इकाई 19 जल

- जल का संघटन, जल के भौतिक एवं रासायनिक गुण
- जल एक अच्छा विलायक, जल का खारापन, जल की कठोरता
- जल प्रदूषण
- जल संरक्षण

पिछली कक्षा में आपने जल की आवश्यकता तथा उपयोगिता के विषय में जाना है। आपने यह भी जाना कि जल हमारे दैनिक जीवन के लिए कितना महत्वपूर्ण है। हमारी पृथ्वी का 3/4 भाग जल है। जिसमें 97% समुद्र जल, 2% ग्लेशियर व ध्रुव बर्फ तथा 1% भूमिगत झील, नदी, तालाब के जल हैं। परन्तु क्या सभी जल हमारे लिए उपयोगी है ? क्या हम समुद्र के खारे पानी को भी पी सकते हैं ? आपके मन में क्या यह प्रश्न कभी उठा कि कभी पृथ्वी पर जल खत्म हो जाये तो हम क्या करेंगे ? आइये जल के विषय में और जानकारी प्राप्त करें।

9.1 जल का संघटन

प्राचीन समय में ऐसा माना जाता था कि संसार के सभी पदार्थ पृथ्वी, जल, अग्नि, आकाश और वायु तत्वों से मिलकर बने हैं। इन्हें पंचतत्व माना गया है। मानव का शरीर भी इन्हीं पंचतत्व से मिलकर बना है और मृत्यु के पश्चात इन्हीं पाँच तत्वों में मिल जाता है। समय बीतने पर वैज्ञानिकों ने बताया कि जल तत्व नहीं एक यौगिक है।

जल का विद्युत अपघटन करने पर हमें (H_2) एवं (O_2) गैस प्राप्त होती है। जो यह बताता है कि जल H एवं O तत्वों से मिलकर बना है।

जल

बिद्युतं अपन्नद्रम् करने पर H2 + O2

अत: हाइड्रोजन तथा ऑक्सीजन जल के अवयवी तत्व हैं।

वास्तव में जल का प्रत्येक अणु दो परमाणु हाइड्रोजन तथा एक परमाणु ऑक्सीजन के संयोग से बनता है। जल का अणुसूत्र H₂O है। दो आयतन हाइड्रोजन तथा एक आयतन ऑक्सीजन पूर्णरूप से संयोग करके जल बनाते हैं।

19.2 जल के भौतिक एवं रासायनिक गुण

पिछली कक्षा में आपने पढ़ा है कि शुद्ध जल रंगहीन, गंधहीन, स्वादहीन एवं पारदर्शक द्रव है। जल का क्वथनांक 100°C तथा जल का हिमांक 0°C होता है। जल में विभिन्न प्रकार के लवण घुले रहते हैं, जिसके कारण जल का विशेष स्वाद होता है। विभिन्न लवणों के घुले होने के कारण ही कुछ जल हानिकारक एवं कुछ लाभप्रद होते हैं।

जाड़े के दिनों में कभी आपने समाचार पत्रों में पढ़ा होगा कि किसी झील या नदी का पानी जमकर बर्फ हो गया जिसके ऊपर हम पैदल चल सकते हैं। सोचिए, पानी जम जाने पर उन मछिलयों या जल जीवों का क्या होगा जो जल के अन्दर रहते हैं ? सामान्यतया कोई द्रव जब ठोस अवस्था में बदलता है, तो वह सघन हो जाता है तथा उसका घनत्व बढ़ जाता है। परन्तु पानी जब ठण्डा होकर बर्फ बनता है तब बर्फ (ठोस अवस्था) का घनत्व जल से कम हो जाता है। यह जल का विशिष्ट गुण है। ठण्डे स्थानों में जल के पाइप का फटना, झील का पानी जमने के बाद मछिलयों का जीवित रहना आदि जल के कुछ विशिष्ट गुण के कारण हैं। आइये हम जल के इन विशिष्ट गुणों का अध्ययन करें।

क्रियाकलाप 1

एक बीकर या गिलास लेकर उसमें बर्फ का टुकड़ा डालें। बीकर या गिलास में लगभग 2/3 भाग जल डालें। क्या होता है ? जल डालने पर बर्फ जल के ऊपर तैरने लगती है (चित्र 19.1)। इससे क्या निष्कर्ष निकलता है ?

बर्फ (ठोस) का घनत्व जल के घनत्व से कम है। जिससे बर्फ का आयतन बढ़ जाता है। सिर्दियों में जब अत्यधिक सिर्दी पड़ती है तो ठंडे प्रदेशों में ताप 0°C से भी नीचे चला जाता है। ताप के गिरने से नलों में आने वाला पानी भी ठण्डा होकर जमने लगता है। पानी जमने से आयतन बढ़ जाता है, जिससे नल या पाइप फट जाता है। जल का अधिकतम घनत्व 4°C होता है।

