Main Menu
  • School
    • Close
    • CBSE English Medium
    • CBSE Hindi Medium
    • UP Board
    • Bihar Board
    • Maharashtra Board
    • MP Board
    • Close
  • English
    • Close
    • English Grammar for School
    • Basic English Grammar
    • Basic English Speaking
    • English Vocabulary
    • English Idioms & Phrases
    • Personality Enhancement
    • Interview Skills
    • Close
  • Sarkari Exam Prep
    • Close
    • All Govt Exams Preparation
    • MCQs for Competitive Exams
    • Notes For Competitive Exams
    • NCERT Syllabus for Competitive Exam
    • Close
  • Study Abroad
    • Close
    • Study in Australia
    • Study in Canada
    • Study in UK
    • Study in Germany
    • Study in USA
    • Close
Class 12th Mathematics || Menu
  • Videos Maths Class 12
  • MCQ Maths Class 12
  • Notes Maths Class 12
  • Book Maths Class 12
  • Important Formulas Maths Class 12
  • Previous Year Papers Maths Class 12
  • Chapter wise Practice Papers Maths Class 12
  • Important Questions Maths Class 12
  • Sample Papers Maths Class 12
  • Question Answer Maths Class 12
  • Syllabus Maths Class 12
  • Marking Scheme Maths Class 12
  • Relations and Functions
    • Introduction to Relations
    • Introduction to Functions
    • Problems on Functions
    • Composition of Functions
    • Problems on Composition
    • Binary Operations
    • R.D Sharma Solutions
    • Close
  • Inverse Trigonometric Functions
    • Introduction: Inverse Trigonometry
    • Properties of Inverse Trigonometry
    • R.D Sharma Solutions
    • Close
  • Matrices
    • Introduction to Matrices
    • Theorems
    • MCQs
    • Ex 3.1
    • Ex 3.2
    • Ex 3.3
    • Ex 3.4
    • Examples
    • Miscellaneous Exercises
    • R.D Sharma Solutions
    • Close
  • Determinants
    • Introduction to Determinants
    • Theorems
    • MCQs
    • Ex 4.1
    • Ex 4.2
    • Ex 4.3
    • Ex 4.4
    • Ex 4.5
    • Ex 4.6
    • Examples
    • Miscellaneous Exercises
    • R.D Sharma Solutions
    • Close
  • Continuity and Differentiability
    • Introduction Continuity and Differentiability
    • Miscellaneous Exercises
    • MCQs
    • Theorem
    • R.D Sharma Solutions
    • Ex 5.1
    • Ex 5.2
    • Ex 5.3
    • Ex 5.4
    • Ex 5.5
    • Ex 5.6
    • Ex 5.8
    • Close
  • Applications of Derivatives
    • Introduction
    • Ex 6.1
    • Ex 6.2
    • Ex 6.3
    • Ex 6.4
    • Ex 6.5
    • MCQs
    • Miscellaneous Exercises
    • R.D Sharma Solutions
    • Close
  • Integrals
    • Introduction to Integration
    • Problems on Definite Integrals
    • Properties of Definite Integrals
    • Evaluating Definite Integrals
    • Limit of A Sum
    • Integration by Parts
    • Integration by Partial Fractions
    • Integrals of Special Functions
    • Integrals of Trigonometric Identities
    • Integration by Substitution
    • More Problems on Integration
    • R.D Sharma Solutions
    • Close
  • Applications of Integrals
    • Area Between A Curve and A Line
    • Area Between Two Curves
    • R.D Sharma Solutions
    • Close
  • Differential Equations
    • Intro: Differential Equations
    • Variable Separable Form
    • Homogenous Differential Equations
    • Linear Differential Equations
    • R.D Sharma Solutions
    • Close
  • Vector Algebra
    • Introduction to Vector Algebra
    • Scalar Product of Two Vectors
    • Properties of Vectors
    • Cross Product
    • R.D Sharma Solutions
    • Close
  • Three Dimensional Geometry
    • Introduction to 3-D Geometry
    • Cartesian Equation of A Line
    • Skew Lines
    • Equation of Plane
    • Intercept Form and Family of Planes
    • Distance of A Point From A Plane
    • R.D Sharma Solutions
    • Close
  • Linear Programming
    • Introduction to Linear Programming
    • Optimal Solution
    • Solution of Linear Programming Problems
    • R.D Sharma Solutions
    • Close
  • Probability
    • Introduction to Conditional Probability
    • Independent Events
    • Bayes’ Theorem
    • Distribution of Random Variables
    • Binomial Distribution
    • Mean and Variance of A Random Variable
    • R.D Sharma Solutions
    • Close
  • Maths Class 12

Maths Class 12 Continuity and Differentiability, R.D Sharma Question Answer

Advertisement
CONTINUITY

Page 9.17 Ex.9.1

Q1.

Answer :

Given:
fx=xx, x≠01, x=0

We observe
(LHL at x = 0) =limx→0-fx = lim h→0f0-h = lim h→0f-h
=limh→0-h-h=limh→0-hh =limh→0-1 =-1

(RHL at x = 0) =limx→0+fx = lim h→0f0+h= lim h→0fh
=limh→0hh=limh→0hh=limh→01=1
∴limx→0+fx ≠limx→0-fx

Hence, fx is discontinuous at the origin.

Q2.

Answer :

Given:
fx=x2-x-6x-3, x≠35, x=3

We observe
(LHL at x = 3) = limx→3-fx = lim h→0f3-h
=limh→03-h2-3-h-63-h-3=limh→09+h2-6h-3+h-6-h=limh→0h2-5h-h=limh→05-h = 5

And, (RHL at x = 3) = limx→3+fx = lim h→0f3+h
=limh→03+h2-3+h-63+h-3=limh→09+h2+6h-3-h-6h=limh→0h2+5hh=limh→05+h = 5

Also, f3=5

∴limx→3+fx =limx→3-fx = f3

Hence, fx is continuous at x=3.

Q3.

Answer :

Given:
fx=x2-9x-3, if x≠36, if x=3

We observe
(LHL at x = 3) = limx→3-fx=limh→0f3-h
= limh→03-h2-93-h-3=limh→032+h2-6h-93-h-3=limh→0h2-6h-h==limh→0hh-6-h=limh→06-h=6

(RHL at x = 3) = limx→3+fx=limh→0f3+h
= limh→03+h2-93+h-3=limh→032+h2+6h-9h=limh→0h2+6hh=limh→0 h6+hh=limh→06+h=6

Given:
f3=6
∴limx→3-fx=limx→3+fx=f3

Hence, fx is continuous at x=3.

Q4.

Answer :

Given:
fx=x2-1x-1, if x≠12, if x=1

We observe
(LHL at x = 1) = limx→1-fx=limh→0f1-h
= limh→01-h2-11-h-1=limh→01+h2-2h-11-h-1=limh→0h2-2h-h=limh→0hh-2-h=limh→02-h=2

(RHL at x = 1) = limx→1+fx=limh→0f1+h
= limh→01+h2-11+h-1=limh→01+h2+2h-11+h-1=limh→0h2+2hh=limh→0hh+2h=limh→02+h=2

Given:
f1=2
∴limx→1-fx=limx→1+fx=f1

Hence, fx is continuous at x=1.

 

Page 9.18 Ex.9.1

Q5.

Answer :

Given:
fx=sin3xx, when x≠01, when x=0

We observe
(LHL at x = 0) = limx→0-fx=limh→0f0-h=limh→0f-h
= limh→0sin-3h-h=limh→0-sin3h-h=limh→03sin3h3h=3limh→0sin3h3h=3·1=3

(RHL at x = 0) = limx→0+fx=limh→0fh
= limh→0sin3hh=limh→03sin3h3h=3limh→0sin3h3h=3·1=3

Given:
f0=1

It is known that for a function fx to be continuous at x = a,
limx→a-fx=limx→a+fx=fa

But here,
limx→0-fx=limx→0+fx≠f0

Hence, fx is discontinuous at x=0.

Q6.

Answer :

Given:
fx=e1x, if x≠01, if x=0

We observe
(LHL at x = 0) = limx→0-fx=limh→0f0-h=limh→0f-h
= limh→0e-1h=limh→01e1h=1limh→0e1h=0

(RHL at x = 0) = limx→0+fx=limh→0fh
= limh→0e1h=∞

Given:
f0=1
It is known that for a function fx to be continuous at x = a,
limx→a-fx=limx→a+fx=fa

But here,
limx→0-fx≠limx→0+fx

Hence, fx is discontinuous at x=0.

Q7.

Answer :

Given:
fx=1-cosxx2, when x≠01, when x=0

Consider:
limx→0fx=limx→01-cosxx2⇒limx→0fx=limx→02sin2x2x2⇒limx→0fx=limx→02sin2x24x24⇒limx→0fx=limx→02sinx224x22⇒limx→0fx=24limx→0sinx2x22⇒limx→0fx=12·12=12

Given:
f0=1

∴ limx→0fx≠f0

Thus, f(x) is discontinuous at x = 0.

Q8.

Answer :

The given function can be rewritten as:
fx=x-x2, when x>0x+x2, when x<02, when x=0
⇒ fx=0, when x>0x, when x<02, when x=0

We observe
(LHL at x = 0) = limx→0-fx=limh→0f0-h=limh→0f-h=limh→0-h=0

(RHL at x = 0) = limx→0+fx=limh→0f0-h=limh→0fh= limh→00=0

And, f0=2
∴ limx→0-fx =limx→0+fx ≠ f0

Thus, f(x) is discontinuous at x = 0.

Q9.

Answer :

The given function can be rewritten as:
fx=x-ax-a, when x>aa-xx-a, when x<a1, when x=a
⇒ fx=1, when x>a-1, when x<a1, when x=a

⇒ fx=1, when x≥a-1, when x<a

We observe
(LHL at x = a) = limx→a-fx=limh→0fa-h=limh→0-1=-1

(RHL at x = a) = limx→a+fx=limh→0fa+h= limh→01=1

∴ limx→a-fx≠limx→a+fx

Thus, f(x) is discontinuous at x = a.

Q10.

Answer :

(i) Given:
fx=x cos1x, x≠00, x=0
We observe
limx→0 fx=limx→0x cos1x⇒limx→0 fx=limx→0xlimx→0cos1x⇒limx→0 fx=0 ×limx→0cos1x=0
⇒limx→0fx=f0
Hence, f(x) is continuous at x = 0.

(ii) Given:
fx=x2sin1x, x≠00, x=0
We observe
limx→0x2 sin1x=limx→0x2limx→0sin1x=0 ×limx→0sin1x=0
⇒limx→0fx=f0
Hence, f(x) is continuous at x = 0.

(iii) Given:
fx=x-a sin1x-a, x≠a0, x=a

Putting x−a = y, we get
limx→ax-a sin1x-a=limy→0y sin1y=limy→0ylimy→0sin1y=0 × limy→0sin1y=0
⇒limx→afx=fa=0
Hence, f(x) is continuous at x = a.

