eVidyarthi

Main Menu
  • eVidyarthi
  • School
    • Class 6th
      • Maths Class 6
      • Science Class 6
      • Hindi Class 6
      • व्याकरण
      • English Class 6
      • English Grammar
      • Sanskrit Class 6
      • Geography
      • Civics
      • History
    • Class 7th
      • Maths Class 7
      • Science Class 7
      • Hindi Class 7
      • व्याकरण
      • English Class 7
      • English Grammar
      • Sanskrit Class 7
      • Geography
      • Civics
      • History
    • Class 8th
      • Maths Class 8
      • Science Class 8
      • Hindi Class 8
      • व्याकरण
      • English Class 8
      • English Grammar
      • Sanskrit Class 8
      • Geography
      • Civics
      • History
    • Class 9th
      • Maths Class 9
      • Science Class 9
      • Hindi Class 9
      • English Class 9
      • English Grammar
      • व्याकरण
      • Economics Class 9
      • Geography Class 9
      • Civics Class 9
      • History Class 9
    • Class 10th
      • Maths Class 10
      • Science Class 10
      • Hindi Class 10
      • English Class 10
      • English Grammar
      • व्याकरण
      • Economics Class 10
      • History Class 10
      • Civics Class 10
      • Geography Class 10
    • Class 11th
      • Maths Class 11
      • Accounts Class 11
      • English Class 11
      • English Grammar
      • व्याकरण
      • Chemistry Class 11
      • Physics Class 11
      • Biology Class 11
    • Class 12th
      • Maths Class 12
      • Accounts Class 12
      • Chemistry Class 12
      • Physics Class 12
      • Biology Class 12
      • English Class 12
      • English Grammar
      • व्याकरण
    • Close
  • English
    • Basic English Grammar
    • Basic English Speaking
    • English Vocabulary
    • English Idioms & Phrases
    • Personality Enhancement
    • Interview Skills
    • Close
  • Softwares
    • Microsoft Word
    • PhotoShop
    • Excel
    • Illustrator
    • PowerPoint
    • Close
Class 10th Maths || Menu
  • Important
    • Previous Year Papers 2019
    • CBSE Board Paper 2018
    • CBSE Board Paper 2017
    • Sample Papers
    • Sample Paper – I
    • MCQs
    • Important Formulas
    • Revision Notes
    • Mathematics Book
    • Marking Scheme
    • Mathematics Syllabus
    • Close
  • Real Numbers
    • Ex. 1.1 & Intro
    • Ex. 1.2 NCERT
    • Ex. 1.3 & Ex. 1.4
    • R.D Sharma Solutions
    • Important Formulas
    • NCERT Solutions
    • Close
  • Polynomials
    • Ex. 2.1 & Intro
    • Ex. 2.2 NCERT
    • Ex. 2.3 & Ex. 2.4 NCERT
    • R. D Sharma Solutions
    • NCERT Solutions
    • Close
  • Pair of Linear Equations in 2 Variables
    • Ex. 3.1 & Intro
    • Ex. 3.2 NCERT
    • Ex. 3.3 NCERT
    • Ex 3.4 NCERT
    • Ex 3.5 NCERT
    • Ex. 3.6 & Ex. 3.7 NCERT
    • R. D Sharma Solutions
    • NCERT Solutions
    • Close
  • Quadratic Equations
    • Ex 4.1 & Intro
    • Ex 4.2 NCERT
    • Ex. 4.3 NCERT
    • Ex. 4.4 NCERT
    • R. D Sharma Solutions
    • NCERT Solutions
    • Close
  • Arithmetic Progression
    • Ex 5.1 & Intro
    • Ex 5.2 NCERT
    • Ex 5.3 NCERT
    • Ex 5.4 NCERT
    • R. D Sharma Solutions
    • NCERT Solutions
    • Close
  • Triangles
    • Intro & Theorem
    • Ex 6.2 NCERT
    • Ex. 6.3 NCERT
    • Ex 6.4 NCERT
    • Ex 6.5 NCERT
    • Ex. 6.6 NCERT
    • R D Sharma Solutions
    • NCERT Solutions
    • Close
  • Coordinate Geometry
    • Ex. 7.1 & Intro
    • Ex. 7.2 NCERT
    • Ex. 7.3 NCERT
    • Ex 7.4 NCERT
    • R D Sharma Solutions
    • NCERT Solutions
    • Close
  • Introduction to Trigonometry
    • Ex 8.1 & Intro
    • Ex. 8.2 NCERT
    • Ex 8.3 NCERT
    • Ex 8.4 NCERT
    • Ex. 6.1 with Examples – R.D Sharma
    • R D Sharma Solutions
    • NCERT Solutions
    • Close
  • Some Applications of Trigonometry
    • Ex. 9.1 & Intro
    • R D Sharma Solutions
    • NCERT Solutions
    • Close
  • Circles
    • Intro & Theorem
    • Ex. 10.1 & Ex. 10.2 NCERT
    • R D Sharma Solutions
    • NCERT Solutions
    • Close
  • Constructions
    • Construction of Similar Figures
    • Construction of Tangents
    • NCERT Solutions
    • Close
  • Areas Related to Circles
    • Ex 12.1 & Intro
    • Ex 12.2 NCERT
    • Ex. 12.3 NCERT
    • R D Sharma Solutions
    • Important Formulas
    • NCERT Solutions
    • Close
  • Surface Areas and Volumes
    • Ex. 13.1 NCERT
    • Ex. 13.2 NCERT
    • Ex. 13.3 NCERT
    • Ex. 13.4 & Ex. 13.5 NCERT
    • R. D Sharma Solutions
    • NCERT Solutions
    • Close
  • Statistics
    • Ex. 14.1 NCERT
    • Ex. 14.2 NCERT
    • Ex. 14.3 NCERT
    • Ex. 14.4 NCERT
    • R D Sharma Solutions
    • NCERT Solutions
    • Close
  • Probability
    • Ex. 15.1 & Intro
    • Ex. 15.2 NCERT
    • R D Sharma Solutions
    • NCERT Solutions
    • Close