चित्र 19.1 जल में तैरती बर्फ

क्या कारण है कि ठंडे प्रदेशों के तालाबों एवं झीलों में रहने वाले जीव-जन्तु सतह पर बर्फ जमने के बाद भी जीवित रहते हैं ? जब ठण्डे प्रदेशों में जाड़े के दिनों में ताप 0°C से नीचे चला जाता है तो तालाबों तथा झीलों का पानी बर्फ बनकर जमने लगता है। जमी हुई बर्फ का आयतन अधिक व घनत्व कम होने से यह पानी की सतह पर तैरने लगती है। (चित्र 19.1) बर्फ पानी को अच्छी तरह कवच के समान ढक लेती है। यह बाहर की ठंडक को पानी के अन्दर नहीं पहुँचने देती है। बर्फ की यह परत जाड़े में स्वेटर पहनने के समान है। तालाब या झील की सतह पर जब ताप 0°C होता है, तो सतह के नीचे का ताप शून्य से अधिक रहता है और पानी ही रहता है। क्योंकि बर्फ की परत पानी की ऊष्मा को बाहर नहीं जाने देती (चित्र 19.2)। यही कारण है कि ठंडे प्रदेशों में जल में रहने वाले जीव-जन्तु सतह पर बर्फ जमने के बाद भी जीवित रहते हैं।

जल की धातुओं से क्रिया

जल उदासीन है किन्तु सामान्य ताप पर क्रियाशील धातुओं जैसे सोडियम, मैगनीशियम आदि से क्रिया कर हाइड्रोजन गैस मुक्त करता है। सोडियम ठण्डे जल के साथ क्रिया कर सोडियम हाइड्रॉक्साइड तथा हाइड्रोजन गैस बनाता है।

2Na +
$$2H_2O \longrightarrow 2NaOH + H_2$$
 (सोडियम) (जल) (सोडियम हाइड्रॉक्साइड) (हाइड्रोजन)

कई अन्य धातुएँ भी पानी से क्रिया कर ऑक्साइड तथा हाइड्रॉक्साइड बनाती हैं। लोहा एक ऐसी ही धातु है जो नम वायु से क्रिया कर ऑक्साइड बनाती है जिसे जंग कहते हैं। लगातार पानी एवं वायु के सम्पर्क में आने पर लोहे में जंग लग जाता है। इसे लोहे का संक्षारण कहते हैं। लोहे को जंग लगने से बचाने के लिए इन पर प्राय: अन्य धातुओं या पेंट का लेप चढ़ा दिया जाता है।

सिक्रिय धातुएं जल से क्रिया करके धातु ऑक्साइड या हाइड्रॉक्साइड बनाती हैं तथा हाइड्रोजन गैस (H₂) निकालती है।

19.3 विलायक के रूप में जल

आपके घर पर जब किसी को डिहाइड्रेशन होने लगती है तो आप उसे चीनी एवं नमक को पानी में घोलकर ओ. आर. एस. बनाकर पिलाते हैं। ओ.आर.एस. घोल कैसे बनता है। एक गिलास में आवश्यकतानुसार जल लेते हैं। और उसमें पानी के आयतनानुसार चीनी की मात्रा डाल देते हैं और थोड़ी मात्रा में नमक डाल देते हैं। चीनी व नमक को चम्मच के द्वारा हिलाते हैं। चीनी व नमक के दाने जल में गायब होना शुरू हो जाते हैं अन्त में चीनी व नमक के सभी दाने गायब हो जाते हैं। (चित्र 19.3) तथा एक पारदर्शक, स्वच्छ ओ.आर.एस. का विलयन प्राप्त होता है। इस विलयन में जल विलायक (घोलने वाला)

तथा चीनी व नमक विलेय हैं। इसी प्रकार जल में फिटकरी तथा अम्ल (जैसे-टारटैरिक अम्ल, नमक का अम्ल) एवं क्षार भी जल में घुल जाता है।

चीनी व नमक का जल में घुलना

चित्र 19.3

सोडा वाटर की बोतल खोलने पर एकदम से झाग निकलते देखा होगा। ऐसा क्यों होता है? यह झाग जल में कार्बन डाइऑक्साइड गैस घुली होने के कारण प्राप्त होती है। इसी प्रकार, जल में थोड़ी मात्रा में ऑक्सीजन भी घुली रहती है,जिससे जलीय जीव श्वसन क्रिया करते हैं। स्पष्ट है कि जल में ठोस, द्रव या गैस सभी घुल जाते हैं। जल अधिकांश पदार्थों के लिए अच्छा विलायक है। जल के इसी गुण के कारण जब वर्षा का जल पृथ्वी पर गिरता है तो पृथ्वी की विभिन्न परतों से

छनता हुआ भूमि के अन्दर चला जाता है और भूमि में उपस्थित कुछ खनिज लवणों को भी अपने में घोल लेता है। इसी कारण जल का स्वाद कहीं मीठा और कहीं खारा हो जाता है।

अब आप जान गये हैं कि जल में अनेक ठोस, द्रव तथा गैसीय पदार्थ घुल जाते हैं परन्तु सभी पदार्थ पानी में समान मात्रा में नहीं घुलते हैं जैसे - नमक पानी में पूर्ण रूप से विलेय है,