(iv) Given:
fx=ex-1log1+2x, if x≠07, if x=0

We observe
limx→0fx=limx→0ex-1log1+2x⇒limx→0fx=limx→0ex-12xlog1+2x2x⇒limx→0fx=12limx→0ex-1xlog1+2x2x⇒limx→0fx=12×limx→0ex-1xlimx→0log1+2x2x=12×11=12
And, f0=7
⇒limx→0fx≠f0

Hence, f(x) is discontinuous at x = 0.

(v) Given:
fx=1-xn1-x, x≠1n-1, x=1

Here, f1=n-1

limx→1fx=limx→11-xn1-x⇒limx→1fx=limx→11-xn-1+C1n1-xn-2x+C2n1-xn-3×2+…+Cn-1n1-x0xn-1
⇒limx→1fx=0+0…+1n-1=1≠f1

Thus, fx is discontinuous at x=1.

(vi) Given:
fx=x2-1x-1, x≠12, x=1
⇒fx=x+1, x<-1-x-1, -1≤ x<1x+1, x>12, x=1
We observe
(LHL at x = 1) = limx→1-fx=limh→0f1-h=limh→0-1-h-1=limh→0-2+h=-2
And, f1=2

⇒limx→1-fx≠f1

Hence, f(x) is discontinuous at x = 1.

(vii) Given:
fx=2x+x2x, x≠00, x=0

⇒fx=2x+x2x, x>0-2x+x2x, x<00, x=0

⇒fx=x+2, x>0x-2, x<00, x=0

We observe

(LHL at x = 0) = limx→0-fx=limh→0f-h=limh→0-h-2=-2
(RHL at x = 0) = limx→0+fx=limh→0fh=limh→02+h=2

⇒limx→0-fx≠limx→0+fx

Hence, f(x) is discontinuous at x = 0.

 

Page 9.19 Ex.9.1

Q11.

Answer :

Given:
fx=1+x2, if 0≤x≤12-x, if x>1

We observe
(LHL at x = 1) = limx→1-fx=limh→0f1-h=limh→01+1-h2=limh→02+h2-2h=2

(RHL at x = 1) = limx→1+fx=limh→0f1+h= =limh→02-1+h=limh→01-h=1

∴ limx→1-fx≠limx→1+fx

Thus, f(x) is discontinuous at x = 1.

Q12.

Answer :

Given:
fx=sin3xtan2x, if x<032, if x=0log1+3xe2x-1, if x>0

We observe
(LHL at x = 0) = limx→0-fx=limh→0f0-h=limh→0f-h
=limh→0sin3-htan2-h=limh→0sin3htan2h=limh→03sin3h3h2tan2h2h=limh→03sin3h3hlimh→02tan2h2h=3limh→0sin3h3h2limh→0tan2h2h=3×12×1=32

(RHL at x = 1) = limx→0+fx=limh→0f0+h=limh→0fh
=limh→0log1+3he2h-1=limh→03hlog1+3h3h2he2h-12h=32limh→0log1+3h3he2h-12h=32limh→0log1+3h3hlimh→0e2h-12h=3×12×1=32

And, f0=32

∴ limx→0-fx=limx→0+fx=f0

Thus, f(x) is continuous at x = 0.

Q13.

Answer :

The given function can be rewritten as:
fx=2x-x, when x>02x+x, when x<00, when x=0
⇒ fx=x, when x>03x, when x<00, when x=0

We observe
(LHL at x = 0) = limx→0-fx=limh→0f0-h=limh→0f-h=limh→0-3h=0

(RHL at x = 0) = limx→0+fx=limh→0f0+h=limh→0fh= limh→0h=0

And, f0=0

∴ limx→0-fx=limx→0+fx=f0

Thus, f(x) is continuous at x = 0.

Q14.

Answer :

The given function can be rewritten as:
fx=3x-2, x<030-2, x=0x+1, x>0
⇒fx=3x-2, x<0-2, x=0x+1, x>0

We observe

(LHL at x = 0) = limx→0-fx=limh→0f0-h=limh→0f-h = limh→03-h-2=-2

(RHL at x = 0) = limx→0+fx=limh→0f0+h=limh→0fh = limh→0h+1=1

∴limx→0-fx≠limx→0+fx

Hence, fx is discontinuous at x=0.

Q15.

Answer :

Given:
fx=x, x>01, x=0-x, x<0

(LHL at x = 0) = limx→0-fx=limh→0f0-h=limh→0f-h = limh→0–h=0

(RHL at x = 0) = limx→0+fx=limh→0f0+h=limh→0fh = limh→0h=0

And, f0=1
∴limx→0-fx=limx→0+fx≠f0

Hence, fx is discontinuous at x=0.

Q16.

Answer :

Given:
fx=x, 0≤x<1212, x=121-x, 12<x≤1

We observe

(LHL at x = 12) = limx→12-fx=limh→0f12-h = limh→012-h=12

(RHL at x = 12) = limx→12+fx=limh→0f12+h = limh→01-12+h=12

Also, f12=12
∴limx→12-fx =limx→12+fx = f12

Hence, fx is continuous at x=12.

Q17.

Answer :

Given:
fx=2x-1, x<02x+1, x≥0
We observe
(LHL at x = 0) = limx→0-fx=limh→0f0-h=limh→0f-h = limh→02-h-1=-1

(RHL at x = 0) = limx→0+fx=limh→0f0+h=limh→0fh = limh→02h+1=1

∴limx→0-fx≠limx→0+fx

Hence, fx is discontinuous at x = 0.

Q18.

Answer :

Given: fx=x2-1x-1, x≠1k, x=1
If fx is continuous at x = 1, then
limx→1fx = f1
⇒ limx→1×2-1x-1= k
⇒ limx→1x-1x+1x-1= k
⇒ limx→1x+1= k
⇒ k=2

Q19.

Answer :

Given:
fx=x2-3x+2x-1, if x≠1k, if x=1
If fx is continuous at x = 1, then,
limx→1fx = f1
⇒ limx→1×2-3x+2x-1= k
⇒ limx→1x-2x-1x-1= k
⇒ limx→1x-2= k
⇒ k=-1

 

Page 9.20 Ex.9.1

Q20.

Answer :

Given:
fx=sin5x3x, if x≠0k, if x=0
If fx is continuous at x = 0, then
limx→0fx = f0
⇒ limx→0sin5x3x= k
⇒ limx→05 sin5x3×5x= k
⇒ 53limx→0sin5x5x= k
⇒ 53×1= k
⇒ k=53

Q21.

Answer :

Given:
fx=kx2, if x≤23, if x>2
If fx is continuous at x = 2, then
limx→2-fx =lim x→2+fx= f2 …(1)

Now,

limx→2-fx =limh→0f2-h =limh→0k2-h2 =4k

And, f2=3

From (1), we have

4k=3⇒k=34

Q22.

Answer:
Given:
fx=sin2x5x, if x≠0k, if x=0
If fx is continuous at x = 0, then
limx→0fx = f0
⇒ limx→0sin2x5x= k
⇒ limx→02sin2x5×2x= k
⇒ 25limx→0sin2x2x= k
⇒ 25×1= k
⇒ k=25

Q23.

Answer :

Given:
fx=ax+5, if x≤2x-1, if x>2

We observe
(LHL at x = 2) = limx→2-fx=limh→0f2-h = limh→0a2-h+5=2a+5

(RHL at x = 2) = limx→2+fx=limh→0f2+h = limh→02+h-1 = 1

And, f2=a2+5=2a+5

Since fx is continuous at x = 2, we have
limx→2-fx=limx→2+fx=f2
⇒ 2a+5=1
⇒ 2a=-4
⇒ a=-2

Q24.

Answer :

The given function can be rewritten as:
fx=xx+2×2, x>0-xx-2×2, x<0k, x=0
⇒fx=12x+1, x>012x-1, x<0k, x=0

We observe
(LHL at x = 0) = limx→0-fx=limh→0f0-h=limh→0f-h
=limh→01-2h-1=-1

(RHL at x = 0) = limx→0+fx=limh→0f0+h=limh→0fh
=limh→012h+1=1
So, limx→0-fx≠limx→0+fx such that limx→0-fx &limx→0+fx are independent of k.

Thus, f(x) is discontinuous at x = 0, regardless of the choice of k.

Q25.

Answer :

Given:
fx=kcosxπ-2x, x≠π23, x=π2

If f(x) is continuous at x = π2, then
limx→π2fx = fπ2

⇒ limx→π2kcosxπ-2x=3 …(1)

Putting π2-x=h, we get
limx→π2k cos xπ-2x=limh→0k cos π2-hπ-2π2-h

From (1), we have

limh→0k cos π2-hπ-2π2-h=3
⇒limh→0k sin h2h=3
⇒limh→0k sin hh=6
⇒k limh→0sin hh=6
⇒k×1=6
⇒k=6

Hence, for k=6 , f(x) is continuous at x = π2.

Q26.

Answer :
The given function can be rewritten as:
fx=sin a+1 x+sin xx, for x<0c , for x=0x+bx2-xbx32 , for x>0
⇒fx=sin a+1x+sin xx, for x<0c , for x=01+bx-1bx , for x>0

We observe
(LHL at x = 0) = limx→0-fx=limh→0f0-h=limh→0f-h
=limh→0-sin a+1h-sin -hh=limh→0-sin a+1hh-sin hh
=-a+1limh→0sin a+1ha+1h-limh→0sin hh=-a-1

(RHL at x = 0) = limx→0+fx=limh→0f0+h=limh→0fh
=limh→01+bh-1bh=limh→0bhbh1+bh+1=limh→011+bh+1=12

And, f0=c

If fx is continuous at x = 0, then

limx→0-fx=limx→0+fx=f0

⇒-a-1 = 12=c
⇒-a-1 = 12 and c=12
⇒a=-32, c=12

Now, 1+bx-1bx exists only if bx≠0⇒b≠0.

∴ b∈R-0

Q27.

Answer :

Given: fx=1-coskxxsinx, x≠012, x=0
If fx is continuous at x = 0, then
limx→0fx = f0 …(1)

Consider:
limx→0fx=limx→01-cos kxx sin x=limx→02 sin2 kx2x sin x
⇒limx→0fx=limx→02 sin2 kx2x2sin xx
⇒limx→0fx=limx→02k24sin kx22kx22sin xx
⇒limx→0fx=2k24limx→0sinkx22kx22sin xx
⇒limx→0fx=2k24limx→0sin kx22kx22limx→0sin xx
⇒limx→0fx=2k24×1=k22

From equation (1), we have
k22=f0
⇒k22=12⇒k=±1

Q28.

Answer :

Given:
fx=x-4x-4+a, if x<4a+b, if x=4x-4x-4+b, if x>4

We observe
(LHL at x = 4) = limx→4-fx=limh→0f4-h
=limh→04-h-44-h-4+a=limh→0-h-h+a=a-1

(RHL at x = 4) = limx→4+fx=limh→0f4+h
=limh→04+h-44+h-4+b=limh→0hh+b=b+1

And f4=a+b

If f(x) is continuous at x = 4, then

limx→4-fx=limx→4+fx=f4
⇒a-1=b+1=a+b
⇒a-1=a+b, b+1=a+b
⇒b=-1, a=1

 

Page 9.21 Ex.9.1

Q29.

