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 then, find AA' .

Q07. If
$$|\vec{a}| = 3$$
, $|\vec{b}| = 5$, $|\vec{c}| = 7$ and $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ then, find the angle between \vec{a} and \vec{b} .

Q08. Evaluate:
$$\int_{0}^{3/2} [x] dx$$
, where $[x]$ represents a greatest integer function.

Q09. If '*' is a binary operation defined on R and if
$$a * b = \frac{ab}{2}$$
, write the value for $(4*2)*6$.

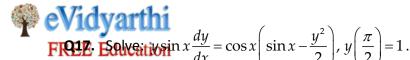
Q10. For a vector equiangular with the coordinate axis, write its direction cosines.

SECTION - B

Q11. Show that:
$$\tan^{-1}(1) + \tan^{-1}(2) + \tan^{-1}(3) = \pi = 2\left(\tan^{-1}(1) + \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right)\right)$$
.

OR Prove that:
$$\tan\left[\frac{\pi}{4} + \frac{1}{2}\cos^{-1}\frac{a}{b}\right] + \tan\left[\frac{\pi}{4} - \frac{1}{2}\cos^{-1}\frac{a}{b}\right] = \frac{2b}{a}$$
.

Q12. Using properties of determinants, evaluate:
$$\begin{vmatrix} (x-2)^2 & (x-1)^2 & x^2 \\ (x-1)^2 & x^2 & (x+1)^2 \\ x^2 & (x+1)^2 & (x+2)^2 \end{vmatrix}.$$


Q13. If
$$\sqrt{1-x^6} + \sqrt{1-y^6} = a^3(x^3 - y^3)$$
 then, show that $\frac{dy}{dx} = \frac{x^2}{y^2} \sqrt{\frac{1-y^6}{1-x^6}}$.

OR If
$$y = x \log \left(\frac{x}{a + bx} \right)$$
, then show that $x^3 \frac{d^2 y}{dx^2} = \left(x \frac{dy}{dx} - y \right)^2$.

Q14. Prove that the sum of intercepts of the tangent to the curve $\sqrt{x} + \sqrt{y} = \sqrt{a}$ upon the coordinate axes is of constant length.

Q15. If
$$x^p ext{.} y^q = (x+y)^{p+q}$$
 then, prove that $\frac{dy}{dx} = \frac{y}{x}$. Hence show that $\frac{d^2y}{dx^2} = 0$.

Q16. Evaluate:
$$\int_{0}^{1} \tan^{-1} \left(\frac{2x-1}{1+x-x^2} \right) dx$$
. **OR** Evaluate: $\int_{0}^{1} \cot^{-1} \left(1-x+x^2 \right) dx$.

- **Q18.** Find a point on the line $\frac{x+2}{3} = \frac{y+1}{2} = \frac{z-3}{2}$ at a distance of $3\sqrt{2}$ units from the point (1,2,3).
- **Q19.** a) Let $f: \mathbb{R} \to \mathbb{R}$ be given by $f(x) = \frac{x^2 + 4x + 30}{x^2 8x + 18}$. Is f a one- one function?
 - **b)** Find the range of $f(x) = \frac{|x-3|}{x-3}$.
- **Q20.** Decompose the vector $6\hat{i} 3\hat{j} 6\hat{k}$ into the vectors which respectively are parallel and perpendicular to the vector $\hat{i} + \hat{j} + \hat{k}$.

OR If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{j} - \hat{k}$ then, find a vector \vec{c} such that $\vec{a} \times \vec{c} = \vec{b}$ and $\vec{a} \cdot \vec{c} = 3$.

Q21. Find $P(|x-4| \le 2)$ if x follows a Binomial Distribution with the mean 4 and variance 2.

Q22. Solve:
$$\left(\frac{e^{-2\sqrt{x}}}{\sqrt{x}} - \frac{y}{\sqrt{x}}\right) \frac{dx}{dy} = 1$$
, $x \neq 0$. **OR** Solve: $\frac{dy}{dx} + x \sin 2y = x^3 \cos^2 y$.

