

Practice Paper 5

Section-I

Straight Objective Type

<u>Q1</u>

The number of positive integers satisfying $\left[\frac{x}{99}\right] = \left[\frac{x}{101}\right]$ must be

- a. 2491
- b. 2495
- c. 2498
- d. 2499

<u>Q2</u>

The foci of the ellipse $x^2 + 4x + 4\lambda^2 y^2 = 0$ will lie on the line x = -2, if

- a. $\lambda \in (-2, 2)$
- b. $\lambda \in \left(-\frac{1}{2}, \frac{1}{2}\right)$ c. $\lambda = 1$
- d. None of these

<u>Q3</u>

The point in the closed di $D = \{(x, y): x^2 + y^2 \le 1\}$ sc at which the function x + y attains its maximum is

- a. $\left(\frac{1}{2}, \frac{3}{4}\right)$ b. $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ c. (0, 1)
- d. (1, 0)

<u>Q4</u>

Let $P(x) = x^4 + ax^3 + bx^3 + cx + d$, where a, b, c, d are integers. Then sum of pairs of roots of P(x) are given by 1, 2, 5, 6, 9, 10 then $P''\left(\frac{1}{2}\right)$ must be

- a. 33
- b. 28
- c. -28
- d. None of these

<u>Q5</u>

Let two arithmetic means and two geometric means between \propto and β ($\propto > \beta > 0$) be A_1, A_2 and G_1, G_1 respectively then

- a. $A_1 A_2 < G_1 G_1$
- b. $A_1A_2 > G_1G_1$
- c. $A_1 A_2 = G_1 G_1$
- d. None of these

<u>Q6</u>

The number of integral values of a for which the lines x - 4y = 1 and ax+3y=1 intersect at an integer point must be

a. 0

- b. 1
- c. 3

d. infinite

<u>Q7</u>

The range of the function $\sin^{-1}\left(\frac{x^2+x+1}{x^4+1}\right)$ is

- a. $\left[0, \frac{\pi}{4}\right]$ b. $\left[0, \frac{\pi}{2}\right]$ c. $\left[0, \frac{\pi}{2}\right]$
- d. None of these

<u>Q8</u>

If m and n are arbitrary positive integers then $(1 + \omega + \omega^2 + ... + \omega^n)^m$ (ω being a non-real complex cube root of unity) will take

- a. 3 values
- b. 5 values
- c. 7 values
- d. mn values

d. $f(\propto) + f(\beta)$

<u>Q9</u>

If f(x) monotonically increasing and is differentiable on $[\alpha, \beta,]$ then $\int_{\alpha}^{\beta} f(x)dx + \int_{f(\alpha)}^{f(\beta)} f^{-1}(x)dx$ is equal to: a. $f(\alpha) - f(\beta)$ b. $\beta f(\alpha) - \alpha f(\beta)$ c. $\beta f(\beta) - \alpha f(\alpha)$

Section-II

Multiple Objective Type

<u>Q10</u>

If *P* is a point inside a convex quadrilateral *ABCD* such that $PA^2 + PB^2 + PC^2 + PD^2$ is twice

the area of the quadrilateral, then the correct statement is/are

a. PA, PB, PC, PD all are equal

b. ABCD must be a square and P must be its Centre

c. ABCD must be a square but P may not be its Centre

d. ABCD may not be a square

<u>Q11</u>

If f(x) and g(x) are two monotonically increasing functions such that

$$g(x) = f(x)\sqrt{1 - 2(f(x))^2}$$
 are then for values of x in the domain of $f(x)$

- a. $|f(x)| \le 1$
- b. $|f(x)| < \frac{2}{3}$
- c. $|f(x)| < \frac{3}{2}$
- d. $|f(x)| < \frac{1}{\sqrt{2}}$

<u>Q12</u>

Eight players of equal strength participate in a round robin tournament (Each player plays against any other player exactly once). Suppose no game ends in a draw then

a. Total results in the tournament can be 256

- b. Total results in the tournament can be 2^{28}
- c. The number of cases in which each team has won different number of games must be 56
- d. The number of cases in which each team has won different number of games must be 8!.