Answer :

Given: fx=sin2xx, x≠0k, x=0

If f(x) is continuous at x = 0, then

limx→0fx=f0
⇒limx→0sin2xx=k
⇒limx→02sin2x2x=k
⇒2limx→0sin2x2x=k
⇒2×1=k
⇒k=2

Q30.

Answer :

Given: fx=log1+xa-log1-xbx, x≠0

If f(x) is continuous at x = 0, then

limx→0fx=f0
⇒limx→0log1+xa-log1-xbx=f0
⇒limx→0log1+xaaxa-log1-xbbxb=f0
⇒1alimx→0log1+xaxa–1blimx→0log1-xb-xb=f0
⇒1a×1–1b×1=f0 Using: limx→0log1+xx=1⇒1a+1b=f0⇒a+bab=f0

Q31.

Answer :

Given:
fx=2x+2-164x-16, if x≠2k , if x=2

If f(x) is continuous at x = 2, then

limx→2fx=f2⇒limx→22x+2-164x-16=f2⇒limx→242x-42x-42x+4=k⇒limx→242x+4=k⇒422+4=k⇒48=k⇒k=12

Q32.

Answer :

Given:
fx=cos2x-sin2x-1×2+1-1, x≠0k, x=0

If f(x) is continuous at x = 0, then

limx→0fx=f0⇒limx→0cos2x-sin2x-1×2+1-1=k⇒limx→01-sin2x-sin2x-1×2+1-1=k⇒limx→0-2sin2xx2+1-1=k⇒limx→0-2sin2xx2+1+1×2+1-1×2+1+1=k⇒limx→0-2sin2xx2+1+1×2=k⇒-2limx→0sin2xx2+1+1×2=k⇒-2limx→0sinxx2limx→0x2+1+1=k⇒-2×1×1+1=k⇒k=-4

Q33.

Answer :

Given:
fx=1-cos7x-π5x-π2, x=π

If f(x) is continuous at x = π, then
limx→πfx=fπ⇒limx→π1-cos7x-π5x-π2=fπ⇒25limx→πsin27x-π2x-π2=fπ⇒25×494limx→πsin27x-π2494x-π2=fπ⇒25×494limx→πsin27x-π272x-π2=fπ⇒25×494limx→πsin7x-π272x-π2=fπ⇒25×494×1=fπ⇒15×492×1=fπ⇒4910=fπ
Hence, the given function will be continuous at x=π, if fπ=4910.

Q34.

Answer :

Given:
fx=2x+3sinx3x+2sinx, x≠0

If f(x) is continuous at x = 0, then

limx→0fx=f0⇒limx→02x+3sinx3x+2sinx=f0⇒limx→0x2+3sinxxx3+2sinxx=f0⇒limx→02+3sinxx3+2sinxx=f0⇒limx→02+3sinxxlimx→03+2sinxx=f0⇒2+3limx→0sinxx3+2limx→0sinxx=f0⇒2+3×13+2×1=f0⇒55=f0⇒f0=1

Q35.

Answer :

Given: fx=1-cos4x8x2, when x≠0k, when x=0

If f(x) is continuous at x = 0, then
limx→0fx=f0⇒limx→01-cos4x8x2=f0⇒limx→02sin22x8x2=f0⇒22limx→0sin22x4x2=f0⇒22limx→0sin2x2x2=f0⇒1×1=f0⇒k=1 ∵f0=k

Q36.

Answer :

(i) Given:
fx=1-cos 2kxx2, if x≠08 , if x=0

If f(x) is continuous at x = 0, then
limx→0fx=f0⇒limx→01-cos2kxx2=8⇒limx→02k2sin2kxk2x2=8⇒2k2limx→0sinkxkx2=8⇒2k2×1=8⇒k2=4⇒k=±2

(ii) Given:
fx=x-1tanπx2, if x≠1k, if x=1

If f(x) is continuous at x = 1, then
limx→1fx=f1⇒limx→1x-1 tanπx2=k

Putting x-1=y, we get

limy→0 y tanπy+12=k⇒limy→0 y tanπy2+π2=k⇒limy→0 y tanπ2+πy2=k⇒-limy→0 y cotπy2=k⇒-2πlimy→0 πy2cosπy2sinπy2=k⇒-2π limy→0cosπy2limy→0sinπy2πy2=k⇒-2π×11=k⇒k=-2π

(iii) Given:
fx=kx2-2x, if x<0cosx, if x≥0
We have
(LHL at x = 0) = limx→0-fx=limh→0f0-h=limh→0f-h=limh→0kh2+2h=0
(RHL at x = 0) = limx→0+fx=limh→0f0+h=limh→0fh=limh→0cosh=1

∴limx→0-fx≠limx→0+fx

Thus, no value of k exists for which fx is continuous at x=0.
(iv) Given:
fx=kx+1, if x≤πcosx, if x>π
We have
(LHL at x = π) = limx→π-fx=limh→0fπ-h=limh→0kπ-h+1=kπ+1
(RHL at x = π) = limx→π+fx=limh→0fπ+h=limh→0cosπ+h=cosπ=-1

If f(x) is continuous at x = π, then
limx→π-fx=limx→π+fx
⇒kπ+1=-1⇒k=-2π

(v) Given:
fx=kx+1, if x≤53x-5, if x>5

We have
(LHL at x = 5) = limx→5-fx=limh→0f5-h=limh→0k5-h+1=5k+1
(RHL at x = 5) = limx→5+fx=limh→0f5+h=limh→035+h-5=10

If f(x) is continuous at x = 5, then
limx→5-fx=limx→5+fx⇒5k+1=10⇒k=95

(vi) Given:
fx=x2-25x-5, x≠5k, x=5
⇒fx=x-5x+5x-5, x≠5k, x=5
⇒fx=x+5, x≠5k, x=5

If f(x) is continuous at x = 5, then
limx→5fx=f5⇒limx→5x+5=k⇒k=5+5=10

(vii) Given: fx=kx2, x≥14, x<1

We have
(LHL at x = 1) = limx→1-fx=limh→0f1-h=limh→04=4
(RHL at x = 1) = limx→1+fx=limh→0f1+h=limh→0k1+h2=k

If f(x) is continuous at x = 1, then
limx→1-fx=limx→1+fx⇒k=4

(viii) Given:
fx=kx2+2, if x≤03x+1, if x>0
We have
(LHL at x = 0) = limx→0-fx=limh→0f0-h=limh→0k-h2+2=2k
(RHL at x = 0) = limx→0+fx=limh→0f0+h=limh→03h+1=1

If f(x) is continuous at x = 0, then
limx→0-fx=limx→0+fx⇒2k=1⇒k=12..

 

Page 9.22 Ex.9.1

Q37.

Answer :

Given: fx=1, if x≤3ax+b, if 3<x<57, if x≥5

We have
(LHL at x = 3) = limx→3-fx=limh→0f3-h=limh→01=1

(RHL at x = 3) = limx→3+fx=limh→0f3+h=limh→0a3+h+b=3a+b

(LHL at x = 5) = limx→5-fx=limh→0f5-h=limh→0a5-h+b=5a+b

(RHL at x = 5) = limx→5+fx=limh→0f5+h=limh→07=7

If f(x) is continuous at x = 3 and 5, then

∴ limx→3-fx =lim x→3+fx and limx→5-fx =limx→5+fx
⇒1=3a+b …1 and 5a+b=7 …2

On solving eqs. (1) and (2), we get
a=3 and b=-8

Q38.

Answer :

Given: fx=x22, if 0≤x≤12×2-3x+32, if 1<x≤2

We have
(LHL at x = 1) = limx→1-fx=limh→0f1-h=limh→01-h22=12

(RHL at x = 1) = limx→1+fx=limh→0f1+h=limh→021+h2-31+h+32=2-3+32=12

Also, f1=122=12

∴ limx→1-fx =lim x→1+fx =f1

Hence, the given function is continuous at x=1.

Q39.

Answer :

(i) Given: fx=x+x-1

We have
(LHL at x = 0) = limx→0-fx=limh→0f0-h=limh→00-h+0-h-1=1

(RHL at x = 0) = limx→0+fx=limh→0f0+h=limh→00+h+0+h-1=1

Also, f0=0+0-1=0+1=1

Now,

(LHL at x = 1) = limx→1-fx=limh→0f1-h=limh→01-h+1-h-1=1+0=1

(RHL at x =1) = limx→1+fx=limh→0f1+h=limh→01+h+1+h-1=1+0=1

Also, f1=1+1-1=1+0=1

∴ limx→0-fx =lim x→0+fx = f0 and lim x→1-fx = lim x→1+fx = f1

Hence, fx is continuous at x=0, 1.

(ii) Given: fx=x-1+x+1

We have
(LHL at x = −1) = limx→-1-fx=limh→0f-1-h=limh→0-1-h-1+-1-h+1=2+0=2

(RHL at x = −1) = limx→-1+fx=limh→0f-1+h=limh→0-1+h-1+-1+h+1=2+0=2

Also, f-1=-1-1+-1+1=-2=2

Now,

(LHL at x = 1) = limx→1-fx=limh→0f1-h=limh→01-h-1+1-h+1=0+2=2

(RHL at x =1) = limx→1+fx=limh→0f1+h=limh→01+h-1+1+h+1=0+2=2

Also, f1=1+1+1-1=2

∴ limx→-1-fx =lim x→-1+fx = f-1 and lim x→1-fx = lim x→1+fx = f1

Hence, fx is continuous at x=-1, 1.

Q40.

Answer :

The given function can be rewritten as

fx=x-xx, when x>0x+xx, when x<02, when x=0

⇒ fx=0, when x>02, when x<02, when x=0

We have
(LHL at x = 0) = limx→0-fx=limh→0f0-h=limh→0f-h=limh→02=2

(RHL at x = 0) = limx→0+fx=limh→0f0+h=limh→0fh=limh→00=0

∴ limx→0-fx≠limx→0+fx

Thus, f(x) is discontinuous at x = 0.

Q41.

Answer :

The given function can be rewritten as

fx=2×2+k, if x≥0-2×2+k, if x<0

We have
(LHL at x = 0) = limx→0-fx=limh→0f0-h=limh→0f-h=limh→0-2-h2+k=k

(RHL at x = 0) = limx→0+fx=limh→0f0+h=limh→0fh=limh→02h2+k=k

If fx is continuous at x=0, then

limx→0-fx =limx→0+fx = f0⇒limx→0-fx =limx→0+fx = k

∴ k can be any real number.

Q42.

Answer :

The given function f is 1

If f is continuous at x = 0, then

2

Therefore, there is no value of λ for which f(x) is continuous at x = 0.

At x = 1,

3

f (1) = 4x + 1 = 4 × 1 + 1 = 5

Therefore, for any values of λ, f is continuous at x = 1

At x = -1, we have

f (-1) = λ1+2=3λ

limx→-1λ1+2=3λ∴limx→-1fx=f-1

Therefore, for any values of λ, f is continuous at x = -1

Q43.

Answer :

Given: fx=2x+1, if x<2k, x=23x-1, x>2

We have
(LHL at x = 2) = limx→2-fx=limh→0f2-h=limh→022-h+1=5

(RHL at x = 2) = limx→2+fx=limh→0f2+h=limh→032+h-1=5

Also, f2=k

If f(x) is continuous at x = 2, then
limx→2-fx =lim x→2+fx=f2

⇒ 5=5=k

Hence, for k = 5, fx is continuous at x=2.

