Main Menu
  • School
    • Close
    • CBSE English Medium
    • CBSE Hindi Medium
    • UP Board
    • Bihar Board
    • Maharashtra Board
    • MP Board
    • Close
  • English
    • Close
    • English Grammar for School
    • Basic English Grammar
    • Basic English Speaking
    • English Vocabulary
    • English Idioms & Phrases
    • Personality Enhancement
    • Interview Skills
    • Close
  • Sarkari Exam Prep
    • Close
    • All Govt Exams Preparation
    • MCQs for Competitive Exams
    • Notes For Competitive Exams
    • NCERT Syllabus for Competitive Exam
    • Close
  • Study Abroad
    • Close
    • Study in Australia
    • Study in Canada
    • Study in UK
    • Study in Germany
    • Study in USA
    • Close
Class 12th Chemistry || Menu
  • MCQ Chemistry Class 12
  • Important Questions Chemistry class 12
  • Notes Chemistry Class 12
  • Previous Year Papers Chemistry Class 12
  • Sample Papers Chemistry Class 12
  • Book Chemistry Class 12
  • Syllabus Chemistry Class 12
  • Marking Scheme Chemistry Class 12
  • Imperfections in Crystals
  • Solutions
    • Strength of Solutions
    • Ideal Solutions
    • Osmosis and Osmotic Pressure
    • Boiling and Freezing Points of Solutions
    • Association and Dissociation
    • Solubility
    • Close
  • Electro-Chemistry
    • Conductivity of Solutions
    • Kohlrausch’s Law
    • Electrolysis
    • Electrochemical Cells
    • Standard Electrode Potential
    • Nernst Equation
    • Batteries
    • Corrosion
    • Close
  • Chemical Kinetics
    • Rate of Chemical Reaction
    • Order and Molecularity of Reaction
    • Integrated Rate Equation
    • Temperature Dependence of Reaction
    • Collision Theory
    • Close
  • The d-Block and f-Block Elements
    • Introduction to d-Block Elements
    • Properties of d-Block Elements
    • Important Compounds of d-Block
    • Lanthanoids and Actinoids
    • Close
  • Coordination Compounds
    • Introduction to Co-ordination Compounds
    • Nomenclature of Co-ordination Compounds
    • Valence Bond Theory
    • Crystal Field Theory
    • Close
  • Haloalkanes and Haloarenes
    • Characteristics of Halo Compounds
    • General Methods of Preparation
    • Chemical Properties
    • Polyhalogen Compounds
    • Close
  • Alcohols, Phenols and Ethers
    • Introduction to Alcohols, Phenols and Ethers
    • Preparation of Alcohols and Phenols
    • Properties of Alcohols
    • Characteristics of Phenols
    • Ethers : Preparation and Properties
    • Close
  • Aldehydes, Ketones and Carboxylic Acids
    • General Study of Carbonyl Compounds
    • Aldehydes and Ketones
    • Carboxylic Acids
    • Close
  • Amines
    • Study of Nitrogen Functional Group
    • Preparation of Amines
    • Properties of Amines
    • Diazonium Salts
    • Close
  • Chemistry Class 12

