

States of Matter

<u>SOL 1.</u>

PV = m/MRT =>P * m/V * RT/M = dRT/M∴ d = MP/RTSubstituting the value, we get D = 17 * 5/0.082 * 303 = 3.42 g/litre

<u>SOL 2.</u>

Given, moles = mass/mol.wt Mass of gas = 3.7 g, mass of hydrogen = 0.184g $T_1 = 298K$, $T_2 = 17^{\circ}C = 273 + 17 = 290K$ Moles of $H_2 = n_1 = Mass/M$. wt. = 0.184/2 = 0.092 Moles of gas = $n_2 = Mass/M$. wt. = 3.7/M For hydrogen $P_1V_1 = n_1RT_1$ (i) For gas $P_2V_2 = n_2RT_2$ (ii) (\because Pressure and volume of gas |are same) \therefore From equation (i) and equation (ii) $P_1V_1/P_1V_1 = n_1RT_1/n_2RT_2$ or 1 = 0.092 *298/ n_2 *290 or $n_2 = 0.092$ *298/290 or 3.7/M = 0.092 *298/290 or 3.7/M = 0.0945 \therefore M = 3.7/0.0945 = **39.15**

<u>SOL 3.</u>

Let NH_3 diffuse through = x cmHCI diffuses through = y cm

According to Graham's law of diffusion $x/y = \sqrt{Mol. wt HCI/Mol. wt of NH_3} = \sqrt{36.5/17} = 1.465$ $x = 1.465 y \dots (1)$ $x + y = 200 \text{ cm} \dots (2)$ From these equations; y = 85.2 cmDistance between P and X = y = **85.2 cm**.

<u>SOL 4.</u>

Following reaction takes places in tube $C + CO_2 \rightarrow 2CO$ Volume of mixture of CO and $CO_2 = 1L$ Let volume of CO₂ in mixture = x \therefore Volume of CO in mixture = 2x \therefore original volume of CO in mixture = 1 - x Total volume of CO after reaction = (1 - x) + 2x = 1 + x 1 + x = 1.6 (\because It is given total volume after reaction = 1.6L) \therefore x = 0.6 L \therefore volume of CO₂ = 0.6 L Volume of CO = 0.4 L $CO_2 : CO = 3:2$

<u>SOL 5.</u>

NOTE THIS STEP: Since the evacuated bulb contains a mixture of oxygen and another gas in the molar ratio of 1 : 1 at a total pressure of 4000 mm, the partial pressure of each gas is 2000 mm.

The drop in the pressure of oxygen after 74 minutes

= 500/47 = 787.2 mm of Hg

 \therefore After 74 minutes, the pressure of oxygen

= 2000 - 787.2 = 1212.8 mm of Hg

Let the rate of diffusion of other gas be r_n , then

$$\frac{r_n}{r_{O_2}} = \sqrt{\frac{32}{79}}$$

 \therefore Drop in pressure for the other gas = 787.2 * 32/79

= 501.01 mm of Hg

 \therefore pressure of the other gas after 74 minutes

= 2000 - 501.01 mm = 1498.99 mm of Hg

Molar ratio = Moles of unknown gas/Moles of O_2

= 1498.99/1212.8 = 1.24/1 = **1.24 : 1**.

[Partial pressure ∝ mole fraction]

<u>SOL 6.</u>

Since the pressures of gases are different, and the temperature is constant, the rate at which molecules of the two gases diffuse is directly proportional to the pressure. This rate of diffusion is also directly proportional to the distance travelled by the gas. Hence r_1 (of HCI gas) at pressure $P = 60 = kP/\sqrt{36.5}$ (i)

```
and r_2 (of NH<sub>3</sub>) at 1 atm. Pressure P = 40 = k * 1/\sqrt{17} ....(ii)

From (i) and (ii)

r_1/r_2 = 60/40 = kP/\sqrt{36.5} * \sqrt{17/k} * 1, P = 60/40 * \sqrt{36.5}/\sqrt{17} = 2.197 atm

Educational Material Downloaded from http://www.evidyarthi.in/

Get CBSE Notes, Video Tutorials, Test Papers & Sample Papers
```