Q44.

Answer :

Given: fx=1-sin3x3cos2x, if x<π2a, if x=π2b1-sinxπ-2×2, if x>π2

We have
(LHL at x = π2) = limx→π2-fx=limh→0fπ2-h

=limh→01-sin3π2-h3cos2π2-h=limh→01-cos3h3sin2h=13limh→01-cosh1+cos2h+cosh1-cosh1+cosh=13limh→01+cos2h+cosh1+cosh=131+1+11+1=12
(RHL at x = π2) = limx→π2+fx=limh→0fπ2+h
=limh→0b1-sinπ2+hπ-2π2+h2=limh→0b1-cosh-2h2=limh→02bsin2h24h2=limh→02bsin2h216h24=b8limh→0sinh2h22=b8×1=b8

Also, fπ2=a

If f(x) is continuous at x = π2 , then
limx→π2-fx =lim x→π2+fx = fπ2

⇒12 =b8 = a

⇒a=12 and b=4

Q45.

Answer :

Given: fx=1-cos2x2x2, x<0k, x=0xx, x>0
⇒fx=1-cos2x2x2, x<0k, x=01, x>0
We have
(LHL at x = 0) = limx→0-fx=limh→0f0-h

=limh→01-cos2-h2-h2=limh→01-cos2h2h2=12limh→02sin2hh2=22limh→0sin2hh2=22limh→0sinhh2=1×1=1

(RHL at x = 0) = limx→0+fx=limh→0f0+h=limh→0fh=limh→01=1
Also, f0=k

If f(x) is continuous at x = 0, then
limx→0-fx =lim x→0+fx=f0

⇒1=1=k

Hence, the required value of k is 1.

Q46.

Answer :

Given: fx=ax+1, if x≤3bx+3, if x>3

We have
(LHL at x = 3) = limx→3-fx=limh→0f3-h=limh→0a3-h+1=3a+1

(RHL at x = 3) = limx→3+fx=limh→0f3+h=limh→0b3+h+3=3b+3

If fx is continuous at x=3, thenlimx→3-fx=limx→3+fx⇒3a+1=3b+3⇒3a-3b=2

Hence, the required relationship between a & b is 3a-3b=2.

 

Page 9.23 Ex.9.1

Q47.

Answer :

Given: fx=a sin π2x+1, x≤0tan x-sin xx3, x>0
We have

(LHL at x = 0) = limx→0-fx=limh→0f0-h=limh→0f-h=limh→0a sin π2-h+1=a sinπ2=a

(RHL at x = 0) = limx→0+fx=limh→0f0+h=limh→0fh=limh→0tan h-sin hh3

⇒limx→0+fx=limh→0sin hcos h-sin hh3⇒limx→0+fx=limh→0sin hcos h1-cos hh3⇒limx→0+fx=limh→01-cos htan hh3⇒limx→0+fx=limh→02sin2 h2tan h4h24×h⇒limx→0+fx=24limh→0sin2h2tan hh24×h⇒limx→0+fx=12limh→0sinh2h22limh→0tan hh⇒limx→0+fx=12×1×1⇒limx→0+fx=12

If fx is continuous at x=0, thenlimx→0-fx=limx→0+fx⇒a=12

 

Page 9.35 Ex.9.2

Q1.

Answer :

When x < 0, we have
fx=sinxx

We know that sin x as well as the identity function x are everywhere continuous.
So, the quotient function sinxx is continuous at each x < 0.

When x > 0, we have fx=x+1, which is a polynomial function.
Therefore, fx is continuous at each x > 0.

Now,
Let us consider the point x = 0.

Given: fx=sinxx, x<0x+1, x≥0

We have
(LHL at x = 0) = limx→0-fx=limh→0f0-h=limh→0f-h=limh→0sin-h-h=limh→0sinhh=1

(RHL at x = 0) = limx→0+fx=limh→0f0+h=limh→0fh=limh→0h+1=1

Also,
f0=0+1=1

∴ limx→0-fx=limx→0+fx=f0

Thus, fx is continuous at x = 0.

Hence, fx is everywhere continuous.

Q2.

Answer :

Given: fx=xx, x≠00, x=0

x=x, x≥0-x, x<0⇒fx=1, x>0-1, x<00, x=0

We have
(LHL at x = 0) = limx→0-fx=limh→0f0-h=limh→0f-h=limh→0-1=-1

(RHL at x = 0) = limx→0+fx=limh→0f0+h=limh→0fh=limh→01=1

∴ limx→0-fx≠limx→0+fx

Thus, fx is discontinuous at x = 0.

Q3.

Answer :

(i)

When x ≠1, then
fx=x3-x2+2x-2

We know that a polynomial function is everywhere continuous.
So, fx=x3-x2+2x-2 is continuous at each x ≠1.

At x = 1, we have

(LHL at x = 1) = limx→1-fx=limh→0f1-h=limh→01-h3-1-h2+21-h-2=1-1+2-2=0

(RHL at x = 1) = limx→1+fx=limh→0f1+h=limh→01+h3-1+h2+21+h-2=1-1+2-2=0

Also, f1=4
∴ limx→1-fx=limx→1+fx≠f1

Thus, fx is discontinuous at x = 1.

Hence, the only point of discontinuity for fx is x = 1.

(ii)
Given: fx=x4-16x-2, if x≠216, if x=2

When x ≠2, then
fx=x4-16x-2=x4-24x-2=x2+4x-2x+2x-2=x2+4x+2

We know that a polynomial function is everywhere continuous.
Therefore, the functions x2+4 and x+2 are everywhere continuous.
So, the product function x2+4x+2 is everywhere continuous.
Thus, f(x) is continuous at every x ≠2.

At x = 2, we have

(LHL at x = 2) = limx→2-fx=limh→0f2-h=limh→02-h2+42-h+2=84=32

(RHL at x = 2) = limx→2+fx=limh→0f2+h=limh→02+h2+42+h+2=84=32

Also, f2=16

∴ limx→2-fx=limx→2+fx≠f2

Thus, fx is discontinuous at x = 2.

Hence, the only point of discontinuity for fx is x = 2.

(iii)

When x < 0, then
fx=sinxx

We know that sin x as well as the identity function x are everywhere continuous.
So, the quotient function sinxx is continuous at each x < 0.

When x > 0, then
fx=2x+3, which is a polynomial function.
Therefore, fx is continuous at each x > 0.

Now,
Let us consider the point x = 0.
Given: fx=sinxx, if x<02x+3, if x≥0

We have
(LHL at x = 0) = limx→0-fx=limh→0f0-h=limh→0f-h=limh→0sin-h-h=limh→0sinhh=1

(RHL at x = 0) = limx→0+fx=limh→0f0+h=limh→0fh=limh→02h+3=3

∴ limx→0-fx≠limx→0+fx

Thus, fx is discontinuous at x = 0.

Hence, the only point of discontinuity for fx is x = 0.

(iv)

When x ≠ 0, then
fx=sin3xx

We know that sin 3x as well as the identity function x are everywhere continuous.
So, the quotient function sin3xx is continuous at each x ≠ 0.

Let us consider the point x = 0.
Given: fx=sin3xx, if x≠04, if x=0

We have

(LHL at x = 0) = limx→0-fx =limh→0f0-h =limh→0f-h =limh→0sin -3h-h =limh→03 sin 3h3h = 3

(RHL at x = 0) = limx→0+fx =limh→0f0+h =limh→0fh =limh→0sin 3hh =limh→03 sin 3h3h = 3
Also, f0=4

∴ limx→0-fx=limx→0+fx≠f0
Thus, fx is discontinuous at x = 0.

Hence, the only point of discontinuity for fx is x = 0.

(v)

When x ≠ 0, then
fx=sinxx+cosx

We know that sin x as well as the identity function x both are everywhere continuous.
So, the quotient function sinxx is continuous at each x ≠ 0.
Also, cos x is everywhere continuous.
Therefore, sin xx+cos x is continuous at each x ≠ 0.

Let us consider the point x = 0.
Given: fx=sinxx+cosx, if x≠05, if x=0

We have
(LHL at x = 0) = limx→0-fx=limh→0f0-h=limh→0f-h=limh→0sin-h-h+cos-h=limh→0sin-h-h+limh→0cos-h=1+1=2

(RHL at x = 0) = limx→0+fx=limh→0f0+h=limh→0fh=limh→0sinhh+cosh=limh→0sinhh+limh→0cosh=1+1=2
Also, f0=5

∴ limx→0-fx=limx→0+fx≠f0
Thus, fx is discontinuous at x = 0.

Hence, the only point of discontinuity for fx is x = 0.

(vi)

When x ≠ 0, then
fx=x4+x3+2x2tan-1x

We know that x4+x3+2×2 is a polynomial function which is everywhere continuous.
Also, tan-1x is everywhere continuous.
So, the quotient function x4+x3+2x2tan-1x is continuous at each x ≠ 0.

Let us consider the point x = 0.

Given: fx=x4+x3+2x2tan-1x, if x≠010, if x=0

We have
(LHL at x = 0) = limx→0-fx=limh→0f0-h=limh→0f-h=limh→0-h4+-h3+2-h2tan-1-h=limh→0h3-h2+2h-tan-1hh=0-1=0

(RHL at x = 0) = limx→0+fx=limh→0f0+h=limh→0fh=limh→0h4+h3+2h2tan-1h=limh→0h3+h2+2htan-1hh=01=0
Also, f0=10

∴ limx→0-fx=limx→0+fx≠f0
Thus, fx is discontinuous at x = 0.

Hence, the only point of discontinuity for fx is x = 0.

(vii)
Given: fx=ex-1loge1+2x, if x≠07, if x=0

We have
limx→0fx=limx→0ex-1loge1+2x=limx→0ex-1×2 loge1+2x2x=12×limx→0ex-1xlimx→0loge1+2x2x=12
It is given that f0=7

⇒ limx→0fx≠f0

Hence, the given function is discontinuous at x = 0 and continuous elsewhere.

(viii)

When x > 1, then
fx=x-3

Since modulus function is a continuous function, fx is continuous for each x > 1.

When x < 1, then
fx=x24-3×2+134

Since, x2 & 3x are continuous being polynomial functions, x24 & 3×2 will also be continuous.
Also, 134 is continuous being a polynomial function.

⇒x24-3×2+134 is continuous for each x<1.

⇒fx is continuous for each x < 1.

At x = 1, we have
(LHL at x=1) = lim x→1-fx=lim h→0f1-h=lim h→01-h24-31-h2+134=14-32+134=2

(RHL at x=1) = lim x→1+fx=lim h→0f1+h=lim h→01+h-3=-2=2
Also, f1=1-3=-2=2

Thus, lim x→1-fx=lim x→1+fx=f1

Hence, fx is continuous at x= 1.

Thus, the given function is nowhere discontinuous.

(ix)

At x≤-3, we have
fx=x+3

Since modulus function and constant function are continuous, fx=x+3 is continuous for each x≤-3.

At -3<x<3, we have
fx=-2x
Since polynomial function is continuous and constant function is continuous, fx=-2x is continuous for each-3<x<3.