परन्तु चॉक (खड़िया) कम विलेय है। इससे निष्कर्ष निकलता है कि जल एक सार्वभौम विलायक तो है किन्तु कुछ पदार्थ जल में ज्यादा घुलते (विलेय) हैं और कुछ पदार्थ जल में कम घुलते हैं। जल में अन्य लवण जैसे कपड़े धोने का सोडा (सोडियम कार्बोनेट Na₂CO₃), खाने का सोडा (सोडियम बाई कार्बोनेटNaHCO₃), आदि अधिक विलेय तथा विभिन्न खनिज जैसे जिप्सम, खड़िया आदि कम विलेय हैं।

एक बर्तन में पानी लीजिए। इसे गरम करिए। क्या होता है ? पानी से वायु बुलबुले के रूप में बाहर निकलती दिखायी देती है। पानी में वायु मिली होती है, जो गरम करने पर बुलबुले के रूप में बाहर निकलती है।

इस वायु में मुख्यत: ऑक्सीजन व कार्बन डाइऑक्साइड मिली होती हैं। जल में विलेय वायु की मात्रा बहुत ही कम होती हैं। सामान्य ताप पर 100 मिली जल में 4 मिली वायु विलेय रहती है किन्तु यह विलेय वायु जल में पाये जाने वाले जीवधारियों के लिए अत्यन्त उपयोगी है। जलीय जीव-जन्तु पानी में घुली वायु से ही ऑक्सीजन ग्रहण करके जीवित रहते हैं।

प्राय: गर्मी के मौसम में कम गहरे तालाबों में मछिलयाँ मर जाती हैं, क्यों ? तालाब का पानी गर्मी की अधिकता से गर्म हो जाता है जिससे पानी में घुली ऑक्सीजन बाहर निकल जाती है। अन्तत: ऑक्सीजन की कमी के कारण मछिलयाँ एवं अन्य जलीय जीव मरने लगते हैं।

क्रियाकलाप 2

काँच के एक बीकर का आधा भाग जल से भरें। उसमें लगभग आधी चम्मच चीनी डालें। चम्मच से चीनी मिलायें। बीकर में डाली गयी चीनी का अवलोकन करें। बीकर में डाली गयी चीनी घुल जातीं है। अब चीनी की और अधिक मात्रा बीकर में डालें, चम्मच चलाकर चीनी को घोलते जायें। क्या देखते हैं ?

कुछ देर बाद चीनी का जल में घुलना बन्द हो जाता है, और चीनी बीकर के पेंदे में बैठने लगती है। यदि इसी स्थिति में जल का आयतन बढ़ा दिया जाय तो, बीकर के पेंदे में एकत्र हुई चीनी घुल जाती है। जल का आयतन (मात्रा) न बढ़ा कर यदि जल का ताप बढ़ा दें तो

भी बीकर के पेंदे में एकत्र हुई चीनी घुल जाती है। क्या निष्कर्ष निकलता है ? जल की मात्रा तथा ताप बढ़ाने पर पदार्थों की जल में घुलने की क्षमता प्रायः बढ़ जाती है।

ताप और विलायक की मात्रा का पदार्थ की विलेयता पर प्रभाव पड़ता है।

19.4 जल का खारापन

जल के विभिन्न प्राकृतिक स्रोतों (जैसे वर्षा का जल, कुएँ का जल, नदी का जल) से प्राप्त जल को समान मात्रा में अलग-अलग काँच की प्याली में रखें। सभी काँच की प्यालियों के जल की पूरी मात्रा को वाष्पित होने के बाद प्रत्येक प्याली का अवलोकन करें। आप देखेंगे कि सभी काँच की प्याली का जल वाष्पित होकर वायुमण्डल में चला जाता है एवं कुछ ठोस पदार्थ वाँच ग्लास में रह जाता है। वाँच ग्लास में प्राप्त पदार्थों की मात्राओं का अवलोकन करें। क्या देखते हैं ? नदी के जल में सबसे अधिक तथा वर्षा के जल में सबसे कम पदार्थ प्राप्त होता है।

इससे निष्कर्ष निकलता है कि जल में कुछ पदार्थ घुले होते हैं जिनकी मात्रा जल के स्रोत पर निर्भर करती है। आइये उस स्रोत की चर्चा करें जिसमें बहुत अधिक खनिज तथा लवण विलेय हैं। ऐसा स्रोत समुद्र है जो पृथ्वी के लगभग 3/4 भाग को आच्छादित किये हुए है। इस जल में लवणों / खनिजों आदि की अत्यधिक मात्रा विलेय होती है। एक लीटर समुद्र के जल में लगभग पैंतीस ग्राम खनिज लवण घुले होते हैं जबिक एक लीटर नदी के जल में लगभग दो-तीन ग्राम ही लवण घुले होते हैं। समुद्र में लवणों की अधिक मात्रा घुली होने के कारण समुद्री जल खारा होता है। अब आप समझ चुके होंगें कि समुद्री जल हमारे लिए पीने योग्य क्यों नहीं हैं फिर भी इस जल की उपयोगिता हमारे लिए है।

चित्र 19.3 समुद्र जल से नमक बनाना

समुद्र जल से नमक कैसे प्राप्त किया जाता है ?