<u>Q13</u>

The equation of an ellipse is $(x + 2y - 3)^2 + 4(2x - y - 4)^2 = 10$ then

- a. Centre of the ellipse is $\left(\frac{11}{5}, \frac{2}{5}\right)$
- b. eccentricity is $\frac{\sqrt{3}}{2}$
- c. foci is $\left(\frac{11}{5} + \sqrt{\frac{3}{5}}, \frac{2}{5} \frac{3}{2\sqrt{5}}\right)$
- d. foci is $\left(\frac{11}{5} \sqrt{\frac{3}{5}}, \frac{2}{5} + \frac{3}{2\sqrt{5}}\right)$

<u>Q14</u>

Which of the following is (are true in a triangle)

a.
$$R^2 \ge \frac{abc}{a+b+c}$$

b. if the triangle is right angled at *C* then $r + 2R = s$
c. $\sin 2A + \sin 2B + \sin 2C \le \frac{3\sqrt{3}}{2}$
d. $\frac{2}{R} \le \frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3}$
Q15

In a cube of side a let A and F be the opposite corners such that AF is a solid diagonal, then

- a. length of any solid diagonal is $a\sqrt{3}$
- b. length of any plane diagonal is $a\sqrt{2}$
- c. shortest distance between A and F through plane faces of the cubic $a(\sqrt{2}+1)$
- d. shortest distance between A and F through plane faces of the cube is $a\sqrt{5}$

<u>Q16</u>

If $x \in (0, \frac{\pi}{2})$ then the minimum value of $\tan x + \cot x + \sec x + \csc x$ must be

- a. more than 4
- b. $2(\sqrt{2}+1)$
- c. less than 5
- d. $2\sqrt{2}$.

<u>Q17</u>

The equation $x^4 + 4x + a = 0$, where *a* is real has

- a. no real roots if a > 2
- b. no real roots if a > 3
- c. two equal roots if a = 3
- d. two distinct real roots if a < 3

Section-III

Assertion-Reason Type <u>Q18</u>

Statement-1:

If a > b > 0 then eccentricity of the ellipse $ax^2 + by^2 + cx + dy + e = 0$ is $\sqrt{\frac{a-b}{b}}$ because

Statement-2:

Eccentricity e of ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b)$ is given by $b^2 = a^2(1 - e^2)$

a. Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1

b. Statement-1 is True, Statement-2 is True; Statement-2 is not a correct explanation for Statement-1

c. Statement-1 is True, Statement-2 is False

d. Statement-1 is True, Statement-2 is True

<u>Q19</u>

Statement-1:

If a tangent to the curve $x^3 + y^3 = a^3 at (x_1, y_1)$ passes through (a, a) then (x_1, y_1) lies on a circle of radius a because

Statement-2:

The curve $x^3 + y^3 = a^3$ and $x^2 + y^2 = a^2$ cut orthogonally.

a. Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1

b. Statement-1 is True, Statement-2 is True; Statement-2 is not a correct explanation for

Statement-1

c. Statement-1 is True, Statement-2 is False

d. Statement-1 is True, Statement-2 is True

<u>Q20</u>

Statement-1:

The curve $x^3 + y^3 = a^3$ and $x^3 + y^3 = a^2$ cut orthogonally.

a. Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1

b. Statement-1 is True, Statement-2 is True; Statement-2 is not a correct explanation for Statement-1

c. Statement-1 is True, Statement-2 is False

d. Statement-1 is True, Statement-2 is True

Statement-2:

The solution to the differential equation $yy'' + xy'^2 = 3yy'$ is $y = C_1x^3 + C_2$

a. Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1

b. Statement-1 is True, Statement-2 is True; Statement-2 is not a correct explanation for

Statement-1

c. Statement-1 is True, Statement-2 is False

d. Statement-1 is True, Statement-2 is True

<u>Q21</u>

Statement-1:

The inequality $3x^3 - 4x^2 - 3x - 2 < 0$ id equivalent to x - 2 < 0.