At x>3, we have
fx=6x+2

Since polynomial function is continuous and constant function is continuous, fx=6x+2 is continuous for each x>3.

Now, we check the continuity of the function at the point x=3.

We have
(LHL at x=3) = limx→3-fx=limh→0f3-h=limh→0-23-h=-6

(RHL at x=3) = limx→3+fx=limh→0f3+h=limh→063+h+2=20
⇒limx→3-fx≠limx→3+fx

Hence, the only point of discontinuity of the given function is x=3

(x)
Given:
The given function f is defined at all the points of the real line.

Let c be a point on the real line.

Case I:

Therefore, f is continuous at all points x, such that x < 1

Case II:

If c = 1, then the left hand limit of f at x = 1 is,

The right hand limit of f at x = 1 is,

It is observed that the left and right hand limit of f at x = 1 do not coincide.

Therefore, f is not continuous at x = 1

Case III:

Therefore, f is continuous at all points x, such that x > 1

Thus, from the above observation, it can be concluded that x = 1 is the only point of discontinuity of f.

(xi) The given function is
The given function is defined at all points of the real line.

Let c be a point on the real line.

Case I:

Therefore, f is continuous at all points x, such that x < 0

Case II:

The left hand limit of f at x = 0 is,

The right hand limit of f at x = 0 is,

Therefore, f is continuous at x = 0

Case III:

Therefore, f is continuous at all points of the interval (0, 1).

Case IV:

The left hand limit of f at x = 1 is,

The right hand limit of f at x = 1 is,

It is observed that the left and right hand limits of f at x = 1 do not coincide.

Therefore, f is not continuous at x = 1

Case V:

Therefore, f is continuous at all points x, such that x > 1

Hence, f is not continuous only at x = 1
(xii)
The given function f is

It is evident that f is defined at all points of the real line.

Let c be a real number.

Case I:

Therefore, f is continuous at all points x, such that x ≠ 0

Case II:

Therefore, f is continuous at x = 0

From the above observations, it can be concluded that f is continuous at every point of the real line.

Thus, f is a continuous function.

(xiii)
The given function f is

The given function is defined at all points of the real line.

Let c be a point on the real line.

Case I:

Therefore, f is continuous at all points x, such that x < −1

Case II:

The left hand limit of f at x = −1 is,

The right hand limit of f at x = −1 is,

Therefore, f is continuous at x = −1

Case III:

Therefore, f is continuous at all points of the interval (−1, 1).

Case IV:

The left hand limit of f at x = 1 is,

The right hand limit of f at x = 1 is,

Therefore, f is continuous at x = 2

Case V:

Therefore, f is continuous at all points x, such that x > 1

Thus, from the above observations, it can be concluded that f is continuous at all points of the real line.

 

Page 9.36 Ex.9.2

Q4.

Answer :

(i) Given: fx=sin 2x5x, if x≠03k, if x=0

If fx is continuous at x = 0, then
limx→0fx=f0

⇒limx→0sin 2x5x=f0⇒limx→02sin 2×2×5x=f0⇒25limx→0sin 2x2x=f0⇒25=3k⇒k=215

(ii) Given: fx=kx+5, if x≤2x-1, if x>2

If fx is continuous at x = 2, then
limx→2-fx=limx→2+fx

⇒limh→0f2-h=limh→0f2+h⇒limh→0k2-h+5=limh→02+h-1⇒2k+5=1⇒2k=-4⇒k=-2

(iii) Given: fx=kx2+3x, if x<0cos 2x, if x≥0

If fx is continuous at x = 0, then
limx→0-fx=limx→0+fx

⇒limh→0f-h=limh→0fh⇒limh→0k-h2-3h=limh→0cos 2h⇒0=1 It is not possible

Hence, there does not exist any value of k, which can make the given function continuous.
(iv) Given: fx=2, if x≤3ax+b, if 3<x<59, if x≥5

If fx is continuous at x = 3 and 5, then
limx→3-fx =limx→3+fx and limx→5-fx =limx→5+fx

⇒limh→0f3-h=limh→0f3+h and limh→0f5-h=limh→0f5+h ⇒limh→02=limh→0a3+h+b and limh→0a5-h+b=limh→09⇒2=3a+b and 5a+b=9⇒2=3a+b and 5a+b=9⇒a=72 and b=-172

(v)

Given: fx=4, if x≤-1ax2+b, if -1<x<0cos x, if x≥0

If fx is continuous at x = −1 and 0, then
limx→-1-fx =limx→-1+fx and limx→0-fx =limx→0+fx

⇒limh→0f-1-h =limh→0f-1+h and limh→0f-h =limh→0fh ⇒limh→04 =limh→0a-1+h2+b and limh→0a-h2+b =limh→0cos h⇒4=a+b and b=1⇒a=3 and b=1

(vi)

Given: fx=1+px-1-pxx, if -1≤x<02x+1x-2, if 0≤x≤1

If fx is continuous at x = 0, then
limx→0-fx=limx→0+fx

⇒ limh→0f-h=limh→0fh ⇒limh→01-ph-1+ph-h=limh→02h+1h-2⇒limh→01-ph-1+ph1-ph+1+ph-h1-ph+1+ph=limh→02h+1h-2⇒limh→01-ph-1-ph-h1-ph+1+ph=limh→02h+1h-2⇒limh→0-2ph-h1-ph+1+ph=limh→02h+1h-2⇒limh→02p1-ph+1+ph=limh→02h+1h-2⇒2p2=1-2⇒p=-12

(vii)

Given: fx=5, if x≤2ax+b, if 2<x<1021, if x≥10

If fx is continuous at x = 2 and 10, then
limx→2-fx =limx→2+fx and limx→10-fx =limx→10+fx

⇒ limh→0f2-h =limh→0f2+h and limh→0f10-h =limh→0f10+h⇒ limh→05 =limh→0a2+h+b and limh→0a10-h+b =limh→021⇒ 5=2a+b …1 and 10a+b=21 …2On solving eqs. 1 and 2, we geta=2 and b=1
(viii)

Given: fx=k cos xπ-2x, x<π23 , x=π23 tan 2x2x-π, x>π2

If fx is continuous at x = π2, then
limx→π2-fx=fπ2

⇒limh→0fπ2-h = fπ2⇒limh→0fπ2-h = 3⇒limh→0k cos π2-hπ-2π2-h = 1⇒limh→0k sin hπ-π+2h = 1⇒limh→0k sin h2h = 1⇒k2limh→0sin hh = 1⇒k2 = 1⇒k = 2

 

Page 9.37 Ex.9.2

Q5.

Answer :

Given: f is continuous on 0,∞

∴ f is continuous at x = 1 and 2
At x = 1, we have

limx→1-fx =limh→0f1-h =limh→01-h2a = 1a

limx→1+fx=limh→0f1+h=limh→0a=a

Also,

At x = 2, we have

limx→2-fx =limh→0f2-h =limh→0a = a

limx→2+fx =limh→0f2+h =limh→02b2-4b2+h2 = 2b2-4b2 = b2-2b

f is continuous at x = 1 and 2

∴ limx→1-fx=limx→1+fx and limx→2-fx=limx→2+fx

⇒1a=a and b2-2b=a⇒a2=1 and b2-2b=a⇒ a=±1 and b2-2b=a …1

If a = 1, then

b2-2b = 1 From eq. (1)⇒b2-2b-1 = 0⇒b = 2±4+42 = 2±222 = 1±2

If a = −1, then

b2-2b = -1 From eq. (1)⇒b2-2b+1 = 0⇒b-12 = 0⇒b = 1

Hence, the most suitable values of a and b are

a = −1, b = 1 or a = 1, b=1±2

Q6.

Answer :

Given: f is continuous on 0, π.

∴ f is continuous at x = π4 and π2
At x = π4, we have

limx→π4-fx =limh→0fπ4-h =limh→0π4-h+a2sin π4-h = π4+a2 sin π4 = π4+a

limx→π4+fx =limh→0fπ4+h =limh→02π4+h cot π4+h+b = π2 cot π4+b = π2+b
At x = π2, we have

limx→π2-fx =limh→0fπ2-h =limh→02π2-h cot π2-h+b = b

limx→π2+fx =limh→0fπ2+h =limh→0a cos 2π2+h-b sin π2+h = -a-b

Since f is continuous at x = π4 and x = π2, we get

limx→π2-fx =limx→π2+fx and limx→π4-fx =limx→π4+fx

⇒-b-a = b and π4+a = π2+b⇒b = -a2 …1 and -π4 = b-a …2⇒ -π4 = -3a2 Substituting the value of b in eq. 2⇒ a = π6⇒ b = -π12 From eq.1

Q7.

Answer :

Given: f is continuous on 0, 8.

∴ f is continuous at x = 2 and x = 4

At x = 2, we have
limx→2-fx =limh→0f2-h =limh→02-h2+a2-h+b = 4+2a+b

limx→2+fx =limh→0f2+h =limh→032+h+2 = 8

Also,
At x = 4, we have

limx→4-fx =limh→0f4-h =limh→034-h+2 = 14

limx→4+fx =limh→0f4+h =limh→02a4+h+5b = 8a+5b

f is continuous at x = 2 and x = 4

∴ limx→2-fx =limx→2+fx and limx→4-fx =limx→4+fx

⇒4+2a+b=8 and 8a+5b=14⇒2a+b=4 …1 and 8a+5b=14 …2

On simplifying eqs. (1) and (2), we get

a=3 and b=-2

Q8.

Answer :

When x≠π4, tan π4-x and cot 2x are continuous in 0, π2.

Thus, the quotient function tan π4-xcot 2x is continuous in 0,π2 for each x≠π4.

So, if fx is continuous at x=π4, then it will be everywhere continuous in 0, π2.

Now,
Let us consider the point x = π4.

Given: fx = tan π4-xcot 2x, x≠π4

We have
(LHL at x = π4) = limx→π4-fx =limh→0fπ4-h =limh→0tanπ4-π4+hcotπ2-2h = limh→0tan htan 2h =limh→0tan hh2 tan 2h2h = 12limh→0tan hhlimh→0tan 2h2h = 12

(RHL at x = π4) = limx→π4+fx =limh→0fπ4+h =limh→0tan π4-π4-hcot π2+2h =limh→0tan -h-tan 2h =limh→0tan htan 2h =limh→0tan hh2 tan 2h2h =12limh→0tan hhlimh→0tan 2h2h = 12

If fx is continuous at x=π4, then

lim x→π4-fx =limx→π4+fx = fπ4

∴ fπ4=12

Hence, for fπ4=12, the function fx will be everywhere continuous in 0, π2.

Q9.

Answer :

When x < 2, we have
fx = 2x-1

We know that a polynomial function is everywhere continuous.
So, fx is continuous for each x < 2.

When x>2, we have
fx=3×2

The functions 3x and 2 are continuous being the polynomial and constant function, respectively.
Thus, the quotient function 3×2 is continuous at each x > 2.