सबसे पहले समुद्री जल को बड़े-बड़े पाइप एवं जल पम्पों की मदद से बड़ी-बड़ी क्यारियों में एकत्र करते हैं, वाष्पन की प्रक्रिया से समुद्र का जल वातावरण में चला जाता है तथा क्यारियों में लवण (नमक) ही शेष रहता है। इस नमक को एकत्र करते हैं फिर निर्वात वाष्पन प्रक्रिया द्वारा शुद्ध करके खाने के लिए प्रयोग किया जाता है।

19.5 जल की कठोरता

आप पिछली कक्षा में पढ़ चुके हैं कि जो जल साबुन के साथ अधिक झाग देते हैं, मृदु जल कहलाते हैं एवं जो जल साबुन के साथ अपेक्षाकृत कम झाग देते हैं कठोर जल कहलाते हैं। आइये जानें कि जल की कठोरता किन लवणों के घुलने से होती है ? जल की कठोरता कैल्शियम एवं मैग्नीशियम के घुलित लवण जैसे - कैल्शियम बाईकार्बोनेट [Ca(HCO₃)₂], मैग्नीशियम बाईकार्बोनेट [Mg(HCO₃)₂],, कैल्शियम क्लोराइड (CaCl₂),मैग्नीशियम क्लोराइड (MgCl₂), कैल्शियम सल्फेट (CaSO₄) मैग्नीशियम सल्फेट (Mg(SO₄) आदि के कारण होती है। जल में उपस्थित कैल्शियम एवं मैग्नीशियम के विभिन्न लवणों के कारण जल की कठोरता दो प्रकार की होती है - अस्थायी कठोरता, स्थायी कठोरता

(अ) अस्थायी कठोरता

जल की अस्थायी कठोरता उसमें कैल्शियम बाईकार्बोनेट एवं मैग्नीशियम बाईकार्बोनेट के घुले होने के कारण होती है। इसे दूर करने के लिए निम्नलिखित विधियाँ अपनाते हैं -

(क) उबाल कर

जल को उबालने पर इनमें घुले कैल्शियम बाईकार्बोनेट एवं मैगनीशियम बाईकार्बोनेट, अविलेय लवण एवं कार्बन डाइऑक्साइड गैस में परिवर्तित हो जाते हैं। अविलेय लवण को छान कर अलग कर लिया जाता है। कार्बन डाई ऑक्साइड की कुछ मात्रा जल में ही घुल जाती है एवं कुछ मात्रा वातावरण में चली जाती है।

```
Colocolii et un et Coloci + Coli + Nilo
Brisso spicitic Athere satte est aspiteles se
(State sate)
```

ख) चूना मिलाकर

इस विधि को ``क्लार्क विधि" कहते हैं। इसमें जल के साथ चूने की एक निश्चित मात्रा मिलाई जाती है जिससे जल में घुलित कैल्शियम एवं मैग्नीशियम के बाईकार्बोनेट चूने के पानी ण्a(ध्प्)2 से क्रिया करके अविलेय लवण बनाते हैं, जिसे छान कर अलग कर लिया जाता है। इस प्रकार प्राप्त जल साबुन के साथ झाग देता है।

```
ColNCO_{j_1} + ColON_{j_1} \longrightarrow 2CoCO_{j_1} + 2H_{i}O
Where schools divine schools are shall one
```

क्या आप जानते हैं ?

वातावरण में उपस्थित कार्बन डाइऑक्साइड जल से क्रिया करके कार्बोनिक अम्ल बनाती है। यह कार्बोनिक अम्ल मृदा या चूना पत्थर में उपस्थित अविलेय कैल्शियम कार्बोनेट से क्रिया करता है जिससे जल में विलेय खनिज कैल्शियम बाई कार्बोनेट का निर्माण करता है।

(ब) स्थायी कठोरता

जल की स्थायी कठोरता जल में मैग्नीशियम क्लोराइड (MgCl₂), मैग्नीशियम सल्फेट (MgSo₄), कैल्शियम क्लोराइड (Cacl₂) तथा कैल्शियम सल्फेट (CaSo₄) लवण घुले रहने के कारण होती है। जल की स्थायी कठोरता निम्नलिखित विधि से दूर की जाती है: -

क) धावन सोडा द्वारा

कपड़ा धोने के सोडे का रासायनिक नाम सोडियम कार्बोनेट (Na₂CO₃)है। इसकी एक निश्चित मात्रा स्थायी कठोरता वाले जल में डाल कर उबाल लेते हैं। जल में उपस्थित घुले हुए लवण (CaCl₂,MgCl₂)आदि धावन सोडे से क्रिया करके अविलेय लवण बनाते हैं, जिन्हें छानकर अलग कर लिया जाता है। इस प्रकार प्राप्त जल साबुन के साथ झाग देता है।

MgCl₂ + Ns₂CO₂ → 2NsCl + MgCO₂ deliber entrar over day officer entrary deliber melling conditions.

