

PRACTICE PAPER 1- SOLUTIONS

ANSWER KEY

SECTION I

1.(b) 2.(d) 3.(d) 4.(b) 5.(a) 6.(d) 7.(a) 8.(b) 9.(b)

SECTION II

10.(d) 11.(a) 12.(c) 13.(b)

SECTION III

14.(d) 15.(a) 16.(b) 17.(b) 18.(d) 19.(b)

SECTION IV

 $20.(A) \rightarrow (P), (B) \rightarrow (P), (C) \rightarrow (P), (D) \rightarrow (P)$

 $21.(A) {\rightarrow} (S), (B) {\rightarrow} (S), (C) {\rightarrow} (S), (D) {\rightarrow} (S)$

 $22.(A) \rightarrow (S), (B) \rightarrow (Q), (C) \rightarrow (P), (D) \rightarrow (P)$

SOLUTIONS WITH CLEAR REASONING

<u>Sol 1</u> (b)

Explanation:

Define the sets

A : set of odd positive integers which are less than 10,000 are divisible by 3.

B : set of odd positive integers which are less than 10,000 are divisible by 5.

Now $A = \{3,9, 15 \dots ... 9999\}$

 $B = \{5,15,25 \dots ... 9995\}$ $A \cap B = 15,45,75 \dots ... 9975$ $9999 = 3 + (n - 1)6 \Rightarrow n = 1667$ $9995 = 5 + (n - 1)10 \Rightarrow n = 1000$ $9975 = 15 + (n - 1)30 \Rightarrow n = 333$ $n(A \cup B) = 1667 + 1000 + 333 = 2334$

But there are 5000 odd numbers from 1 to 10000

 \Rightarrow Required number = 5000-2334 = 2666

 \Rightarrow (b) is correct.

<u>Sol 2</u> (d)

Explanations:

Observe the table

Possible values of d	Possible AP's No. of AP's	
1. 2.	(1, 2, 3), (2, 3, 4) (22, 23, 24) (1, 3, 5), (2, 4, 6)	22
	(20, 22, 24)	20
	Educational Material Down	loaded from ht

2

 \Rightarrow Number of AP's

= 2(1+2+3+....11)

(d) is correct.

<u>Sol 3</u> (d)

Explanation:

Let f(x) = 8x3 - 6x + 1

$$\Rightarrow f(-1) < 0, f(0), f\left(\frac{1}{2}\right) < 0, f(1) > 0$$

(1, 11, 23), (2, 13, 14)

 \Rightarrow There is a root between (-1) and 0, between 0 and $\frac{1}{2}$ and between $\frac{1}{2}$ and 1

 \Rightarrow (d) is correct.

$\underline{Sol 4}(b)$

Explanation:

$$x^2 - 3x + 2 = (x - 1)(x - 2)$$

when x^{100} is divided by x - 1, the remainder is 1^{100} and when it is divided by x - 2, the remainder is 2^{100} .

$$\Rightarrow \frac{x^{100}}{x-1} = q_1(x) + \frac{1}{x-2}, \frac{x^{100}}{x-2} = q_2(x) + \frac{2^{100}}{x-2}$$

On subtracting, we get

$$-\frac{x^{100}}{(x-1)(x-2)} = q_1(x) - q_2(x) + \frac{1}{x-1} - \frac{2^{100}}{x-2}$$
$$\frac{x^{100}}{(x-1)(x-2)} = q_2(x) - q_1(x) + \frac{2^{100}(x-1)(x-2)}{(x-1)(x-2)}$$
$$\Rightarrow \text{Remainder is } (2^{100} - 1)x - 2(2^{99} - 1)$$

 \Rightarrow (b) is correct.

 $2B = A + C, C = 3A, A + B + C = 180^{\circ}$ $\Rightarrow A = 30^{\circ}$

<u>Sol 6</u> (d)

Explanation:

Applying $AM \ge HM$, we get

 $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \ge \frac{3}{x+y+z} = 3$ etc.