Notes Class 12 Chemistry Chapter 8 Aldehydes, Ketones and Carboxylic Acids

Advertisement

Notes For All Chapters Chemistry Class 12 CBSE

1. The classes of organic compounds containing carbonyl group (CO) as the functional group are aldehydes, ketones, carboxylic acids and their derivates. These are collectively called carbonyl compounds.
2. Nature of carbonyl group: Oxygen atom in carbonyl group is far more electronegative than carbon atom. As a result, the oxygen atom tends to attract the electron cloud of the π-bond towards itself, i. e., the π-electron cloud of >c = O is unsymmetrical.
Hence carbonyl carbon acquires positive charge and carbonyl oxygen carries negative charge. Thus, the carbonyl group is polar in nature.
3. Methods of preparation of Aldehydes and Ketones:
(a) By controlled oxidation of primary and secondary alcohol, aldehydes and ketones are produced.
(b) By dehydrogenation of alcohols : Primary alcohols on dehydrogenation produce aldehydes while secondary alcohols produce ketones.
4. Preparation of Aldehydes:
(a) Acyl chloride (acid chloride) is hydrogenated using, palladium on barium sulphate which is partially poisoned by the addition of S or quinoline. This reaction is called Rosenmund reduction. This method is used to prepare aldehydes.
(b) N itriles are reduced to corresponding imine with stannous chloride in the presence of hydrochloric acid, which on hydrolysis give corresponding aldehyde. This reaction is called Stephen’s reduction.
Chromyl chloride (CrO2ClO2) oxidises methyl group of toluene to a chromium complex, which on hydrolysis gives corresponding benzaldehyde. This reaction is called Etard reaction.
(d) When benzene or its derivatives is treated with CO and HCl in the presence of anhydrous AlCl3 or CuCl, it gives benzaldehyde or substituted benzaldehyde. This reaction is called Gatterman-Koch reaction.
5. Preparation of Ketones:
(a) Treatment of acyl chlorides with dialkyl cadmium, prepared by the reaction of cadmium chloride with Grignard reagent, gives ketones.
(b)From nitriles:
aldehydes-ketones-carboxylic-acids-cbse-notes-class-12-chemistry-1
When benzene or substituted benzene is treated with acid chloride in the presence of anhydrous A1C13, the corresponding ketone is formed. This reaction is known as Friedel-craft’s acylation reaction.
Properties of aldehyde and ketones
(a) Aldehydes are much more reactive than ketones in nucleophilic addition reactions.
(b) Nucleophilic addition reactions: Aldehydes and ketones undergo nucleophilic addition reactions onto the carbonyl group with a number of nucleophiles such as HCN, NaHSO3, alcohols, ammonia derivatives and Grignard reagents.
(c) Reduction to alcohols: Aldehydes and ketones on reduction gives primary and secondary alcohols respectively.
(d) The carbonyl group of aldehydes and ketones is reduced to CH2 group on treatment with zinc amalgam and concentrated hydrochloric acid (Chemmenson reduction) or with hydrazine followed by heating with NaOH or KOH in high boiling solvent such as ethylene glycol (Wolff-Kishner reduction).
(e) Tollen’s reagent (ammonical silver nitrate) oxidises aldehyde and the silver ions are reduced to silver which appear as a bright silver mirror on the side of the test tube ketones do not give this test.
(f) Aldehydes reduce Fehling’s solution to form a red precipitate of cuprous oxide. Fehling’s solution is obtained by mixing a solution of copper sulphate and a solution of sodium hydroxide and sodium potassium tartrate. Ketones do not reduce Fehling’s solution..Hence no precipitate is formed.
(g) Aldehydes and ketones having atleast one α-hydrogen atom undergoes a condensation reaction when warmed with dilute alkali to form β -hydroxy aldehydes or β-hydroxy ketones respectively. The reaction is known as aldol condensation.
(h) The condensation of a mixture of two different aldehydes or/and ketones each having an a-hydrogen atom, in presence of dilute alkali gives a mixture of four products. The reaction is known as cross aldol condensation.
6. Cannizzaro reaction: Aldehydes which do not have an a-hydrogen atom, undergo self-oxidation and reduction (disproportionation) reaction on treatment with concentrated alkali. In this reaction, one molecule of the aldehyde is reduced to alcohol white another is oxidised to carboxylic acid salt.
7. Electrophilic substitution reaction: It takes place at the ring in which the carbonyl group acts as a deactivating and meta-directing group.
8. Methods of preparation of carboxylic acids:
(a) From oxidation of primary alcohols and aldehydes.
(b) Aromatic carboxylic acids can be obtained by side chain oxidation of alkyl benzenes.
(c) From hydrolysis of nitriles and amides:
(d) From reaction of Grignard reagents with carbon dioxide:
9. Aliphatic carboxylic acids having up to four carbon atoms are miscible in water due to the formation of hydrogen bonds with water.
10. The solubility decreases as the number of carbon atoms increases.
(i) The electron withdrawing group (Cl, NO2, CN, etc.) stabilises the carboxylate anion by dispersing the negative charge of the carboxylate anion, RCOO–, and thus increases the acidic strength.
(ii) The presence of electron donating substituent such as alkyl group intensifies the negative charge on the RCOO– anion and destabilises it thereby making the carboxylic acid less acidic.
(iii) Carboxylic acids having an α-hydrogen are halogenated at the α-position on treatment with chlorine or bromine is the presence of small amount of red phosphorus to give α- chloro or  α – bromo carboxylic acids. This reaction is known as Hell-Volhard Zelinsky Reaction.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Advertisement