परम्युटिट विधि या जियोलाइट विधि

यह विधि आयन विनिमय सिद्धान्त पर आधारित है। जियोलाइट या परम्युटिट का पूरा नाम सोडियम ऐलुमिनियम सिलिकेट है जिसका सूत्र Na2Al2SiO8.xH2O है जिसे Na2Z से भी प्रदर्शित करते हैं जहाँ Z=Al2SiO8.xH2O। जल में कठोरता उत्पन्न करने वाले कैल्सियम Ca²⁺ व मैग्नीशियम Mg²⁺ आयनों का जियोलाइट में उपस्थित सोडियम आयन से विनिमय हो जाता है। जिससे जल में विलेय सोडियम के लवण बन जाते हैं और जल की कठोरता उत्पन्न नहीं करते। इस प्रकार मृदु जल प्राप्त हो जाता है। इस विधि द्वारा जल की स्थायी और अस्थायी दोनों प्रकार की कठोरता दूर की जा सकती है।

कठोर जल अपेक्षाकृत कम उपयोगी है

क्रियाकलाप 3

दो पतीले लेकर पहले पतीले में मृदु जल एवं दूसरे पतीले में कठोर जल बराबर मात्रा में भर दें। पतीलों के जल को इतना उबालें कि पतीले का पूरा-पूरा जल उबल कर वाष्प में परिवर्तित होकर वातावरण में चला जाय। इस प्रक्रिया को चार-पाँच बार करें, एवं दोनों पतीलों के अन्दर वाले भाग तथा प्रयुक्त ईंधन की मात्राओं तथा लगने वाले समय का अवलोकन करें। क्या देखते हैं ?

जिस पतीले में मृदु जल था उसमें एक हल्की सी सफेद पपड़ी जमी है जो कि हाथ से ही साफ की जा सकती है किन्तु जिस पतीले में कठोर जल था उसमें अति कठोर पपड़ी जम गई है जिसे दूर करने के लिए उसे (पपड़ी को) किसी नुकीली चीज से खुरचना पड़ता है, साथ ही साथ कठोर जल को उबालने के लिए मृदु जल के उबालने की अपेक्षा अधिक ईंधन की आवश्यकता होती है।

यही कारण है कि भााप के इंजन, बॉयलरों आदि में मृदु जल का प्रयोग किया जाता है। घरों में भी कठोर जल प्रयुक्त होने से साबुन की अधिक मात्रा खर्च होती है। खाना बनाते समय बर्तन के भीतरी भाग में पपड़ी जम जाती है, जिसके कारण ईंधन की अधिक आवश्कता होती है। बायलर में प्रयुक्त मृदुजल खनिज रहित जल (Demineralized water) होता है जिसमें जल की दोनों ही कठोरता नहीं होती है। कठोर जल घरेलू एवं औद्योगिक उपयोग हेतु अनुपयुक्त होता है।

आसवन

क्रियाकलाप 4

जल से भरी एक स्टील या एल्युमीनियम की केतली लें, तथा उसे इतना गरम करें कि वह उबलने लगे केतली से लगभग 25-30 सेमी की ऊँचाई पर हाथ से पकड़ कर एक थाली लें (चित्र 19.5) और होने वाली विभिन्न प्रक्रियाओं का अध्ययन करें।

जैसे ही केतली गरम होती है, जल से भाप निकलती है जो थाली से टकराकर संघनित होकर जल की बूंदों में बदल जाती है। इससे स्पष्ट होता है कि जल की वाष्प ही जल की गैसीय अवस्था है जो ठण्डा करने पर संघनित होकर पुन: द्रव (जल) में परिवर्तित हो जाती है। इस प्रकार जब द्रव को उसके क्वथनांक तक गरम किया जाता है तथा निकली वाष्प को पुन: ठंडा करके पदार्थ की शुद्ध अवस्था प्राप्त की जाती है, यह प्रक्रिया आसवन कहलाती है। आसवन विधि द्वारा प्रयोगशाला

में हम शुद्ध जल (आसुत जल) प्राप्त करते हैं।

19.6 जल प्रदूषण

ऐसे पदार्थ जो वातावरण (वायु जल, मृदा) में मिलने पर जीवन के लिए हानिकारक हो जाते हैं। प्रदूषक कहलाते हैं। हमारी वायु, भूमि तथा जल के भौतिक, रासायनिक तथा जैविक लक्षणों में अवांछित परिवर्तन पर्यावरणीय प्रदूषण कहलाता है। प्रदूषण प्राकृतिक तथा कृत्रिम (मानवजन्य) दोनों प्रकार का हो सकता है। जीवन के लिए वांछित पदार्थों में जल का प्रमुख स्थान है। साथ ही जल परिवहन, कृषि एवं उद्योगों के लिए परमावश्यक है। जब जल की भौतिक रासायनिक तथा जैविक गुणवत्ता में ऐसा परिवर्तन उत्पन्न हो जाय जिससे यह जीवों के लिए हानिकारक तथा प्रयोग हेतु अनुपयुक्त हो जाता है तो यह जल प्रदूषण (Water Pollution) कहलाता है।

चित्र 19.6 जल प्रदूषण के कारक

जल प्रदूषण के मुख्य कारक व हानिकारक प्रभाव

- सीवेज (Sewage) व अपमार्जक को झील, नदी व तालाब में प्रवाहित करना।
- मनुष्य द्वारा नदियों में नहाना, कपड़ा धोना व पशुओं को नहलाना आदि।
- औद्योगिक अपशिष्ट व कृषि अपशिष्ट प्रवाहित करना।