<u>Sol 7</u> (a)

Explanation:

From equation of line 4y = 12 - 3x

On putting in equation of ellipse, we get

$$9x^2 + (12 - 3x)^2 = 144$$

 $\Rightarrow 72x + 9x^2 = 0$

 $\Rightarrow x = 0, x = 4$ whence y = 3, y = 0

 \Rightarrow Points of intersection of line and ellipse are (0,3) and 4,0 whence r= 5

$\underline{Sol 8}(b)$

Explanation:

Let OA = p, OB = q

If P be x, y then

$$x = \frac{1 \times 0 + x P}{3}, y = \frac{1 \times q + 2 \times 0}{3}$$
$$\Rightarrow = \frac{2p}{3}, y = \frac{q}{3}, \text{But } p^2 + q^2 = a^2$$
$$\Rightarrow \left(\frac{3x}{2}\right)^2 + (3y)^2 = a^2 \Rightarrow \frac{9x^2}{4} = a^2 \Rightarrow \text{(b) is correct.}$$

 $2 \sec 2\alpha = \frac{\sin\beta}{\cos\beta} + \frac{\cos\beta}{\sin\beta} = \frac{1}{\sin\beta\cos\beta}$ $\Rightarrow \sec 2\alpha = \frac{1}{\sin2\beta} = \csc 2\beta$ $\Rightarrow \sec 2\alpha = \sec\left(\frac{\pi}{2} - 2\beta\right)$ $\Rightarrow 2\alpha = \frac{\pi}{2} - 2\beta \Rightarrow \alpha + \beta = \frac{\pi}{4}$ $\Rightarrow (b) \text{ is correct.}$

<u>Sol 10</u> (d)

Explanation:

Assertion is false since last period is 2π . Reason is true since f(x + 1) = f(x) for all x.

 \Rightarrow (d) is correct.

<u>Sol 11</u> (a)

Explanation:

 $x\sin|x| = \{x\sin(-x), x < 0\}$

 $\{x sin (+x), x > 0$

The derivatives (right and left at zero) are given below :

 $-(x \cos x + \sin x)$ and $+(x \cos x + \sin x)$ which are equal at $x = 0 \Rightarrow$ Assertion is true.

The true reason is a well known result and can be proved as follows:

Let
$$g(x) = xf(x)$$
, then

$$g'(0) = \lim_{h \to \infty} \frac{(0+h)f(0+h) - g(0)}{h}$$
$$= \lim_{h \to \infty} f(x) = f(0)(\because f(x) \text{ is continuous})$$

 \Rightarrow (a) is correct.

Assertion is true since A, B, C are collinear

 $\Rightarrow \alpha \overrightarrow{a} + \beta \vec{b} + \gamma \vec{c} = 0, \alpha + \beta + \gamma = 0$

 $(\alpha, \beta, \gamma \text{ are not all zero})$

And $\vec{a}, \vec{b}, \vec{c}$ are position vector of A, B, C.

 $\Rightarrow \vec{a}, \vec{b}, \vec{c}$ are coplanar.

The reason is obviously false since there are infinite planes containing a given line.

<u>Sol 13</u> (b)

Explanation:

Assertion is true and reason is correct. Since circle and parabola intersect at (a, a) in first quadrant and focus of the parabola $y^2 = ax$ is $\left(\frac{a}{4}, 0\right)$.

Sol 14) (d), **Sol 15** (a), **Sol 16** (b)

Explanation:

If 0 < a < 1, then there is only one number which is equal to its logarithm.

If $1 < a < e^{1/e}$ then, there are two numbers which are equal to their logarithms. (Fig.(ii))

If $a = e^{1/e}$ then there is only number which is equal to its logarithm (y = x will taken)



Note that $\log_e^{1/e} e = e$.

Finally if $a > e^{1/e}$ then there will be no number since the graph y = x will not cut the graph of $y = log_a x_a$.

Thus answer to 14, 15 and 16 follows.

<u>Sol 17</u> (b)

Explanation:

Put x = 0 in the first equation.

We get t = 0, t = 1, t = -1

For t = 0, $y = 1 - 0^4 = 1$

For t = 0, $y = 1 - 1^4 = 0$

For t = -1, $y = 1 - (-1)^4 = 0$

 \Rightarrow Curve cuts y – axis at two points (0,0) and (0,1).

 \Rightarrow (b) is correct.

<u>Sol 18</u> (d)

Explanation:

(a), (b), (c) are easily ruled out suppose it is symmetrical about y – axis then if (\propto , β) lies on the curve then ($-\propto$, β) must also lie on the curve choose t = + 2 to set (-6, -15) on the curve. It can be shown that (-6, 15)does not lie on the curve. Since for y = 15, t is not real. We similarly rule out (a) and (c).