Now,
Let us consider the point x = 2.
Given: fx=2x-1, if x<23×2, if x≥2

We have
(LHL at x = 2) = limx→2-fx =limh→0f2-h =limh→022-h-1 = 4-1 = 3

(RHL at x = 2) = limx→2+fx =limh→0f2+h =limh→03h+22 = 3

Also,
f2=322=3

∴ limx→2-fx=limx→2+fx=f2

Thus, fx is continuous at x = 2.

Hence, fx is everywhere continuous.

Q11.

Answer :

When x < 0, we have
fx=sinxx

We know that sin x as well as the identity function x are everywhere continuous.
So, the quotient function sinxx is continuous at each x < 0.

When x > 0, we have
fx=x+1, which is a polynomial function.
Therefore, fx is continuous at each x > 0.

Now,
Let us consider the point x = 0.
Given: fx = sin xx, x<0x+1, x≥0

We have
(LHL at x = 0) = limx→0-fx =limh→0f0-h =limh→0f-h =limh→0sin -h-h =limh→0sin hh = 1

(RHL at x = 0) = limx→0+fx =limh→0f0+h =limh→0fh =limh→0h+1 = 1
Also,
f0=0+1=1

∴ limx→0-fx=limx→0+fx=f0

Thus, fx is continuous at x = 0.

Hence, fx is everywhere continuous.

Q12.

Answer :

Given:1

It is evident that g is defined at all integral points.

Let n∈Z.

Then,

2

The left hand limit of f at x = n is,

3

The right hand limit of f at x = n is,

4

It is observed that the left and right hand limits of f at x = n do not coincide.
i.e. limx→n-gx ≠limx→n+gx

So, f is not continuous at x = n, n∈Z

Hence, g is discontinuous at all integral points.

 

Page 9.38 Ex.9.2

Q13.

Answer :

It is known that if g and h are two continuous functions, then g+h, g-h and g×h are also continuous.

It has to proved first that g (x) = sin x and h (x) = cos x are continuous functions.

Let g (x) = sin x

It is evident that g (x) = sin x is defined for every real number.

Let c be a real number. Put x = c + h

If x → c, then h → 0

1

So, g is a continuous function.

Let h (x) = cos x

It is evident that h (x) = cos x is defined for every real number.

Let c be a real number. Put x = c + h

If x → c, then h → 0

h (c) = cos c

2

So, h is a continuous function.

Therefore, it can be concluded that

(i) f (x) = g (x) + h (x) = sin x + cos x is a continuous function.

(ii) f (x) = g (x) − h (x) = sin x − cos x is a continuous function.

(iii) f (x) = g (x) × h (x) = sin x cos x is a continuous function.

Q14.

Answer :

Given: f (x) = cos (x2)

This function f is defined for every real number and f can be written as the composition of two functions as

f = g o h, where g (x) = cos x and h (x) = x2

1

It has to be first proved that g (x) = cos x and h (x) = x2 are continuous functions.

It is evident that g is defined for every real number.

Let c be a real number.

Then, g (c) = cos c

2

So, g (x) = cos x is a continuous function.

Now,
h (x) = x2

Clearly, h is defined for every real number.

Let k be a real number, then h (k) = k2

3

So, h is a continuous function.

It is known that for real valued functions g and h, such that (g o h) is defined at x = c, if g is continuous at x = c and if f is continuous at g (c), then, (f o g) is continuous at x = c.

Therefore,4 is a continuous function.

Q17.

Answer :

The given function f is 1

It is evident that f is defined at all points of the real line.

Let c be a real number.

Case I:

2

So, f is continuous at all points x ≠ 0

Case II:

3

limx→0-fx=limx→0-x2 sin 1x=limx→0x2 sin 1xIt is known that -1≤sin 1x≤1, x≠0.⇒-x2 ≤ x2 sin 1x ≤ x2⇒limx→0-x2 ≤ limx→0x2 sin 1x ≤ limx→0x2⇒0 ≤ limx→0x2 sin 1x ≤ 0⇒limx→0x2 sin 1x = 0⇒limx→0-fx = 0Similarly, limx→0+fx =limx→0+x2 sin 1x =limx→0x2 sin 1x = 0

4

So, f is continuous at x = 0

From the above observations, it can be concluded that f is continuous at every point of the real line.

Thus, f is a continuous function.

 

Page 9.38 (Very Short Answers)

Q1.

Answer :

Continuity at a point:

A function fx is said to be continuous at a point x = a of its domain, iff limx→afx=fa.
Thus, fx is continuous at x=a.⇔limx→afx = fa ⇔limx→a-fx =limx→a+fx = fa

Q2.

Answer :

If fx is a function defined in its domain such that limx→afx=fa, then fx becomes continuous at x=a.

Q3.

Answer :

If fxis continuous at x = 0, then limx→0fx=f0 …(1)

Given: fx=x1-1-x

⇒fx = x1+1-x1-1-x1+1-x⇒fx = x1+1-x1-1-x⇒fx = 1+1-x
limx→01+1-x=f0 From eq. (1)
⇒f0=2

So, for f0=2, the function f(x) becomes continuous at x = 0.

Q4.

Answer :

If fx is continuous at x=0, then
limx→0fx=f0

⇒limx→0xsin 3x = k⇒limx→01sin 3xx = k⇒limx→013 sin 3x3x = k⇒131limx→0sin 3x3x = k⇒k = 13

Q5.

Answer :

Given: fx=sin 10xx, x≠0 is continuous at x=0.
limx→0fx=f0

⇒limx→0sin 10xx=f0

⇒limx→010 sin 10x10x=f0⇒10limx→0sin 10x10x=f0⇒f0=10

 

Page 9.39 (Very Short Answers)

Q6.

Answer :

Given: fx=x2-16x-4, if x≠4k, if x=4

If fx is continuous at x=4, then
limx→4fx=f4

⇒limx→4×2-16x-4=k

⇒limx→4x+4x-4x-4=k⇒limx→4x+4=k⇒k=8

Q7.

Answer :

Given: fx=sin x2x, x≠00, x=0

We have
limx→0fx=limx→0sin x2x =limx→0x sin x2x2 =limx→0sin x2x2 limx→0x =1×0 =0 =f0

∴ limx→0fx=f0

Hence, fx is continuous at x=0.

Q8.

Answer :

Given: fx=1-cos xx2, x≠0k, x=0
If fx is continuous at x=0, then
limx→0fx=f0

⇒limx→01-cos xx2=k⇒limx→02sin x224x22=k⇒12limx→0sinx22x22=k⇒1×12=k⇒k=12

Q9.

Answer :

Given, fx=sin-1xx, x≠0k, x=0

If fx is continuous at x=0, then

limx→0fx=f0

⇒limx→0sin-1xx=f0

⇒limx→0sin-1xx=k⇒k=1 ∵limx→0sin-1xx =1

Q10.

Answer :

Given: fx=5x-4, 0<x≤14×2+3bx, 1<x<2

If fx is continuous at x=1, then
limx→1-fx=limx→1+fx=f1 …(1)

Now,
limx→1-fx=limh→0f1-h=limh→051-h-4=5-4=1

limx→1+fx=limh→0f1+h=limh→041+h2+3b1+h=4+3b

Also, f1=51-4=1
limx→1-fx =limx→1+fx = f1 From eq. (1)⇒1=4+3b=1

⇒1=4+3b⇒-3=3b⇒b=-1

Thus, for b=-1, the function fx is continuous at x=1.

 

Page 9.39 (Multiple Choice Questions)

Q1.

Answer :
(C) discontinuous exactly at three points
Given: fx=4-x24x-x3⇒fx=4-x2x4-x2⇒fx=1x, x≠0 and 4-x2≠0 or x≠0, ±2
Clearly, fx is defined and continuous for all real numbers except 0, ±2.
Therefore, fx is discontinuous exactly at three points.

Q2.

Answer :

(a) f’a+=ϕa
(b) f’a-=-ϕa

Here, fx=x-a ϕx

f’a+ =limh→0fa+h-fah =limh→0h+a-aϕa+h-a-aϕah =limh→0h ϕa+hh=limh→0ϕa+h=ϕa

Also,

f’a- =limh→0fa-h-fah=limh→0a-h-a ϕa-h-a-a ϕah=limh→0-h ϕa-hh=limh→0-ϕa-h=-ϕa

Q3.

Answer :

(a) f (x) is continuous and f’ (1+) = log10e
(d) f (x) is continuous and f’ (1−) = −log10e

Given: fx = log10 x=loge xloge 10=loge x×log10 e=log10 e loge x

⇒f’1+=limh→0f1+h-f1h= limh→0log10 e loge1+h-log10 e loge 1h=log10 elimh→0loge 1+hh=log10e×1=log10 e

Also,

f’1-=limh→0f1-h-f1h=limh→0log10 e loge 1-h-log10 e loge 1h=-log10 elimh→0loge 1-h-h=-log10 e×1=-log10 e

Q4.

Answer :
c 162 ln2 ln3

Given: fx=36x-9x-4x+12-1+cosx, x≠0k, x=0
If fx is continuous at x=0, then
limx→0fx=f0

⇒limx→036x-9x-4x+12-1+cos x=k⇒limx→09x4x-9x-4x+12-1+cos x=k⇒limx→09x4x-1-14x-12-1+cos x=k⇒limx→09x-14x-12-1+cos x=k⇒limx→09x-14x-12-2cos x2=k⇒limx→09x-14x-121-cos x2=k⇒limx→09x-14x-122sin2x4=k⇒limx→089x-14x-1162x2sin2x4x2=k⇒limx→089x-14x-12x2sin2x4x216=k⇒82limx→09x-14x-1x2sin2x4x42=k⇒82limx→09x-1x limx→04x-1xlimx→0sin x4x42=k⇒82×ln 9×ln 41=k ∵ limx→0ax-1x=a⇒82×2 ln 3×2 ln 21=k ⇒322×ln 3 ln 21=k⇒3222×ln 3 ln 21=k⇒k=162 ln 2 ln 3

 

Page 9.40 (Multiple Choice Questions)

Q5.

Answer :

(d) x except at x = 0 and x = 1.

Given: fx=x2-xx2-x, x≠0, 11 , x=0-1 , x=1
⇒fx=x x-1xx-1, x≠0, 11 , x=0-1 , x=1
⇒fx=1, x>11, x<0-1, 0<x<11, x=0-1, x=1
⇒fx=1, x>11, x≤0-1, 0<x≤1

So,

limx→0-fx=limh→0f-h=1

Also,

limx→0+fx=limh→0fh=-1

⇒limx→0+fx≠limx→0-fx

Thus, fx is discontinuous at x=0.

Now,

limx→1-fx=limh→0f1-h=-1

limx→1+fx=limh→0f1+h=1

⇒limx→1+fx≠limx→1-fx

So, fx is discontinuous at x=1.

Hence, fx is continuous for all x except at x=0 and x = 1.

Q6.