- बड़ी मात्रा में घरेलू सीवेज निदयों में प्रवाहित किया जाता है जिससे शैवाल व बैक्टीरिया की वृद्धि होती है जो पानी के ऑक्सीजन का प्रयोग करते हैं और पानी में ऑक्सीजन की कमी होने से उसमें पाये जाने वाले जीव (मछली) की मृत्यु होने लगती है। यह स्थिति सुपोषण अथवा यूट्रोफिकेशन कहलाती है।
- कारखानों से निकलने वाले सीवेज में जहरीला प्रदूषक जैसे साइनाइड व मरक्यूरी आदि पाया जाता है तो मछिलयों व अन्य जीवों (सीसा, आर्सेनिक, रेडियोधमीं पदार्थ, प्लास्टिक) द्वारा मनुष्य के शरीर में पहुँच जाता है। और मनुष्य के शरीर को नुकसान पहुँचाता है।
- उर्वरक और कीटनाशक (डी.डी.टी.) आदि जल व खाद्य शृखंला द्वारा मनुष्य के शरीर में पहुँच जाता है जो हानिकारक होता है।
- जल-प्रदूषण के कारण टायफाइड, अतिसार, हैजा, हिपेटाइटिस पीलिया जैसे रोग फैलते हैं।
- जल में विद्यमान अम्ल तथा क्षार सूक्ष्म जीवों का विनाश कर देते हैं, जिससे निदयों के जल की स्वत: शुद्धिकरण प्रक्रिया अवरुद्ध होती है।

जल प्रदूषण की रोकथाम तथा नियंत्रण

पिछली कक्षा में जल शोधन संयत्र द्वारा नदी, झील के पानी को शुद्ध करके पीने योग्य बनाकर उपयोग करना सीखा। औद्योगिक अपिशष्ट तथा शहरों के मल व्ययन के जल को निद्यों अथवा समुद्रों में प्रवाहित करने से पहले सीवेज ट्रीटमेंट संयत्र द्वारा उपचारित किया जाता है। शहरों के मल व्ययन के जल को निम्नलिखित प्रकार से उपचारित किया जाता है। सबसे पहले जल-मल को एक घर्षण अभिक्रिय़ा से गुजारते हैं। तत्पश्चात् इसे अनेक अवसाद हौजों (कक्ष) से गुजारते हुए चूने की सहायता से उदासीन किया जाता है। इस चरण तक का प्रावेम प्राथमिक उपचार कहलाता है। जल में अभी भी रोगाणु,अन्य सूक्ष्मजीव एवं जैविक वर्ज्य पदार्थ काफी मात्रा में विद्यमान होती हैं। अत: उदासीनीकरण से प्राप्त बहि:स्राव को उच्च स्तरीय अवायवी बहाव आवरण (Up flow anaerobic sludge blanket) में भेजा जाता है। यह एक प्रतिक्रम (रियेक्टर) है।

चित्र 19.7 सीवेज शोधन संयंत्र

इसमें अवायवी जीवाणु जल में उपस्थित जैव निम्नीकरणीय पदार्थोंका अपघटन करते हैं। इस अभिक्रिय़ा में दुर्गन्ध समाप्त हो जाती है तथा मेथेन (CH₄) बाहर निकलती है। जिसका सार्थक उपयोग किया जा सकता है। इस प्रकार 85 प्रतिशत तक प्रदूषक हट जाते हैं। यहाँ से जल को वायु मिश्रण टैंकों में भेजा जाता है जहाँ इस जल में वायु तथा जीवाणु मिश्रित किये जाते हैं। जीवाणु जैववर्ज्य का अपमार्जन करते हैं। यह जैव उपचार (Biological treatment) द्वितीयक उपचार कहलाता है। इसके उपरान्त भी जल पीने योग्य नहीं होता। हानिकारक सूक्ष्म जीवों को हटाना आवश्यक है। इसलिए रोगाणुनाशन एक अन्तिम चरण (तृतीय उपचार) प्रक्रिया है। इस प्रक्रिया में जल में घुले अजैविक पदार्थों व जीवाणुओं को पूर्णत: मुक्त किया जाता है। इसके लिए क्लोरीनीकरण, वाष्पीकरण, विनिमय अवशोषण, तलछटीकरण, बालू छन्नक जैसी विधियाँ प्रयोग में लाई जाती हैं। इस प्रकार शहरों के अपशिष्ट जल का शोधन करके कृषि कार्य व अन्य उपयोग में किया जाता है।

कुछ और भी जानें

गंगा का जल अधिक दिनों तक शुद्ध क्यों रहता है ? गंगा के जल मे बैक्टीरिया (जीवाणु) व अन्य अशुद्धियों को नष्ट करने के लिए बैक्टीरियोफेस नामक वायरस पाया जाता है। इसी कारण गंगा का जल कई दिनों तक शुद्ध रहता है।