<u>Sol 19</u> (b)

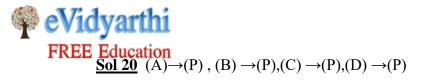
Explanation:

Area of the loop

$$= \left| 2 \int_{0}^{1} x \, dy \right| = \left| 2 \int_{0}^{1} x - \frac{dy}{dt} - dt \right|$$

$$= \left| 2 \int_0^1 (t - t^3) (-4t^3) dt \right| = \frac{16}{35}$$

Educational Material Down



$$\frac{dy}{dx} = -\frac{1}{\sqrt{1 - \left(\frac{a\cos x + b}{a + b\cos x}\right)^2}}$$

$$\frac{\left[-a\sin x \left(a + b\cos x\right) + b\sin x \left(a\cos x + b\right)\right]}{(a + b\cos x)^2}$$

$$-\frac{2}{1 + \frac{a - b}{a + b}} \tan^2 \frac{x}{2} \cdot \sqrt{\frac{a - b}{a + b}} \sec^2 \frac{x}{2} \cdot \frac{1}{2}$$

$$= \frac{(a^2 - b^2)\sin x}{\sqrt{(a + b\cos x)^2} (a\cos x + b)^2} \cdot \frac{1}{(a + b\cos x)}$$

$$-\frac{\sqrt{\frac{a - b}{a + b}} \sec^2 \frac{x}{2}(a + b)}{(a + b) + (a - b) \tan^2 \frac{x}{2}}$$

$$= \frac{(a^2 - b^2)\sin x}{\sqrt{(a^2 - b^2) - (a^2 - b^2)\cos^2 x}} \cdot \frac{1}{a + b\cos x}$$

$$-\frac{\sqrt{a^2 - b^2} \sec^2 \frac{x}{2}}{a\left(1 + \tan^2 \frac{x}{2}\right) + b\left(1 - \tan^2 \frac{x}{2}\right)}$$

$$= \frac{\sqrt{a^2 - b^2}}{a + b\cos x} - \frac{\sqrt{a^2 - b^2}}{a + b\cos x} \left(\because \cos x = \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\right)$$

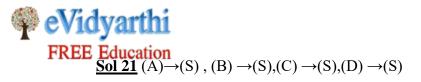
= 0

 \Rightarrow *y* is a constant

 $\Rightarrow y(x) = y(0)$ for all x

But y(0) = 0 by actually putting x=0

Thus $y(x), y(0), \frac{dy}{dx}, \frac{d'y}{dx^2}$ all are equal to zero.



 7^{1000} will definitely be odd

 \Rightarrow Remainder will be 1

Now when 7^{1000} is divided by 3, observe the following :

$$7^{1000} = (6+1)^{1000} = A$$
 multiple of $6+1$

 \Rightarrow Remainder when 7¹⁰⁰⁰ is divided by 3 is 1

Now 7 = 5K + 2, $7^2 = 5K + 4$, $7^3 = 5K + 3$, $7^4 = 5K + 1$

 \Rightarrow The cycle is 2, 4, 3, 1

 \Rightarrow Remainder when 7¹⁰⁰⁰ id divided by 5 is again 1.

Now $7^2 = 11K + 5$, $7^3 = 11K + 2$, $7^4 = 11K + 3$,

$$7^5 = 11K + 10, 7^6 = 11K + 4, 7^7 = 11K + 6$$

$$7^8 = 11K + 9, 7^9 = 11K + 8, 7^4 = 11K + 1$$

 \Rightarrow The cycle is of length 10.

 \Rightarrow The remainder when 7¹⁰⁰⁰ is divided by 11 is again 1.

Note: We do not have to calculate higher powers of 7.

Indeed from any equality of the type $7^{m} = 11$ K+r

We can easily switch over to $7^{m+1} = 11K' + r'$

For example, $7^2 = 11K + 5$ (:: 49 = 44 + 5)

 \Rightarrow 7³ = 77K +35 = 77K +33 + 2=11K' +2

Again multiplying by 7, we get

 $7^4 = 77K' + 14 = 77K' + 11 + 3 = 11K' + 3$

And so on.

Explanation:

Let
$$S = 2 \sin 2^{0} + 4 \sin 4^{0} + ... + 178 \sin 178^{0}$$
 on multiplying by $\sin 1^{0}$
 $S = 2 \sin 1^{0} \sin 2^{0} + 4 \sin 1^{0} \sin 4^{0}$
 $+.... + 178.2 \sin 1^{0} \sin 178^{0}$
 $= (\cos 1^{0} - \cos 3^{0}) + 2(\cos 3^{0} - \cos 5^{0}) + 3$
 $(\sin 5^{0} - \sin 7^{0}) + ... + 178(\cos 177^{0} - \cos 179^{0})$
 $= \cos 1^{0} + (\cos 3^{0} + \cos 177^{0}) + ... + (\cos 89^{0} + \cos 91^{0}) + 89 \cos 1^{0}$
 $= \cos 1^{0} + 89 \cos 1^{0} = 90 \cos 1^{0}$ (Other terms Vanish) $\Rightarrow S = 90 \cot 1^{0}$ and matching follow.