

Practice Paper-4

Section-I

Straight Objective Type

This section contains 9 multiple choice question numbered 1 to 9. Each question has 4 choices (a), (b), (c) and (d), out of which ONLY ONE is correct.

<u>Q1</u> If $f(x) = \int_{\sin x}^{\cos x} e^{t^2 + xt} dt$, then f'(0) is a. e + 1 b. -1 c. $\frac{e-1}{2}$ d. $\frac{e-3}{2}$ Q2 $\sin x + \sin y = \frac{1}{\sqrt{2}}, \cos x + \cos y = \frac{\sqrt{6}}{2}$. Then the value of $\sin(x + y)$ must be a. $\frac{1}{2}$ b. $\frac{1}{\sqrt{3}}$ c. $f \frac{\sqrt{3}}{2}$ d. None of the above <u>Q3</u> Using the result $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^3} + \dots = \frac{\pi^2}{6}$, $\int_0^1 \log x \log(1 \times x) dx$ is equal to a. $2 - \pi^2/6$ b. $1 - \pi^2/6$ c. $1 + \pi^2/6$

d. None of the above

<u>Q4</u>

If a, b, c, be the sides of a right angled triangle whose smallest angle is θ . If $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ are also the sides of a right angled triangle then the value of sin θ must be

a. $\frac{\sqrt{5+1}}{2}$
b. $\frac{\sqrt{5+1}}{4}$
c. $\frac{\sqrt{5-1}}{2}$
d. $\frac{\sqrt{5-1}}{4}$

<u>Q5</u>

Let f be a continuous function whose domain and range be [0, 1] and [0, 1], then the equation

f(x) = x

a. has atleast one solution

b. has atleast two solutions

c. may not have any solution

d. always has infinite solutions

<u>Q6</u>

A(3, 4), B(4, 3) and C(5, 0) be the vertices of a triangle ABC. A circle passes through midpoints of sides of $\triangle ABC$. ABC. The radius of this circle must be

a. $\frac{5}{8}$ b. $\frac{5}{4}$ c. $\frac{5}{2}$ d. $\frac{\sqrt{5}}{2}$

The value of $\cos 65^{\circ} \cos 55^{\circ}$ must be

a.
$$\frac{\sqrt{4}}{3}$$

b. $\frac{1}{4}\sqrt{2-\sqrt{3}}$
c. $\frac{5\sqrt{3}}{9}$
d. $\frac{1}{4}\sqrt{\frac{1}{2}+\frac{\sqrt{3}}{4}}$

<u>Q8</u>

If x and y are positive real numbers satisfying $x^2 + y^2 = 1$, then the minimum value of

- $x y + \frac{1}{xy}$ a. 2 b. 2 + $\sqrt{2}$ c. 3
- d. 1 + $\sqrt{2}$

<u>Q9</u>

Suppose the circumcentre of a triangle ABC lies on BC. Then the orthocenter of the triangle must be

a. the point A

- b. the incentre of the triangle
- c. the centroid of the triangle

Section-II

Multiple Objective Type

<u>Q10</u>

There are exactly *n* circles whose radii are the positive integers and which do not cut the curve xy = 9, *n* must be

- a. 2 b. 3
- 0.5
- c. 4
- d. 5

<u>Q11</u>

If $c \int_0^1 x f(2x) dx = \int_0^2 t f(t) dt$ where f is a positive continuous function then value of c must be

a. 1/2

b. 4

c. 2

d. 1

Q12

The equation $\tan x = \frac{x}{100}$ has

- a. 100 roots
- b. 200 roots
- c. one root
- d. infinite roots

<u>Q13</u>

A and S is said to have a minimum if there is an element a in S such that $a \le y$ a for all in S. Similarly, is said to have a maximum if there is an element b in S such that $b \ge y$ for all y in S. If $S = \{y: y = \frac{2x+3}{x+2}, x \ge 0\}$, which one of the following statements is correct?

a. S

has both a maximum and a minimum

b. S has neither a maximum nor a minimum

- c. S has a maximum but not minimum
- d. S has a minimum but not maximum

<u>Q14</u>

If S is the area of triangle ABC then $\sqrt{a^2b^2 - 4S^2} + \sqrt{b^2c^2 - 4S^2} + \sqrt{c^2a^2 - 4S^2}$ must be equal to

a.
$$a^2 + b^2 + c^2$$

b. $\frac{1}{2}(a^2 + b^2 + c^2)$
c. $ab \cos C + bc \cos A + ca \cos B$
d. $ab \sin C + bc \sin A + ca \sin B$.
Educational Material Downloaded from http://www.evidyarthi.in/
Get CBSE Notes, Video Tutorials, Test Papers & Sample Papers