गंगा नदी में प्रदूषण कम करने के लिए ``गंगा कार्य परियोजना'' के अन्तर्गत शहरों व औद्योगिक अपशिष्ट को सीवेज ट्रीटमेन्ट संयत्र द्वारा शोधित करके गंगा नदी में भेजा जाता है। वातावरण को स्वच्छ रखने में हमारा भी योगदान हो सकता है। इसके लिए हम निम्नलिखित उपाय कर सकते हैं-

- बचा हुआ भोजन, कागज, सड़ती हुई वनस्पित तथा प्लास्टिक को खुले नाले-नालियों में नहीं फेंकना चाहिए।
- मद्य निर्माणशाला से निर्गमित पदार्थों तथा जैविक पदार्थ युक्त ठोस वर्ज्य को बायोगैस संयंत्र में पहुँचाकर उनसे ऊर्जा उत्पादन किया जाना चाहिए।
- समुद्र व अन्य जल स्रोत में तेल रिसाव की परत को चूसक तकनीक व लकड़ी के बुरादे का प्रयोग करके हटा देना चाहिए।
- नाली, वाहित जल, पोखर, झील आदि जल स्रोत से पॉलीथीन, शैवाल, जलकुम्भी को निकाल देना चाहिए।

19.7 जल संरक्षण

वर्षा ऋतु में आपने बाढ़ आने की घटनायें देखी, सुनी होंगी। निदयों के पानी का जलस्तर बढ़ने के कारण शहर या गाँव में पानी फैल कर भर जाता है। जीव-जन्तु, मकान, नर-नारी बाढ़ में बह जाते हैं। जन-जीवन की बहुत क्षित होती है। फसलों को नुकसान पहुँचता है। दूसरी ओर मई-जून के माह में जल का इतना अभाव हो जाता है कि प्रदेश में जल का संकट पैदा हो जाता है। कुआँ, तालाब, नहरों का जल सूख जाता है। पशु-पक्षी जल की तलाश में भटक-भटक कर प्राण त्याग देते हैं। कुछ स्थानों में जलाभाव के कारण धरती फट जाती है, फसलें सूख जाती हैं।

आइये देखें हम और आप कितना जल व्यर्थ बहा देते हैं। मंजन करते समय आपने ब्रश को धोने के लिए नल की टोटी खोली, मंजन करना शुरू किया, जल निरन्तर बहता रहता है। अनजाने में कितना जल हम और आप व्यर्थ बहा देते हैं। लगातार भू-जल स्तर कम होने के कारण भविष्य में हमें जल संकट का सामना करना पड़ सकता है। इसलिए वर्तमान में जल की बचत या जल संरक्षण करना अति आवश्यक है। किसी स्थान पर बहती हुई टोटी को बन्द करना आपका सद्गुण होगा।

प्रतिवर्ष 22 मार्च को हम विश्व जल दिवस के रूप में मनाते हैं।

जल का संग्रहण

वर्षा ऋतु में आपने छप्परों से, छतों के पनारों से लगातार पानी बहते हुए देखा होगा। क्या हम वर्षा के जल को किसी प्रकार एकत्रित करके (कुआँ, तालाब, बावड़ी आदि को भरकर) गर्मीकी ऋतु में उस जल का उपयोग कर सकते हैं ? यही क्रिया जल का संग्रहण कहलाती है। इसी को हम जल की खेती भी कह सकते हैं।

क्या आपने कभी ध्यान दिया है, यह जल कहाँ जाता है ? यह जल नालियों से बहकर सीवर में व्यर्थ बह जाता है, यही जल सड़कों या मोहल्लों में भरकर जाम लगा देता है। कभी-कभी घरों में भी भर जाता है। विचार करें पूरी वर्षा ऋतु में पूरे देश में कितना वर्षा जल (करोड़ों करोड़ लीटर) व्यर्थ बह जाता है। आइये समझें इस जल को हम कैसे उपयोग में ला सकते हैं।

घरों की छतों के चारों कोनों पर प्लास्टिक के मोटे पाइप लगा दीजिए और जमीन पर खाली पड़े हुये स्थान में एक तालाब (गढ़ूा) या टैंक बना लीजिए। पाइपों के द्वारा छत से नीचे उतरे हुये जल को गढ़ूं में भर दें (चित्र 19.8)। तीन माह की वर्षा में कितना जल एकत्रित होगा इसका अनुमान करें। इस जल का उपयोग घर में बर्तन साफ करने, शौचालय की सफाई करने, बागवानी में, फर्श धोने में, पशुओं को नहलाने आदि कार्यों में प्रयोग कर सकते हैं। इस तरह से आपने कितने पेय जल की बचत कर ली। क्या आप ऐसे और उपायों द्वारा जल सरंक्षण में सहायता कर सकते हैं ?