SOL 7. **TIPS/Formulae:** Total kinetic energy = n(3/2 RT0)where n = Number of moles of the gas R = Gas constantT = Absolute temperature Molecular weight of methane, $CH_4 = 12 + 4 * 1 = 16$: Number of moles of methane in 8.0 gm of methane = 8.0/16.0 = 0.5R = 8.314 joules/K/mole T = 27 + 273 = 300 K: Total kinetic energy of the molecules in 8.0 gm of methane at $27^{\circ}C = InI * 3/2 RT$ = 0.5 * 3/2 * 8.314 * 300 = 1870.65 joules : Average kinetic energy = $1870.65/6.023 * 10^{23} * 0.5$ $= 6.21 * 10^{-21}$ joules/molecule

<u>SOL 8.</u>

NOTE THIS STEP : First we should calculate the number of moles of the gas under the given condition by the relation PV = nRTHere $P = 7.6 * 10^{-10}$ mm Hg = 7.6 *10⁻¹⁰/760 atm. = 1 * 10⁻¹² atm. V = 1 litre T = 273 + 0 = 273K R = 0.082 litre atm./K/mol Putting the values in equation $n = PV/RT = 1 * 10^{-12} * 1/0.082 * 273$ moles now since 1 mole = 6.023 * 10²³ molecules $10^{-12}/0.082 * 273$ moles = 6.023 * 10²³ * 10⁻¹²/0.082 * 273 molecules = 2.7 * 10¹⁰ molecules

<u>SOL 9.</u>

From ideal gas equation, PV = nRT PV = 9m/M) RT or M = m RT/PVLet the molecular wt. of A and B be M_A and M_B respectively. Then M_A = 2 RT/1 * V ; M_B = 3 * RT/0.5 * V \therefore M_A/M_B = 2RT/V * 0.5V/3 RT = 2 * 0.5/3 = 1/3 Therefore, the ratio M_A : M_B = 1 : 3

<u>SOL 10.</u>

If temperature and pressure are the same. [From Avogadro's law]

<u>SOL 11.</u>

 $C\sqrt{3}PV/M$, $P_1V_1/T_1 = P_2V_2/T_2$ Where, $P_1 = 82 \text{ cm} = 82 * 13.61 * 981 \text{ dynes}$ $V_1 = \text{Volume of gas at 82 cm and 20°C}$ P_2 , V_2 and T_2 are the conditions at NTP, $=>V_1 = P_2 V_2/T_2 * T_1/P_1 = 76.0 * 22400/273 * 293/82 = 22282 \text{ cc}$ $M = \text{molecular weight of ozone (0_3)} = 48$ $\therefore C = \sqrt{3} * (82 * 13.6 * 981.) * 22282/48$ $= 3.9 * 10^4 \text{ cm sec}^{-1}$ **ALTERNATESOLUTION** $U_{\text{rms}} = \sqrt{3}RT/M$ Given T = 20°C = 20 + 273 = 293K $R = 8.314 * 10^7 \text{ erg per degree per mol}$ $M(\text{of } O_3) = 48$ $\therefore U_{\text{rms}} = \sqrt{3} * 8.314 * 10^7 * 293/48 = 3.9 * 10^4 \text{ cm sec}^{-1}$

<u>SOL 12.</u>

TIPS/Formulae:

No. of balloons that can be filled = V of H₂ available / V of one balloon Calculation of total volume of hydrogen in the cylinder at N.T.P $P_1 V_1 / T_1 = P V_2 / T_2$ $P_1 = 1 \text{ atm}$ $P_2 = 20 \text{ atm}$ $V_1 = ?$ $V_2 = 2.821$ $T_1 = 23 \text{ K}$ $T_2 = 273 + 27 = 300 \text{ K}$ \therefore V₁ = 20 * 2.82 * 273/300 * 1 = 51.324 l = 51324 ml Actual volume to be transferred into balloons = 51324 - 2820 ml = 48504 ml[: 2820 ml of H₂ will remain in cylinder] No. of balloons that can be filled up -= 48504/4851 = 9.999 = 10Volume of one balloon = $4/3 \pi r^3 = 4/3 * 22/7 * (21/2)^3$ [:: r = diameter/2] = 4851 ml = 4.851 L**ALTERNATESOLUTION** Volume of balloon = 4.851 L (as calculate above) Let no. of balloon to be filled *n* : Total volume occupied by *n* balloons = 4.851 * nVolume of H_2 present in cylinder = 2.82 L (given) \therefore Total volume of H₂ at NTP = (4.851n + .82)L

 $P_1 = 1 \text{ atm} \qquad P_2 = 20 \text{ atm}$ $V_1 = 4.85 * \text{n} + 2.82 \text{ L} \qquad V_2 = 2.82 \text{ L}$ $T_1 = 273 \text{ K}$ $P_1 V_1 / T_1 = P_2 V_2 / T_2$ or 1 * (4.85 * n + 2.82)/273 = 20 * 2.82/300 ∴ n = 48.504/4.851 = 10

<u>SOL 13.</u>

TIPS/Formulae:

Average velocity = $\sqrt{8}RT/\pi M$ and Most probable velocity = $\sqrt{2}RT/M$ Given -For CO₂ Average velocity at T_1 Most probable velocity at T_2 = 9 * 10⁴cm/sec = 9 * 10⁴/100 m/sec. = 9 * 10² = m/sec. \therefore 9 * 10² = $\sqrt{8}$ * 8.314 9 T₁/3.14 *44 * 10⁻³(A) [Average velocity at T₁K] and 9 * 10₂ = $\sqrt{2}$ * 8.314 * $T_2/44$ * 10⁻³(B) [Most probable velocity at T_2] On solving, T_1 = **1682.5 K**, T_2 = **2143.4 K**

<u>SOL 14.</u>

Applying the general gas equation PV = nRT = m/MRTHere, Mol. wt. of acetylene i.e., C₂H₂ (M) = 26, P = 740/760 atm, $T = 50^{\circ}C = 50 + 273 = 323 \text{ K}$ $\therefore V = mRT/MP \text{ or } V5 * 0.082 * 323 * 760/26 * 740 = 5.23 \text{ l}$

SOL 15.

Using gas equation; PV = nRTTotal no. of moles of gases in the mixture (n) = PV/RT = 6 *3/0.0821 *300 = 0.7308 mol. Thus no. of moles of unknown gas = 0.7308 - 0.7= 0.0308 mol.

Now we know that

 r_1/r_2 = moles of hydrogen gas/moles of unknown gas = 0.7/0.0308 Also we know that $r_1/r_2 = \sqrt{M_2/M_1}$ $\therefore M_2 = (r_1/r_2)^2 M_1$ or $M_2 = (0.7/0.0308)^2 * 2 = 1033$

<u>SOL 16.</u>

 $\begin{array}{ll} 2\mathrm{NO} + \mathrm{O_2} \rightarrow 2\mathrm{NO_2} \rightarrow \mathrm{N_2O_4} \\ \mbox{Calculating the number of moles of NO and O_2 by applying the formula, $n = PV/RT$} \\ \mbox{Moles of NO in the larger flask} = 1.053 * 0.250 / 0.082 * 300 = 0.0107$ \\ \mbox{[250 mL} = 0.250 L]$} \\ \mbox{Moles of O_2 in the smaller flask} = 0.789 * 0.0100 * 0.082 * 300 = 0.0032$ \\ \mbox{[100 mL} = 0.100 L]$} \\ \mbox{The reaction takes place as follows.} \\ \mbox{2NO} + \mbox{O_2} \rightarrow \mbox{N_2O_4}$ \\ \mbox{Moles before } 0.0107 & 0.0032 & 0 \end{array}$