<u>Q15</u>

If A and B are positive acute angles then the equation $sin^6A + 3sin^2A cos^2 B + cos^6 B = 1$ is

a. never possible

b. possible only when $A + B = 90^{\circ}$

c. possible only when A = B

d. possible when $A = B = 15^{\circ}$

<u>Q16</u>

If $x^2 + y^2 + z^2 = 2xyz$ where x, y, z are integers then

a. all the three integers x, y, z cannot be odd

b. two of them cannot be odd

c. none of them can be odd

d. none of them can be even

<u>Q17</u>

Two ellipses $\frac{x^2}{\cos^2 \alpha} + \frac{y^2}{\sin^2 \alpha} = 1 \left(0 < \alpha < \frac{\pi}{4} \right)$ and $\frac{x^2}{\sin^2 \alpha} + \frac{y^2}{\cos^2 \alpha} = 1$ intersect at four points, then a. *PQRS* is a square of side sin 2 \propto

b. P, Q, R, S lie on a circle whose centre is origin and whose radius is $\frac{\sin 2\alpha}{\sqrt{2}}$

c. there are two point on the ellipse $\frac{x^2}{\sin^2 \alpha} + \frac{y^2}{\cos^2 \alpha} = 1$ whose reflection in the line y = x lie on the same ellipse

d. The eccentricities of the two ellipses are same

Section-III

Linked Comprehension Type

M₁₈₋₂₀: Paragraph for Question Nos. 18 to 20

<u>Q18</u>

P + P' must be equal to

a. S²

b. $-S^2$

- c. $2S^2$
- d. None of the above

<u>Q19</u>

S satisfies the polynomial equation a. $S^{6} + 20S^{2} - 144 = 0$ b. $S^{2} + 2S - 3 = 0$ c. $S^{6} - 5S^{3} + 12 = 0$

d. None of the above

<u>Q20</u>

The value of S' must be equal to

- a. 3
- b. 2

c. -2

d. None of the above

M₂₁₋₂₃: Paragraph for Question Nos. 21 to 23

<u>Q21</u>

If which of the following $P(n) \Rightarrow P(n+1)$

- a. 8" 1 is divisible by 7
- b. 3"+ 8" is not divisible by 5
- c. 2"+ 1 is not divisible by 7
- d. None of these.

<u>Q22</u>

In which of the following $P(n) \Rightarrow P(n+1)$

a.
$$1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}$$
 is not an integer for any $n > 1$.
b. $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \ldots + \frac{1}{n^2} < 2$
c. $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \ldots + \frac{1}{n^2} < 2 - \frac{1}{n} (n > 1)$
d. None of these

<u>Q23</u>

Let P(n) be statement $\left(1 + \frac{1}{2}\right)\left(1 + \frac{1}{2^2}\right) \dots \left(1 + \frac{1}{2^n}\right) < \frac{5}{2}$ then while proving P(n) < P(n+1). which of the following will come across ?

a.
$$\frac{5}{2} \left(1 - \frac{1}{2^n} \right) \left(1 + \frac{1}{2^{n+1}} \right) \le \frac{5}{2} \left(1 - \frac{1}{2^{n+1}} \right)$$

b. $\frac{5}{2} \left(1 + \frac{1}{2^n} \right) \left(1 + \frac{1}{2^{n+1}} \right) \le \frac{5}{2} \left(1 - \frac{1}{2^{n+1}} \right)$
c. $\frac{5}{2} \le \frac{5}{2}$

d. None of these

Section-IV

Subjective Type

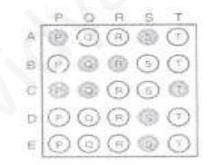
2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7 8 8 8 8	1 2 3 4 5 5
	,

<u>Q24</u>

Number of divisors of the number $2^{100}3^{11}5^{12}$ which leave remainder 1 when divided by 4 is **Q25**

The length of the longest chord of the ellipse $4x^2 + 9y^2 = 1$ drawn through $\left(0, -\frac{1}{3}\right)$ is $\frac{3}{\sqrt{\lambda}}$ the numerical integer λ should be

<u>Q26</u>


If $\cos \frac{\pi}{7}$ is a root of the equation $8x^3 + 4x^2 - 4x - \lambda = 0$, then the numerical integer λ should be

<u>Q27</u>

The graph of a quadratic function defined from [-2, 3] to [0, 3] touches x - axis at x = 3. If the function is $\frac{3}{\lambda}(x^2 - 6x + 9)$, then the numerical integer should be

Section-V

Matrix-Match Type

<u>Q28</u>

Match the following functions with their ranges :

Column IColumn IIa. $(x^2 + 3)^2 + 4$ p. $(-\infty, \infty)$ b.sin x - [sin x]q. [0, 1]c. cot(cot x)r. $[13, \infty]$ d. tan $(x^2 + x + 1)$ Educational Material Downloaded from http://www.evidyarthi.in/
Get CBSE Notes, Video Tutorials, Test Papers & Sample Papers

<u>Q29</u>

If $log_{10}5 = a$, $log_{10}3 = b$, then match the following :

Column I	Column II
a. <i>log</i> ₃₀ 8	p. $\frac{3+3b-3a}{1-a}$
b. <i>log</i> ₂ 216 c. <i>log</i> ₃₀ 216	q. $\frac{8}{3}$
d. <i>log</i> ₈ 256	$r. \frac{b}{3(1-a)}$
	5. b+1

<u>Q30</u>

Consider the expression $f(x) = x^2 + mx + m^2 + 6m$, where *m* is a parameter, match the following

Column I

a. f(x) > 0 for all x b. f(x) < 0 for $x \in (1, 2)$ c. f(x) > 0 for all x > 0d. f(x) < 0 for all x **Column II**

p.
$$(-\infty, \infty)$$

q. Null set
r. $(-\infty, -\infty) \cup (0, \infty)$
s. $\left(-\frac{7+3\sqrt{5}}{2}, -4+2\sqrt{3}\right)$