इसी प्रकार, निदयों पर बाँध बनाकर जल संग्रहण करके उसका उपयोग विद्युत उत्पादन, कृषि कार्य हेतु, सिंचाई व शुद्धिकरण करके पीने योग्य बनाया जाता है। इसी प्रकार रिवर ग्रिड बनाकर एक नदी का पानी दूसरे नदी में भेज कर जरूरत वाले क्षेत्र में प्रयोग किया जा रहा है।

चित्र 19.8 वर्षा जल का संग्रहण

हमने सीखा

- पृथ्वी का 3/4 भाग जल है। जिसमें 97% समुद्र जल, 2% ग्लेशियर व ध्रुव बर्फ तथा 1% भूमिगत जल पाया गया है।
- जल तत्व नहीं एक यौगिक है।
- जल ठण्डा होकर जब बर्फ बनता है तो बर्फ का घनत्व जल के घनत्व से कम होता है। जिससे जल से बर्फ बनने में आयतन बढ़ जाता है। यह जल का विशिष्ट गुण है।
- सिक्रय धातुएँ जल से क्रिया करके धातु ऑक्साइड या हाइड्रॉक्साइड बनाती हैं तथा हाइड्रोजन गैस निकालती हैं।
- ताप और विलायक की मात्रा का पदार्थ की विलेयता पर प्रभाव पड़ता है।
- समुद्र में लवणों की अधिक मात्रा घुली होने के कारण समुद्री जल खारा होता है।
- जल की अस्थायी कठोरता कैल्शियम बाई कार्बोनेट, मैग्नीशियम बाई कार्बोनेट के घुले होने के कारण व स्थायी कठोरता मैग्नीशियम क्लोराइड, मैग्नीशियम सल्फेट, कैल्शियम क्लोराइड तथा कैल्शियम सल्फेट लवण घुले होने के कारण होती है।
- ऐसे पदार्थ जो वातावरण में मिलने पर जीवन के लिए हानिकारक हो जाते हैं प्रदूषक कहलाते हैं। वायु, भूमि तथा जल के भौतिक, रासायनिक तथा जैविक लक्षणों में अवांछित परिवर्तन पर्यावरणीय प्रदूषण कहलाता है।
- सीवेज शोधन संयन्त्र में प्राथमिक उपचार, जैव उपचार, क्लोरीनीकरण, वाष्पीकरण, विनिमय अवशोषण, तलछटीकरण, बालू छन्नक आदि विधियों को प्रयोग में लाया जाता है।
- जल संरक्षण के लिए वर्षाजल का संग्रहण, कुआँ, तालाब, बावड़ी आदि के द्वारा किया जाता है।

अभ्यास प्रश्न

1. सही विकल्प चुनकर अभ्यास पुस्तिका में लिखिए:

(क) जल का घनत्व किस ताप पर अधिकतम होता है -	
(अ) 0°C	(ब) 4°C
(स) ज्4°C	(द) 100°C
(ख) इनमें से कौन जल के साथ तेजी से क्रिया करता है -	
(अ) सोडियम	(ब) कैल्शियम
(स) मैग्नीशियम	(स) लोहा
ग) जल की स्थाई कठोरता किसके कारण होती है -	
(अ) कैल्शियम बाई कार्बोनेट	
(ब) मैग्नीशियम बाई कार्बोनेट	
(स) कैल्शियम या मैग्नीशियम के सल्फेट और क्लोराइड	
(द) इनमें से कोई नहीं	
2. रिक्त स्थानों की पूर्ति कीजिए -	
(क) जंग लोहे का है।	
(ख) जल में हाइड्रोजन तथा ऑक्सीजन का अनुपात है।	

- (ग) एक प्रमुख विलायक है।
 (घ) अस्थाई कठोरता की उपस्थिति के कारण होती है।
 (ङ) जल की स्थाई कठोरता के द्वारा दूर किया जा सकता है।
- 3. सही कथन के आगे सही ($\sqrt{}$)तथा गलत कथन के आगे गलत(X) का चिन्ह लगाइए -
- (क) कठोर जल को पीने के लिए उपयोग में लाना चाहिए।
- (ख) अधिकांश ठोस पदार्थ की विलेयता ताप बढ़ाने पर बढ़ती है।
- (ग) जल का क्वथनांक पानी की शुद्धता का परीक्षण करने में उपयोगी है।
- (घ) समुद्री जल में अधिक मात्रा में नमक घुला होता है।
- (ङ) वाष्पन की प्रक्रिया क्षेत्रफल पर निर्भर नहीं करती।
- 4. जल की कठोरता का क्या कारण है ? स्थाई कठोरता कैसे दूर करेंगे ?
- 5. जाड़े के मौसम में निदयों के जल की सतह पर बर्फ जमी होने पर भी जल के अन्दर के प्राणी कैसे जीवित रहते हैं ?
- 6. जल संरक्षण से होने वाले लाभ लिखिए?
- 7. तालाब, नाली तथा शहरों के अपशिष्ट प्रदूषित जल के प्रदूषण कम करने तथा शुद्ध करने के उपाय का वर्णन कीजिए ?

प्रोजेक्ट कार्य

- जल प्रदूषण समस्या व समाधान तथा जल संरक्षण आवश्यकता एवं महत्व के विषय में अपने नारे और विचार लिखिए।
- जल संरक्षण पर जन जागरूकता बढ़ाने के लिए अपने सुझावों को अपनी अभ्यास पुस्तिका में लिखकर अपने सहपाठी व शिक्षक से चर्चा कीजिए।