Reaction

Mole after 90.0107- 0 0.0032

reaction 2 * 0032)

Hence moles of NO reacting completely with 0.0032 moles of $O_2 = 2 * 0.0032 = 0.0064$ Moles of NO left = 0.0107 - 0.0064 = **0.0043**

NOTE : Oxygen will be completely changed into NO₂ which in turn is completely converted into N₂O₄ which solidifies at 262 K. Hence at 220 K, the dimer is in the solid state and only NO present in excess will remain in the gaseous state occupying volume equal to 350 ml. Hence pressure (P) of No gas left

= nR/V = 0.0043 * 0.082 * 220/0.350 = 0.221 atm [Total volume = 0.250 + 0.100 = 0.350 L]

<u>SOL 17.</u>

 $V_{\rm rms} = \sqrt{3RT/M} = \sqrt{3P/d}$...(1) Calculation of density (d) of gas molecules. No. of gas molecules = $2 * 10^{21}$ Since mass of $6.023 * 10^{23}$ molecules of nitrogen = 28 g Mass of 2 * 10^{21} molecules of N₂ $= 28 * 2 * 10^{21} / 6.023 * 10^{23} = 56 / 602.3 = 0.093 \text{ g}$ \therefore *d* = Mass/Volume = 0.093/1 g/1 [volume of flask = 1 L] $= 0.093 * 10^{-3} \text{ kg}/10^{-3} \text{ m}^3 = 0.093 \text{ kg}/\text{m}^3$ Substituting the value of d and P in equation (1) $V_{\rm rms} = \sqrt{3} * 7.57 * 10^3 / 0.093 = 494.16 \text{ m/sec} [V_{\rm rms} = \sqrt{3} P / d]$ $(V_{\rm rms})^2 = 3 \text{ RT/M} = 3P/d = 3 * 7.57 * 10^3/0.093 \text{ [squaring]}$ *RT*/*M*7.57 * 10³/0.093 $T = 7.57 * 10^{3}/0.093 * 28 * 10^{-3}/8.314 = 274.13 \text{ K}$ Most probable velocity (\propto)/Root mean sq. velocity ($V_{\rm rms}$) = 0.82 [given] $=> \propto = 0.82 * 494.16 = 405.2 \text{ m/sec}$ **ALTERNATESOLUTION** Given $V = 1L = 10^{-3}m^3$, $P = 7.57 * 10^{-3} \text{ Nm}^{-2}$, R = 8.314 J, $N = 2 * 10^{21} / 6.023 * 10^{23}$ moles PV = nRT

Educational Material Downloaded from http://www.evidyarthi.in/ Get CBSE Notes, Video Tutorials, Test Papers & Sample Papers

or T = PV/nR= 7.57 *10⁻³ * 6.023 *10²³/2 *10²¹ * 8.31 = 274.13 K $U_{rms} = \sqrt{3}RT/M = \sqrt{3} * 8.314 * 274.13/28 *10^{-3} m/s = 494.15 m/s$ (Given U) $U_{mp}/U_{rms} = 0.82$ (given) $\therefore U_{mp} = 0.82 * U_{rms} = 0.82 * 494.15 = 405.2 m/sec$

<u>SOL 18.</u>

Partial pressure = Mole fraction * Total pressure $\therefore p_{\text{He}} = x_{\text{He}} * P = 4/5 * 20 = 16 \text{ bar}$ [mole fraction of He = 4/5] $\therefore p_{CH_4} = 20 - 16 = 4 \text{ bar}$