CBSE Class 10 Maths Chapter 8 Introduction to Trigonometry Notes

  • Position of a point P in the Cartesian plane with respect to co-ordinate axes is represented by the ordered pair (x, y).
  • Trigonometry is the science of relationships between the sides and angles of a right-angled triangle.
  • Trigonometric Ratios: Ratios of sides of right triangle are called trigonometric ratios.
    Consider triangle ABC right-angled at B. These ratios are always defined with respect to acute angle ‘A’ or angle ‘C.
  • If one of the trigonometric ratios of an acute angle is known, the remaining trigonometric ratios of an angle can be easily determined.
  • How to identify sides: Identify the angle with respect to which the t-ratios have to be calculated. Sides are always labelled with respect to the ‘θ’ being considered.

Let us look at both cases:
Introduction to Trigonometry Class 10 Notes Maths Chapter 8 1
In a right triangle ABC, right-angled at B. Once we have identified the sides, we can define six t-Ratios with respect to the sides.

case Icase II
(i) sine A = \frac { perpendicular }{ hypotenuse } =\frac { BC }{ AC } (i) sine C = \frac { perpendicular }{ hypotenuse } =\frac { AB }{ AC }
(ii) cosine A = \frac { base }{ hypotenuse } =\frac { AB }{ AC } (ii) cosine C = \frac { base }{ hypotenuse } =\frac { BC }{ AC }
(iii) tangent A = \frac { perpendicular }{ base } =\frac { BC }{ AB } (iii) tangent C = \frac { perpendicular }{ base } =\frac { AB }{ BC }
(iv) cosecant A = \frac { hypotenuse }{ perpendicular } =\frac { AC }{ BC } (iv) cosecant C = \frac { hypotenuse }{ perpendicular } =\frac { AC }{ AB }
(v) secant A = \frac { hypotenuse }{ base } =\frac { AC }{ AB } (v) secant C = \frac { hypotenuse }{ base } =\frac { AC }{ BC }
(v) cotangent A = \frac { base }{ perpendicular } =\frac { AB }{ BC } (v) cotangent C = \frac { base }{ perpendicular } =\frac { BC }{ AB }