CBSE Delhi Question Answer of Chapters in PDF

Free Sample Papers and Previous Years' Question Papers for CBSE Exams from the Official CBSE Academic Website (CBSE.nic.in) in Delhi, Rajasthan, Uttar Pradesh and Bihar

Download CBSE / NCERT Book, Notes & MCQ Online Test / Mock Test

Online Quiz with Answers for Objective Questions in Hindi and English

Advertisement

Maharashtra Board Marathi & English Medium

Just Launched! Access Maharashtra Board Exam MCQs, Previous Year Papers, Textbooks, Solutions, Notes, Important Questions, and Summaries—available in both Marathi and English mediums—all in one place Maharashtra Board

Android APP

सरकारी Exam Preparation

Sarkari Exam Preparation Youtube

CBSE – दिल्ली, उत्तर प्रदेश, मध्य प्रदेश, बिहार, राजस्थान & हरियाणा Board हिंदी माध्यम

कक्षा 6 to 8 हिंदी माध्यम
कक्षा 9 & 10 हिंदी माध्यम
कक्षा 11 हिंदी माध्यम

State Board

यूपी बोर्ड 6,7 & 8
बिहार बोर्ड हिंदी माध्यम

CBSE Board

Mathematics Class 6
Science Class 6
Social Science Class 6
हिन्दी Class 6
सामाजिक विज्ञान कक्षा 6
विज्ञान कक्षा 6

Mathematics Class 7
Science Class 7
SST Class 7
सामाजिक विज्ञान कक्षा 7
हिन्दी Class 7

Mathematics Class 8
Science Class 8
Social Science Class 8
हिन्दी Class 8

Mathematics Class 9
Science Class 9
English Class 9

Mathematics Class 10
SST Class 10
English Class 10

Mathematics Class XI
Chemistry Class XI
Accountancy Class 11

Accountancy Class 12
Mathematics Class 12

Learn English
English Through हिन्दी
Job Interview Skills
English Grammar
हिंदी व्याकरण - Vyakaran
Microsoft Word
Microsoft PowerPoint
Adobe PhotoShop
Adobe Illustrator
Learn German
Learn French
IIT JEE

Study Abroad

Study in Australia: Australia is known for its vibrant student life and world-class education in fields like engineering, business, health sciences, and arts. Major student hubs include Sydney, Melbourne, and Brisbane. Top universities: University of Sydney, University of Melbourne, ANU, UNSW.

Study in Canada: Canada offers affordable education, a multicultural environment, and work opportunities for international students. Top universities: University of Toronto, UBC, McGill, University of Alberta.

Study in the UK: The UK boasts prestigious universities and a wide range of courses. Students benefit from rich cultural experiences and a strong alumni network. Top universities: Oxford, Cambridge, Imperial College, LSE.

Study in Germany: Germany offers high-quality education, especially in engineering and technology, with many low-cost or tuition-free programs. Top universities: LMU Munich, TUM, University of Heidelberg.

Study in the USA: The USA has a diverse educational system with many research opportunities and career advancement options. Top universities: Harvard, MIT, Stanford, UC Berkeley.

Privacy Policies, Terms and Conditions, About Us, Contact Us
Copyright © 2025 eVidyarthi and its licensors. All Rights Reserved.