Now applying the formula

$$\frac{r_{He}}{r_{CH_4}} = \frac{P_{He}^0}{P_{CH_4}^0} \sqrt{\frac{M_{CH_4}}{M_{He}}} = \frac{16}{4} \sqrt{\frac{16}{4}} = \frac{16}{4} \sqrt{4}$$

 $:: r_{He} : r_{CH_3} = 8 : 1$

: Composition of the mixture (He : CH₄) effusing out = 8:1

<u>SOL 19.</u>

Calculation of volume of gas : Weight of cylinder with gas = 29.0 kgWeight of empty cylinder = 14.8 kg \therefore Weight of gas in the cylinder = 14.2 kg Pressure in cylinder = 2.5 atm : No. of moles (*n*) in 14.2 kg (14.2 * 10^3 g) of butane N = Wt. of butane/Mol. wt. of butane = $14.2 \times 10^3/58 = 244.83$ mol Applying gas equation, V = nRT/P = 244.83 * 0.0821 * 300/2.5 = 2412 litres $[27^{\circ}C = 273 + 27 = 300]$ Calculation of pressure in cylinder after use. Weight of cylinder after use = 23.2 kg Weight of empty cylinder = 14.8 kg: Wt. of unused gas = $8.4 \text{ kg} = 8.4 * 10_3 / 58$ moles of butane Thus $P = nRT/V = 8.4 * 10^3 * 0.0821 * 300/58 * 2412 = 1.478$ atm [V = 2412 L]Calculation of volume of used gas at 2.5 atm and 27°C. Weight f used gas = 14.2 - 8.4 = 5.8 kg Pressure under normal usage conditions = 1 atm $V = nRT/P = 5.8 * 10^3 / 58 * 0.0821 * 300 / 1$ [:: n = 5.8/58]= 246 litres = 2.463 m³ Educational Material Downloaded from http://www.evidyarthi.in/

Get CBSE Notes, Video Tutorials, Test Papers & Sample Papers

<u>SOL 20.</u>

Let the volume of ethane in mixture = x litre \therefore Volume of ethane = (40 - x) litre Combustion reactions f ethane and ethane are : (i) $C_2H_6(g) + 31/2 O_2(g) \rightarrow 2CO_2(g) + 3H_2O(I)$ or $2C_2H_6(g) \rightarrow 4CO_2(g) + 6H_2O(I)$ (ii) $C_2H_4(g) + 3O_2(g) \rightarrow 2CO_2(g) + 2H_2O(I)$ Volume of O₂ required for complete combustion of ethane = 7x/2 [For x litres] Volume of O₂ required for complete combustion of ethane = (40 - x) * 3 [For (40 - x)L] : Total volume of O_2 required = 7x/2 + (40 - x)3 ICalculation of number of moles (n), P = 1 atm, V = 7x/2 + (40 - x)3/2; R = 0.082/2 atm K⁻¹ mol⁻¹; T = 400 KSince n = PV/RT = 1*[7x/2 + (40 - x)3]/0.082*400 = 7x + (40 - x)6/2*0.082*400Mass of *n* moles of $O_2 [7x + (40 - x)62 * 0.082 * 400] * 32 = 130$ or 130 = [7x + 6240 - 6x/65.6] * 32=>8528 = 32x + 240 * 32 => 32x = 848 => or x = 848/32 = 26.5Hence mole fraction (%) of ethane = 26.5/40 * 100 = 66.25%Mole fraction (%) of ethane = **33.75%**