SECTION - C

- **Q23.** A point P is given on the circumference of a circle of radius r. A chord QR is parallel to the tangent line at P. Find the maximum area of the triangle PQR.
- **Q24.** Solve the following system of equations using matrix:

$$\frac{2}{x} + \frac{3}{y} + \frac{10}{z} = 4, \frac{4}{x} - \frac{6}{y} + \frac{5}{z} = 1, \frac{6}{x} + \frac{9}{y} - \frac{20}{z} = 2; x, y, z \neq 0.$$

- OR Find the inverse of $\begin{bmatrix} 1 & 3 & -2 \\ -3 & 0 & -1 \\ 2 & 1 & 0 \end{bmatrix}$ using elementary transformations.
- **Q25.** Using integration, find area of the triangle formed by positive *x*-axis and the tangent and the normal to the curve $x^2 + y^2 = 4$ at $(1, \sqrt{3})$.
- **Q26.** An insurance company insured 2000 scooter drivers, 4000 car drivers and 6000 bus drivers. The probability of an accident involving a scooter, a car and a bus are respectively 0.01, 0.03 and 0.15. One of the insured persons meets with an accident. What is the probability that he is a scooter driver?
- **Q27.** Find the distance of the point P(-2,3,-4) from the line $\frac{x+2}{3} = \frac{2y+3}{4} = \frac{3z+4}{5}$ measured parallel to the plane 4x+12y-3z+1=0.
 - OR Find the distance of the point P(1,-2,3) from the plane x-y+z=5 measured parallel to the line $\frac{x}{2} = \frac{y}{3} = \frac{z}{-6}$.
- **Q28.** There are two types of fertilizers F₁ and F₂. F₁ consists of 10% nitrogen and 6% phosphoric acid and F₂ consists of 5% nitrogen and 10% phosphoric acid. After testing the soil conditions, a farmer finds that she needs at least 14kg of nitrogen and 14kg of phosphoric acid for her crop. If F₁ costs Rs 6/kg and F₂ costs Rs 5/kg, determine how much of each type of fertilizer should be used so that nutrient requirements are met at a minimum cost. What is the minimum cost?
- **Q29.** Evaluate: $\int \sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}} dx$.

ANSWERS OF SAMPLE TEST PAPER SET - B

Q02.
$$-2\sqrt{16-\sin^{-1}x}+h$$

Q03.
$$\left[\frac{\pi}{2}, \frac{3\pi}{2}\right] - \left\{\pi\right\}$$

Q02.
$$-2\sqrt{16-\sin^{-1}x}+k$$
 Q03. $\left[\frac{\pi}{2},\frac{3\pi}{2}\right]-\{\pi\}$ **Q04.** $\begin{bmatrix} 11 & 5 \\ 7 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 3 & 1 \end{bmatrix}$

Q05.
$$a^2 + b^2 + c^2 + d^2$$
 Q06. $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{bmatrix}$ **Q07.** $\frac{\pi}{3}$ **Q08.** $\frac{1}{2}$ **Q09.** 12 **Q10.** $\pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}$

Q07.
$$\frac{\pi}{3}$$
 Q08. $\frac{1}{2}$ **Q09.** 12 **Q10.** $\pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}$

Q16. 0 **OR**
$$\frac{\pi}{2} - \log \frac{\pi}{2}$$

Q17.
$$y^2 = \sin x$$

Q16. 0 **OR**
$$\frac{\pi}{2} - \log 2$$
 Q17. $y^2 = \sin x$ **Q18.** $\left(-2, -1, 3\right), \left(\frac{56}{17}, \frac{43}{17}, \frac{111}{17}\right)$

Q19.a) No **(b)**
$$\{-1,1\}$$

Q20.
$$-\hat{i} - \hat{j} - \hat{k}$$
, $7\hat{i} - 2\hat{j} - 5\hat{k}$ **OR** $\frac{1}{3} (5\hat{i} + 2\hat{j} + 2\hat{k})$

Q21.
$$\frac{119}{129}$$
 Q22

Q21.
$$\frac{119}{128}$$
 Q22. $y = (2\sqrt{x} + k)e^{-2\sqrt{x}}$ **OR** $2\tan y = x^2 - 1 + ke^{-x^2}$ **Q23.** $\frac{3\sqrt{3}}{4}r^2$ sq.units

$$2 \tan y = x^2 - 1 + ke^{-x}$$

Q23.
$$\frac{3\sqrt{3}}{4}r^2$$
 sq.units

Q24.
$$x = 2, y = 3, z = 5$$
 OR
$$\begin{bmatrix} 1 & -2 & -3 \\ -2 & 4 & 7 \\ -3 & 5 & 9 \end{bmatrix}$$

Q25.
$$2\sqrt{3}$$
 sq.units **Q26.** $\frac{1}{52}$

Q26.
$$\frac{1}{52}$$

Q27.
$$\frac{17}{2}$$
 units **OR** 1 unit

Q28. Fertilizer
$$F_1$$
: $100kg$; fertilizer F_2 : $80kg$; Minimum cost: Rs.1000

Q29.
$$\sqrt{1-x} \left(\sqrt{x} - 2 \right) - \sin^{-1} \sqrt{x} + k$$