Note from above six relationships:

cosecant A = \frac { 1 }{ sinA }, secant A = \frac { 1 }{ cosineA }, cotangent A = \frac { 1 }{ tanA },

However, it is very tedious to write full forms of t-ratios, therefore the abbreviated notations are:
sine A is sin A
cosine A is cos A
tangent A is tan A
cosecant A is cosec A
secant A is sec A
cotangent A is cot A

TRIGONOMETRIC IDENTITIES

An equation involving trigonometric ratio of angle(s) is called a trigonometric identity, if it is true for all values of the angles involved. These are:
tan θ = \frac { sin\theta }{ cos\theta }
cot θ = \frac { cos\theta }{ sin\theta }

  • sin² θ + cos² θ = 1 ⇒ sin² θ = 1 – cos² θ ⇒ cos² θ = 1 – sin² θ
  • cosec² θ – cot² θ = 1 ⇒ cosec² θ = 1 + cot² θ ⇒ cot² θ = cosec² θ – 1
  • sec² θ – tan² θ = 1 ⇒ sec² θ = 1 + tan² θ ⇒ tan² θ = sec² θ – 1
  • sin θ cosec θ = 1 ⇒ cos θ sec θ = 1 ⇒ tan θ cot θ = 1

ALERT:
A t-ratio only depends upon the angle ‘θ’ and stays the same for same angle of different sized right triangles.
Introduction to Trigonometry Class 10 Notes Maths Chapter 8 2
Value of t-ratios of specified angles:

∠A0°30°45°60°90°
sin A0\frac { 1 }{ 2 }\frac { 1 }{ \sqrt { 2 } } \frac { \sqrt { 3 } }{ 2 } 1
cos A1\frac { \sqrt { 3 } }{ 2 } \frac { 1 }{ \sqrt { 2 } } \frac { 1 }{ 2 }0
tan A0\frac { 1 }{ \sqrt { 3 } } 1√3not defined
cosec Anot defined2√2\frac { 2 }{ \sqrt { 3 } } 1
sec A1\frac { 2 }{ \sqrt { 3 } } √22not defined
cot Anot defined√31\frac { 1 }{ \sqrt { 3 } } 0

The value of sin θ and cos θ can never exceed 1 (one) as opposite side is 1. Adjacent side can never be greater than hypotenuse since hypotenuse is the longest side in a right-angled ∆.

‘t-RATIOS’ OF COMPLEMENTARY ANGLES
Introduction to Trigonometry Class 10 Notes Maths Chapter 8 3
If ∆ABC is a right-angled triangle, right-angled at B, then
∠A + ∠C = 90° [∵ ∠A + ∠B + ∠C = 180° angle-sum-property]
or ∠C = (90° – ∠A)

Thus, ∠A and ∠C are known as complementary angles and are related by the following relationships:
sin (90° -A) = cos A; cosec (90° – A) = sec A
cos (90° – A) = sin A; sec (90° – A) = cosec A
tan (90° – A) = cot A; cot (90° – A) = tan A

Android App

eVidyarthi

Search On eVidyarthi

Evidyarthi on Facebook

Like us on Facebook

Follow Evidyarthi on Youtube

Learn English
Learn English Through हिन्दी
Job Interview Skills
English Grammar
हिंदी व्याकरण - Vyakaran
Mathematics Class 6th
Science Class 6th
हिन्दी Class 6th
Mathematics Class 7th
Science Class 7th
हिन्दी Class 7th
हिन्दी Class 8th
Mathematics Class 8th
Mathematics Class 9th
English Class 9th
Science Class 9th
Mathematics Class 10th
English Class 10th
Mathematics Class XI
Chemistry Class XI
Accountancy Class 11th
Accountancy Class 12th
Mathematics Class 12th
Microsoft Word
Microsoft Excel
Microsoft PowerPoint
Adobe PhotoShop
Adobe Illustrator
Learn German
Learn French
IIT JEE
Privacy Policies, Contact Us
Copyright © 2020 eVidyarthi and its licensors. All Rights Reserved.