<u>SOL 21.</u>

Mixture		Krypton						
$r_{\rm mix} = 1.16$		$r_{\rm Kr} = 1$						
$M_{\rm mix} = ?$		$M_{\rm Kr} = 84$						
We know that								
$r_{\rm mix}/r_{\rm Kr} = \sqrt{M_{\rm Kr}/M}$	min or 1.	16/1 =	√84/ <i>N</i>	$I_{\rm mix}$				
or $(1.16)^2 84/M_{\rm min}$	$K = M_{\rm mi}$	x = 84/	$(1.16)^{2}$	$^{2} = 62.426$				
Determination of	the comp	oositio	n of the	equilibrium mixture/Let the fraction of CI ₂				
molecules dissocia	ated at e	quilibr	ium = x	ζ				
	CI_2	_ ⇒	2CI	Total				
Initially	1		0	1				
At equilibrium	1 – x		2x	1 - x + 2x = 1 + x				
: Total moles at e	quilibriu	m = 1	-x + 2x	x = 1 + 1				
·· Normal molecul	ar mass,	/Exper	imental	molecular mass = $1+x$				
$\therefore 71/64.426 = 1 +$	\sim							
$\therefore \propto = 0.137 = 13.$	7%							

<u>SOL 22.</u>

TIPS/Formulae:

(i) He does not react with oxygen.

(ii) KOH absorbs only CO₂.

NOTE: When the mixture of CO, CH₄ and He gases (20 ml) are exploded by an electric discharge with excess of O₂, He gas remain as such and the other reactions involved are : $CO(g) + 1/2 O_2(g) \rightarrow CO_2(g) \qquad \dots (i)$ $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(I) \qquad \dots (ii)$ Let the volumes of CO and CH₄ to be 'a' ml and 'b' ml in the mixture then

Volume of He gas = [20 - (a + b)] ml

For the initial contraction of 13 ml

For the initial contraction of 13 ml,

Volume of left hand side in the above reactions – 13 = volume

or right hand side.

 $\therefore [20 - (a+b)] + (a+1/2 a) + (b+2b) - 13$

= [20 - (a + 2b)] + a + b [neglect the volume of H₂O (*l*)]

(Since for gases, volume \propto no. of moles)

 $\therefore 1/2 a + 2b = 13 \text{ or } a + 4b = 26 \dots$ (iv)

NOTE THIS STEP : The CO₂ produced above in reactions (ii) & (iii), (a + b) ml, reacts with KOH sol for a further contraction of 14 ml.

 $\mathrm{CO}_2(g) + 2\mathrm{KOH}(h) \to \mathrm{K}_2 \,\mathrm{CO}_3(h) + \mathrm{H}_2\mathrm{O}(h)$

(a+b) ml

 $\therefore a + b = 14$ (v) Solving (iv) & (v) we get, a = 10 ml & b = 4 ml $\therefore CH_4 = 4/20 * 100 = 20\%$, C0 = 10/20 * 100 = 50% & He = 100 - (20 + 50) = 30%

<u>SOL 23.</u>

The concerned chemical reaction are : $O_3 + 2 KI + H_2O \rightarrow 2KOH + I_2 + O_2$ $I_2 + 2Na_2S_2O_3 \rightarrow Na_2S_4O_6 + 2Nal$ Millimoles of ozone = Millimoles of I_2 mM of O_3 = mM of I_2 = 1/2 * mM of $Na_2S_2O_3$ = 1/2 * 40 * 1/10 = 2mM = 0.002 mole Calculation of total number of moles of O_2 and O_3 PV = n R T1 * 1 = n *0.0821 *273 or n = 1/0.0821 *273 Or n = 0.044 mole \therefore Moles of O_2 = 0.044 - 0.002 = 0.042 \therefore Wt. of O_2 = No. of moles * Mol. Wt. = 0.042 * 32 = 1.344 g Similarly, Wt. of O_3 = 0.002 * 48 = 0.096 g

Educational Material Downloaded from http://www.evidyarthi.in/ Get CBSE Notes, Video Tutorials, Test Papers & Sample Papers

:. weight % of $O_3 = 0.096/1.44 * 100 = 6.6\%$ [Total weight = 1.344 + 0.096 = 1.44 g] No. of photons or molecules of $O_3 = 0.096 * 6.023 * 10^{23}/48 = 1.2 * 10^{21}$

<u>SOL 24.</u>

Use vander Waal's eqn.