Answer :

c -164

If fx is continuous at x=π2, then
limx→π2fx=fπ2If π2-x=t, then⇒limt→0 fπ2-t=fπ2⇒limt→01-sin π2-t4t2×log sin π2-tlog1+π2-4ππ2-t+4π2-t2=k⇒limt→01-cos t4t2×log cos tlog1+π2-2π2+4πt+4π24+t2-πt=k⇒limt→01-cos t4t2×log cos tlog1-π2+4πt+π2+4t2-4πt=k⇒limt→01-cos t4t2×log cos tlog 1+4t2=k⇒limt→02 sin2 t216×t24×log cos tlog 1+4t2=k⇒216limt→0sin2 t2t24×log cos t4t2 log 1+4t24t2=k⇒18limt→0sin2 t2t22×log cos t4t2log 1+4t24t2=k⇒18limt→0sin2 t2t22×log 1-sin2 t4t2log1+4t24t2=k⇒18limt→0sin2t2t22×log1-sin2t8t2log1+4t24t2=k⇒164limt→0sin2t2t22×log1-sin2tt2log1+4t24t2=k⇒164lim t→0sint2t22×limt→0log1-sin2tt2limt→0log1+4t24t2=k⇒1641×limt→0-sin2t log 1-sin2tt2-sin2t=k⇒-164limt→0sin2t log 1-sin2tt2-sin2t=k⇒-164limt→0sintt2limt→0log 1-sin2t-sin2t=k⇒-164limt→0sintt2limt→0log1-sin2t-sin2t=k ⇒k=-164 ∵ lim x→0log1-xx=1

Q7.

Answer :

(c) e

Suppose fx is continuous at x=0.

Given: fx=x+1cotx

log fx=cot x log x+1 Taking log on both sides⇒limx→0log fx=limx→0cot x log x+1⇒limx→0log fx=limx→0log x+1tan x⇒limx→0log fx=limx→0log x+1xtan xx⇒limx→0log fx=limx→0log x+1xlimx→0tan xx⇒log limx→0fx=limx→0log x+1xlimx→0tan xx ∵ fx is continuous at x=0⇒log limx→0fx=1⇒limx→0fx=e⇒f0=e ∵ fx is continuous at x=0

Q8.

Answer :

b a+b

Given: fx=log1+ax-log1-bxx, x≠0k, x=0

If f(x) is continuous at x = 0, then
limx→0fx=f0

⇒limx→0log1+ax-log1-bxx=k

⇒limx→0alog1+axax-blog1-bxbx=k⇒alimx→0log1+axax-blimx→0log1-bxbx=k⇒alimx→0log1+axax+blimx→0log1-bx-bx=k⇒a×1+b×1=k ∵ limx→0log1+xx=1⇒k=a+b

Q9.

Answer :

(b) is not continuous at x = 0

Given: fx=e1x-1e1x+1, x≠00, x=0

We have
limx→0fx=limx→0e1x-1e1x+1

If e1x=t, then
x→0, t→∞

limx→0fx=limt→∞t-1t+1=limt→∞1-1t1+1t=1-01+0=1
Also, f0=0

∴ limx→0fx≠f0

Hence, fx is discontinuous at x=0.

Q10.

Answer :

(d) a = 1, b = −1.

Given: fx=x-4x-4+a, if x<4a+b, if x=4x-4x-4+b, if x>4

We have
(LHL at x = 4) = limx→4-fx=limh→0f4-h

=limh→04-h-44-h-4+a=limh→0-h-h+a=a-1

(RHL at x = 4) = limx→4+fx=limh→0f4+h

=limh→04+h-44+h-4+b=limh→0hh+b=b+1

Also,
f4=a+b

If f(x) is continuous at x = 4, then

limx→4-fx=limx→4+fx=f4

⇒a-1=b+1=a+b
⇒a-1=a+b and b+1=a+b
⇒b=-1 and a=1

Q11.

Answer :

(b)
Given: fx=cosx1xk, x=0, x≠0

Iffx is continuous at x=0, then
limx→0fx=f0

⇒limx→0cos x1x=kIf limx→afx=1 and limx→agx=0, then limx→afxgx=elimx→afx-1×gx⇒elimx→0cos x-1x= k⇒e0=k ∵ limx→0cos x-1x=0⇒k=1Q12.

Q12.

Answer :

(a) f (x) is continuous at x = 0, as well as at x = 1

Since modulus function is everywhere continuous , x and x-1 are also everywhere continuous.

Also,
It is known that if f and g are continuous functions, then f + g will also be continuous.

Thus, x+x-1 is everywhere continuous.

Hence, fx is continuous at x=0 and x=1.

 

Page 9.41 (Multiple Choice Questions)

Q13.

Answer :

(d) R − {1, 2}

Given: fx=x4-5×2+4x-1x-2, x≠1, 26, x=112, x=2

Now,x4-5×2+4=x4-x2-4×2+4=x2x2-1-4×2-1=x2-1×2-4=x-1x+1x-2x+2⇒fx=x-1x+1x-2x+2x-2x-1, x≠1, 26, x=112, x=2
⇒fx=x+1x+2, x<1-x+1x+2, 1<x<2x+1x+2, x>26, x=112, x=2
So,

limx→1-fx=limh→0f1-h=limh→01-h+11-h+2=2×3=6

limx→1+fx=limh→0f1+h=-limh→01+h+11+h+2=-2×3=-6

Also,

limx→2-fx=limh→0f2-h=-limh→02-h+12-h+2=-12

limx→2+fx=limh→0f2+h=limh→02+h+12+h+2=12

Thus, limx→1+fx≠limx→1-fx andlimx→2+fx≠limx→2-fx

Therefore, the only points of discontinuities of the function fx are x=1 and x=2 .

Hence, the given function is continuous on the set R − {1, 2}.

Q14.

Answer :

(c) a = -32, b ∈ R − {0}, c = 12

The given function can be rewritten as

fx=sin a+1 x+x sin xx, for x<0c , for x=0x+bx2-xbx32 , for x>0

⇒fx=sin a+1x+ sin xx, for x<0c , for x=01+bx-1bx , for x>0

We have
(LHL at x = 0) = limx→0-fx =limh→0f0-h =limh→0f-h

=limh→0-sin a+1h- sin -hh=limh→0-sin a+1hh-sin hh

=-a+1limh→0sin a+1ha+1h-lim h→0sin hh=-a-1

(RHL at x = 0) = limx→0+fx=limh→0f0+h=limh→0fh

=limh→01+bh-1bh=limh→0bhbh1+bh+1=limh→011+bh+1=12

Also, f0=c

If fx is continuous at x = 0, then
limx→0-fx=limx→0+fx=f0

⇒-a-1 = 12=c
⇒-a-1 = 12 and c=12
⇒a=-32, c=12

Now, 1+bx-1bx exists only if bx≠0⇒b≠0.

Thus, b∈R-0.

Q15.

Answer :

(c) n=mπ2n=mπ2
Here,

fπ2=mπ2+1

We have
(LHL at x=π2) = lim x→π2- fx =lim h→0fπ2-h=lim h→0mπ2-h+1=mπ2+1

(RHL at x=π2) = lim x→π2+ fx =lim h→0fπ2+h=lim h→0sinπ2+h+n=n+1

Thus,
If fx is continuous at x=π2, then
lim x→π2- fx =lim x→π2+ fx
⇒mπ2+1=n+1⇒mπ2=n

Q16.

Answer :

(c) -a12

Given: fx=a2-ax+x2-a2+ax+x2a+x-a-x

⇒ fx=a2-ax+x2-a2+ax+x2a2-ax+x2+a2+ax+x2a+x-a-xa2-ax+x2+a2+ax+x2⇒ fx=a2-ax+x2-a2+ax+x2a+x-a-xa2-ax+x2+a2+ax+x2⇒ fx=-2axa+x+a-xa+x-a-xa2-ax+x2+a2+ax+x2a+x+a-x⇒ fx=-2axa+x+a-xa+x-a+xa2-ax+x2+a2+ax+x2⇒ fx=-2axa+x+a-x2xa2-ax+x2+a2+ax+x2⇒ fx=-aa+x+a-xa2-ax+x2+a2+ax+x2

If fx is continuous for all x, then it will be continuous at x = 0 as well.

So, if fx is continuous at x = 0, then
limx→0fx=f0

⇒ limx→0-aa+x+a-xa2-ax+x2+a2+ax+x2=f0⇒ -2aaa2+a2=f0⇒ -2aaa+a=f0⇒ f0=-a

Q17.

Answer :

Given: fx=1, x≥11n2, 1n<x<1n-10, x=0
⇒fx=1, -1≤x≤11n2, 1n<x<1n-10, x=0
Case 1: x>1 or x<-1 and x>1

Here,
fx=1, which is the constant function
So, fx is continuous for all x≥1 or x≤-1 and x≥1.

Case 2: 1n<x<1n-1, n=2, 3, 4, …

Here,
fx=1n2, n=2, 3, 4, … fx=1n2, n=2, 3, 4, …, which is also a constant function.

So, fx is continuous for all 1n<x<1n-1, n=2, 3, 4, ….

Case 3: Consider the points x = -1 and x = 1.

We have
LHL at x=-1=limx→-1-fx=limx→-1-1=1RHL at x=-1=limx→-1+fx=limx→-1+14=14 ∵ fx=14 for -1<x<12, when n=2Clearly, limx→-1-fx≠limx→-1+fx at x=-1So, fx is discontinuous at x=-1.

Similarly, f(x) is discontinuous at x = 1.

Case 4: Consider the point x = 0.

We have
limx→0-fx=limh→0f1n-h=limh→0f1n-h=1n-12

limx→0+fx=limh→0f1n+h=limh→0f1n+h=1n2

limx→0+fx≠limx→0-fx

Thus, fx is discontinuous at x=0.

At x = 0, we have
limx→0-fx≠0=f0

So, fx is discontinuous at x=0.

Case 5: Consider the point x=1n, n=2, 3, 4, …

We have
limx→1n-fx=limh→0f1n-h=limh→0f1n-h=1n-12

limx→1n+fx=limh→0f1n+h=limh→0f1n+h=1n2

limx→1n+fx≠limx→1n-fx

Hence, fx is discontinuous only at x=±1n, n∈Z-0 and x=0.

Q18.

Answer :

(c) 2

For f(x) to be continuous at x = 0, we must have
limx→0fx=f0⇒f0= limx→0fx=limx→027-2×13-39-3243+5×15⇒f0=limx→027-2×13-2713324315-243+5×15=13limx→027-2×13-2713×24315-243+5x15x=-13limx→027-2×13-2713×243+5×15-24315x=215limx→027-2×13-2713-2×243+5×15-243155x=215limx→027-2×13-271327-2x-27243+5×15-24315243+5x-243=215×13×27-2315×243-45=215×13×1272315×124345=2

 

Page 9.42 (Multiple Choice Questions)

Q19.

Answer :

(d) none of these

Given: fx=2-256-7x185x+3215-2

For fx to be continuous at x = 0, we must have
limx→0fx=f0
⇒f0=limx→0fx=limx→02-256-7x185x+3215-2⇒f0=limx→025618-256-7x185x+3215-3215=-limx→0256-7×18-25618x5x+3215-3215x=-75limx→0256-7×18-256187x5x+3215-32155x=75limx→0256-7×18-25618256-7x-2565x+3215-32155x+32-32=75×18×256-7815×32-45=75×18×2415×27=764

Q20.