Statement-2:

 $ax^{3} + bx + c > 0$ for all x of $a > 0, b^{2} - 4ac > 0$.

a. Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1

b. Statement-1 is True, Statement-2 is True; Statement-2 is not a correct explanation for Statement-1

c. Statement-1 is True, Statement-2 is False

d. Statement-1 is True, Statement-2 is True

Section-IV

Linked comprehension type

M₂₂₋₂₄: Paragraph for Question Nos. 22 to 24

Consider the differential equation $\frac{d^2y}{dx^2} + \frac{1}{x}\frac{dy}{dx} - \frac{y}{x^2} = 0$ and answer the following questions:

<u>Q22</u>

By putting $z = \log x$, the differential takes the form.

a.
$$\frac{d^2y}{dz^2} - 2\frac{dy}{dz} + y = 0$$

b.
$$\frac{d^2y}{dz^2} - y = 0$$

c.
$$\frac{d^2y}{dx^2} + y = 0$$

d. None of these

<u>Q23</u>

The solution of the differential equation $\frac{d^2y}{dx^2} + \frac{1}{x}\frac{dy}{dx} - \frac{y}{x^2} = 0$ is

a.
$$y = (c_1 + c_2 x)ex$$

b. $y = C_1 \sin(x + C_2)$
c. $y = C_1 x + \frac{c_2}{x}$

d. None of these

<u>Q24</u>

The family of curves satisfying the given differential equations cannot be

- a. circles
- b. lines
- c. rectangular hyperbolas

d. $y = C_1 x + \frac{C_2}{x}$

M₂₅₋₂₇: Paragraph for Question Nos. 25 to 27

Let a_1, a_2, a_3 ... be a sequence of complex numbers defined by $a_1 = 0a_{n+1} = a_n^2 - i$ for n > 1.

<u>Q25</u>

 a_{2n} Must be a. 1 + i b. 1 - i c. -1 - i d. i **Q26** a_{2n+1} must be a. 1 + i b. 1 - i c. -1 - i d. i

<u>Q27</u>

The distance between the points represented by complex numbers d. a_{2008} and a_{2009} must be

- a. √2
- b. √3
- c. 2
- d. $\sqrt{5}$

Section-V

Subjective Type

This section contains 3 Question. Write the answer of the questions (28-31) from the following combinations

0	0	0	0
1	1	1	1
2	2	2	2
3	3	3	3
4	4	4	4
5	5	5	5
6	6	6	6
7	7	7	7
8	8	8	8
9	9	9	9

<u>Q28</u>

The value of definite integeral $\frac{4}{\pi} \int_0^\infty \frac{x dx}{(1+x)(1+x^2)}$ must be

<u>Q29</u>

The angle of intersection of curves $y = (x - 2)^2$ and $y = 4x - x^2 + 4$ must be $\tan^{-1}\frac{8}{\lambda}$, the numerical quantity λ should be

<u>Q30</u>

A normal to the curve $y = x \log x$ parallel to the line 2x - 2y + 3 = 0 is $x - y = \frac{\lambda}{e^2}$, the numerical quantity λ should be

<u>Q31</u>

If the shortest distance between the circle $x^2 + y^2 - 3x - \sqrt{8}y + 4 = 0$ and the parabola $y = 1 - \frac{x^2}{2}$ is $\frac{\sqrt{\lambda} - 1}{2}$ then λ should be

Section-VI

Matrix-Match Type

Q32 If a + b = 1, $a^2 + b^2 = 2$, then match the following:

Column I	Column II
a. $a^3 + b^3$	p. 19/4
b. $a^4 + b^4$	q. 7/2
c. $a^5 + b^5$	r. 5/2
d. $a^7 + b^7$	s. 71/8

Q33

Let ABCDEF be a convex Hexagon in2 dimensional plane where A is origin

AB || DE, BC || EF and CD || FA. They coordinates of vertices A, B, C, D, E, F are the five distinct elements of the set {2, 4, 6, 8, 10}.

Match the x-co-ordinates of these vertices.

Column I	Column II
a. A	p. $6\sqrt{3}$
b. B	q. 2
c. C	r. $\frac{10}{\sqrt{3}}$
d. D	s. 0
e. E	t. $-\frac{8}{\sqrt{3}}$

Q34

Match the domain of following function $[0, 2\pi]$:

Column I

a. $\sqrt{\tan x}$

b. $\tan x + \cot x$

c. $\log(1 + tanx)$

d. tan(sin x)

Column II p. $\left(0, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \pi\right) \cup \left(\pi, \frac{3\pi}{2}\right)$ q. $\left[0, \frac{\pi}{2}\right] \cup \left[\pi, \frac{3\pi}{2}\right]$ r. $\left[0, 2\pi\right]$ s. $\left(\frac{3\pi}{4}, \frac{3\pi}{2}\right) \cup \left[\frac{7\pi}{4}, 2\pi\right]$