Real gas equation for one mole is given as: $(P + a/V^2) (V - b) = RT \text{ or } (P + a/V^2) = RT/V - b$ $=> P = RT/V - b - a/V^2 = Rt/V(1 - b/V) - a/V^2$ $=> PV = RT (1 - b/V)^{-1} - a/V$ $= RT (1 + b/V + b^2/V^2) - a/V$ (using binomial expansion) $=> PV = RT (1 + b - a/RT / V + b^2/V^2 + b^3/V^3 +)(i)$ Give equation : PV = RT (1 + B/V +)(ii)Comparing (1) and (2), we get, B = b - a/RT / V

<u>SOL 25.</u>

Weight of liquid = 148 - 50 = 98 g Volume of liquid = 98/0.98 = 100 ml = volume of vessel it means, vessel of 100 ml contain ideal gas at 760 mm Hg at 300 K Weight of gas = 50.5 - 50 = 0.5gUsing, PV = nRT = w/m RT 760/760 * 100/1000 = 0.5/m * 0.082 * 300 [n = 0.5/m] \therefore Molecular weight of gas (m) = **123**

<u>SOL 26.</u>

PCI₅ PCI₃ CI₂ \rightleftharpoons +Initial moles 1 0 0 Moles at eq 1 -0.4 0.4 0.4 \therefore Total moles at equilibrium = 1 - 0.4 + 0.4 + 0.4 = 1.4 Also Normal mol. Wt. of PCI₅/Exp. Mol. Wt. of PCI₅ = $1 + \alpha = 1.4$ Or 208.5/Exp. mol. Wt. of $PCI_5 = 1.4$ \therefore Exp. mol. Wt. of PCI₅ or m. wt. of mixture = 208.5/1.4 Now using, PV = w/m RT for mixture d = w/V = Pm/RT = 1 * 208.5/1.4 *0.082 *400 = 4.53 g/litre

<u>SOL 27.</u>

Van der waals equation for n moles of gas is $[P + n^2 a/V^2] [V - nb] = nRT$ Given V = 4 litre; P = 11.0 atm, T = 300 K; b = 0.05 litre mol⁻¹, n = 2; Thus, $[11 + 2^2 a/4^2] [4 - 2 * 0.05] = 2 * 0.082 * 300$ \therefore a = 6.46 atm litre² mol⁻²

<u>SOL 28.</u>

	$N_2O_{5(g)}$		⇒	2NO _{2(g)}	+	$1/2 \ O_{2(g)}$					
Initial pressu	ire	600		0		0					
Final pressu	re	600 -	Р	2P)	P/2					
$P \propto$ moles when V and T are constant											
(where moles equivalent to pressure –P are decomposed)											
Total pressure = $600 - P + 2P + P/2 = 960 \text{ mm of Hg}$											
\therefore P = 240 mm Hg											
Thus moles of N_2O_5 decomposed = $240/600 = 0.4$											
<u>SOL 29.</u>											
We know that											
$r_1/r_2 = \sqrt{M_2/M_1 * P_1/P_2}$ or $n_1/t_1 * t_2/n_2 = \sqrt{M_2/M_2 * P_1/P_2}$											
or $1/28 * 57/1 = \sqrt{M/28 * 0.8/1.6}$											
∴ M = 252											
$X_e + (F)_x = 252$											
$l_{131} + 19x = 252 \therefore x = 6$											
Thus compound of xenon with fluorine is XeF ₆											

<u>SOL 30.</u>

(I) Given P = 1 atm, w = 12 g; T = (t + 273)K; V = V litre (II) If T = t + 10 + 273 = t + 283 K; V = V litre, P = 1 + 10/100 = 1.1 atm Using gas equation, PV = w/m RT Case I. 1 * V = 12/m R (t + 273)(1) Case II. 1.1 * V = 12/m R (t + 283)(2) From (1) and (2), t = -137°C or t = 100 K Also from (1), on substituting t and m (120), V = 0.82 litre

<u>SOL 31.</u>

van der Waal's eSoluation for one mole of a gas is $[P + a/V^2] (V - b) = RT$ (1) Give that volume occupied by CO₂ molecules, 'b' = 0 Hence, (1) becomes $[P + a/V^2] V = RT$ or $P = RT/V - a/V^2$ Educational Material Downloaded from http://www.evidyarthi.in/ Get CBSE Notes, Video Tutorials, Test Papers & Sample Papers

Using R = 0.082, T = 273K, V = 22.4 l for 1 mole of an ideal gas at 1 atm pressure. Case I. 1 * V = 12/m R (t + 273)(1) Case I. 1 * V = 12/m R (t + 273)(1) \therefore P = 0.082 *273/22.4 - 3.592/(22.4)⁴ = **0.9922 atm**

<u>SOL 32.</u>

We know that, Compressibility factor, Z = PV/RT 0.5 = 100 *V/0.082 *273 $\therefore V = 0.1117L$ **NOTE :** Further when volume of a gas molecule is negligible, van der Waal's eSoluation becomes $(P + a/V^2) (V - 0) = RT$ $Or PV = RT - a/V \text{ or } a = RTV - PV^2$ Substituting the values A = (0.082 * 0.1119 *273) - (100 * 0.1119 * 0.1119) $= 1.253 \text{ atm } L^2 \text{ mol}^{-2}$

SOL 33.

(a) $d = 0.36 \text{ kg m}^{-3} = 0.36 \text{ g/L}$ (i) From Graham's Law of diffusion $\frac{r_v}{r_{O_2}} = \sqrt{\frac{M_{O_2}}{M_v}}; 1.33 = \sqrt{\frac{32}{M_v}}$ $\therefore M_v = 32/(1.33)^2 = 18.09;$ Where $M_v = MW$ of the vapour (ii) Thus, 0.36g = 0.36/18.09 mol 0.36/18.09 mol occupies 1 L volume, so 1 mol occupies 18.09/0.36 L = 50.25LThus, molar volume of vapour = 50.25 L Assuming ideal behavior the volume of the vapour can be calculated by $V_1/T_1 = V_2/T_2 => 22.4 * 500/273 = 41.025L$ (iii) Compressibility factor (Z) $= (PV)_{obs}/(PV)_{ideal} = 1 * 50.25/1 * 41.025 = 1.224$ (iv) Z is greater than unity, hence it is the short range repulsive force that would dominate. (\because actual density is less than given density) (b) $E = 3/2 \text{ KT} = 3/2 * 8.31/6.02 * 10^{23} * 100$ $= 2.07 * 10^{-20}$ J per molecule (:: K, Boltzmann constant = R/N)

<u>SOL 34.</u>

$$\begin{split} C_{\rm rms} &= \sqrt{3} \ RT/M \text{ , } C_{av} \ \sqrt{8} \ RT/\pi M \\ C_{\rm rms}/C_{av} &= \sqrt{3} \ RT/M * \sqrt{\pi}M/8 \ RT = \sqrt{3}\pi/8 = 1.085 \\ C_{\rm rms} &= 1.085 * C_{av} = 1.085 * 400 = \textbf{434 ms^{-1}} \end{split}$$

<u>SOL 35.</u>

The van der Waal eSoluation (for one mole) of a real gas is

$$\begin{pmatrix} P + \frac{a}{v_m^2} \end{pmatrix} (V_m - b) = RT PV_m - Pb + a/V - ab/V^2 = RT PV_m = RT + Pb - a/V_m + \frac{ab}{v_m^2} \qquad \dots (i)$$

NOTE THIS STEP:

To calculate the intercept $P \rightarrow 0$, hence $V_m \rightarrow \infty$ due to which the last two terms on the right side of the eSoluation (i) can be neglected.

 $\therefore PV_m = RT + Pb$ When P = 0, intercept = **RT**