Answer :

(b) -12
Given: fx=1+px-1-pxx, if -1≤x<02x+1x-2, if 0≤x≤1

If fx is continuous at x = 0, then
limx→0-fx=limx→0+fx

⇒ limh→0f-h=limh→0fh ⇒limh→01-ph-1+ph-h=limh→02h+1h-2⇒limh→01-ph-1+ph1-ph+1+ph-h1-ph+1+ph=limh→02h+1h-2⇒limh→01-ph-1-ph-h1-ph+1+ph=limh→02h+1h-2⇒limh→0-2ph-h1-ph+1+ph=limh→02h+1h-2⇒limh→02p1-ph+1+ph=limh→02h+1h-2⇒2p2=1-2⇒p=-12

Q21.

Answer :

(c) a = -1, b = 1

Given: fx is continuous for 0 ≤ x < ∞.

This means that fx is continuous for x=1, 2.

Now,

If fx is continuous at x = 1, then
limx→1-fx=f1⇒limh→0f1-h=a⇒1-h2a=a⇒1a=a⇒a2=1⇒a=±1

If fx is continuous at x = 2, then

limx→2-fx=f2⇒limh→0f2-h=2b2-4b2⇒limh→0a=b2-2b⇒a=b2-2b⇒b2-2b-a=0

∴ For a = 1, we have

b2-2b-1=0⇒b=2±4-4-12=1±2

Also,
For a = −1, we have

b2-2b+1=0⇒b-12=0⇒b=1

Thus, a=-1 and b=1

Q22.

Answer :

(a) 18

If fx is continuous at x=π2, then
limx→π2fx=fπ2

limx→π21-sin xπ-2×2=fπ2 …(1)

Suppose π2-x=t, then

limt→01-sin π2-t2t2=fπ2 From eq. (1)⇒limt→01-cos t4t2=fπ2⇒14limt→02 sin2 t2t2=fπ2⇒14limt→024 sin2 t2t24=fπ2⇒18limt→0sin2 t2t24=fπ2⇒18limt→0sin t2t22=fπ2⇒fπ2=λ=18

Q23.

Answer :

(d) none of these

For f(x) to be continuous at x=0, we must have
limx→0fx=f0

limx→04x-13sinxa log1+x23=12log 43
⇒limx→04x-13x3sinxalog1+x23x3=12log 43⇒limx→0a4x-1x3sinxaxalog1+x23x2=12log 43⇒3alimx→04x-1x3sinxaxalog1+x23x23=12log 43⇒3alimx→04x-1x3limx→0sinxaxalimx→0log1+x23x23=12log 43⇒3alog 43=12log 43 ∵ limx→0ax-1x=log a, limx→0log1+xx=1 andlimx→0sin xx=1⇒a=4

Q24.

Answer :

c 2n+1π2: n∈Z

When tan2n+1π2= tannπ+π2=-cotnπ, it is not defined at the integral points. n∈Z

Hence, fx is discontinuous on the set 2n+1π2: n∈Z.

Q25.

Answer :

(b) 6

Given: fx=sin 3xxk2, x=0, x≠0

If fx is continuous at x=0, then
limx→0fx=f0

⇒limx→0sin 3xx=f0⇒3limx→0sin 3x3x=k2⇒3×1=k2⇒k2=3⇒k=6

Q26.

Answer :

(b) 13

Given: fx=2x-sin-1x2x+tan-1x

If f(x) is continuous at x = 0, then

limx→0fx=f0⇒limx→02x-sin-1x2x+tan-1x=f0⇒limx→0x2-sin-1xxx2+tan-1xx=f0⇒limx→02-sin-1xx2+tan-1xx=f0⇒2-limx→0sin-1xx2+limx→0tan-1xx=f0⇒2-12+1=f0⇒f0=13

 

Page 9.43 (Multiple Choice Questions)

Q27.

Answer :

(a) −1

Given: fx is continuous at every point of its domain. So, it is continuous at x=1.

⇒limx→1+fx=f1⇒limh→0f1+h=f1⇒limh→041+h2+3b1+h=51-4⇒4+3b=1⇒-3=3b⇒b=-1

Q28.

Answer :

(b) {0, 1}

Given: fx=11-x

Clearly, f:R-1→R

Now,
ffx=f11-x=11-11-x=1-x-x=x-1x
∴ fof:R-0, 1→R

Now,

fffx=fx-1x=11-x-1x=x

∴ fofof:R-0, 1→R

Thus, fffx is not defined at x=0, 1.

Hence, fffx is discontinuous at {0, 1}.

Q29.

Answer :

(b) 12

If fx is continuous at x=π4, then
limx→π4fx=fπ4

⇒limx→π4tan π4-xcot 2x=fπ4
If π4-x=y, then x→π4 and y→0.

∴ limy→0tan ycot 2π4-y=fπ4⇒limy→0tanycotπ2-2y=fπ4⇒limy→0tan ytan 2y=fπ4⇒limy→0tan yytan 2yy=fπ4⇒limy→0tan yy2 tan 2y2y=fπ4⇒12limy→0tan yytan 2y2y=fπ4⇒12limy→0tan yylimy→0tan 2y2y=fπ4⇒1211=fπ4⇒fπ4=12

Q30.

Answer :

Here,

x3+x2-16x+20=x3-2×2+3×2-6x-10x+20=x2x-2+3xx-2-10x-2=x-2×2+3x-10=x-2x-2x+5=x-22 x+5

So, the given function can be rewritten as

fx=x-22x+5x-2

⇒fx=x-2x+5

If fx is continuous at x=2, then
limx→2fx=f2

⇒limx→2x-2x+5=f2⇒f2=0

Hence, in order to make fx continuous at x=2, f2 should be defined as 0.

Q31.

Answer :

(a) 12
Given: fx=a sin π2x+1 , x≤0tan x-sin xx3 , x>0
We have

(LHL at x = 0) = limx→0-fx=limh→0f0-h=limh→0f-h=limh→0a sin π2-h+1=a sin π2=a

(RHL at x = 0) = limx→0+fx=limh→0f0+h=limh→0fh=limh→0tan h-sin hh3

=limh→0sin hcos h-sin hh3=limh→0sin hcos h1-cos hh3=limh→01-cos h tan hh3=limh→02 sin2 h2 tan h4×h24×h=24limh→0sin2 h2 tan hh24×h=12limh→0sin h2h22×limh→0tanhh=12×1×1=12

If fx is continuous at x=0, thenlimx→0-fx=limx→0+fx⇒a=12

Q32.

Answer :
(d) (5, 2)

If f(x) is continuous at x = 1, then
limx→1-fx=f1

⇒limh→0f1-h=4 ∵ f1=4⇒limh→0a1-h2+b=4 ⇒a+b=4

Thus, the possible values of (a, b) can be 2, 2, 3, 1, 4, 0. But a, b≠5, 2.

Hence, for a, b=5, 2, fx cannot be continuous at x = 1.

Disclaimer: The question in the book has some error. The solution here is created according to the question given in the book.

Q33.

Answer :

b 5

Given: fx=log 1+3x-log 1-2xx, x≠0k, x=0

If f(x) is continuous at x = 0, thenlimx→0fx=f0.

⇒limx→0log1+3x-log1-2xx=k

⇒limx→03 log 1+3x3x-2 log 1-2x2x=k⇒3limx→0log 1+3x3x-2limx→0log 1-2x2x=k⇒3limx→0log 1+3x3x+2limx→0log 1-2x-2x=k⇒3×1+2×1=k ∵ limx→0log 1+xx=1⇒k=3+2=5

Q34.

Answer :

(b) 50

If fx is continuous at x=0, then
limx→0-fx=f0

⇒limh→0f-h=f0

⇒limh→01-cos -10h-h2=f0⇒limh→01-cos 10hh2=f0⇒limh→02 sin2 5hh2=a⇒limh→02×25sin2 5h25h2=a⇒50limh→0sin2 5h5h2=a⇒50limh→0sin 5h5h2=a⇒a=50

 

Page 9.44 (Multiple Choice Questions)

Q35.

Answer :

(a) 0

Given: fx=x sin1x, x≠0

Here,
limx→0x sin 1x=limx→0x limx→0sin1x=0×limx→0sin1x=0
If f(x) is continuous at x = 0, thenlimx→0fx=f0.

⇒f0=0

Q36.

Answer :

(d) none of these

If fx is continuous at x=0, then
limx→0fx=f0⇒limx→0sin1x=kBut limx→0sin1x does not exist. Thus, there does not exist any k that makes fx a continuous function.

Q37.

Answer :

c a=log23, b=23, c=1
Given: fx=1+ax1x, x<0b, x=0x+c13-1x+112-1, x>0

If fx is continuous at x=0, then
limx→0-fx=limx→0+fx =f0

⇒limx→0-fx=f0⇒limh→0f-h=f0⇒limh→01-ah-1h=f0⇒limh→0alog 1-ah-ah=log b⇒a×1=log b ∵limx→0log 1+xx=1⇒a=log b

Also,
limx→0+fx =f0

⇒limx→0+fx=f0⇒limh→0fh=f0⇒limh→0h+c13-1h+112-1=f0⇒limh→0h+c13-1h+112-1×h+112+1h+112+1=f0⇒limh→0h+c13-1h×h+112+1=b⇒limh→0h+c13-1h×limh→0h+112+1=b⇒limh→0h+c13-1h×2=b⇒limh→0h+c13-113h+c-c=b2⇒c13-13=b2 ∵ limx→axn-anx-a=nan-1, where c=1⇒13=b2⇒23=b∴ a=log23

Q38.

Answer :

b x=52=5

If 0≤x≤1, then fx=2x.

Since fx=2x is a polynomial function, it is continuous.
Thus, fx is continuous for every 0≤x≤1.
If 1<x<52, then fx=4-2x. Since 2x is a polynomial function and 4 is a constant function, both of them are continuous. So, their difference will also be continuous.
Thus, fx is continuous for every 1<x<52.

If 52≤x≤4, then fx=2x-7. Since 2x is a polynomial function and 7 is continuous function, their difference will also be continuous.
Thus, fx is continuous for every 52≤x≤4.

Now,
Consider the point x=1. Here,

limx→1-fx=limh→0f1-h=limh→021-h=2

limx→1+fx=limh→0f1+h=limh→04-21+h=2

Also, f1=21=2

⇒limx→1-fx=limx→1+fx=f1

Thus, fx is continuous at x=1.

Now,
Consider the point x=52. Here,

limx→52-fx=limh→0f52-h=limh→04-252-h=-1

limx→52+fx=limh→0f52+h=limh→0252-h-7=-2

⇒limx→52+fx ≠limx→52-fx

Thus, fx is discontinuous at x=52.

Q39.

Answer :

(b) a=13 , b=83
Given: fx=1-sin2x3cos2x, if x<π2a, if x=π2b1-sinxπ-2×2, if x>π2

We have
(LHL at x = π2) = limx→π2-fx=limh→0fπ2-h

=limh→01-sin2 π2-h3 cos2 π2-h=limh→01-cos2 h3 sin2 h=13limh→0 sin2 h sin2 h=13

(RHL at x = π2) = limx→π2+fx=limh→0fπ2+h

=limh→0b1-sin π2+hπ-2π2+h2=limh→0b1-cos h-2h2=limh→02b sin2h24h2=limh→02b sin2h216h24=b8limh→0sinh2h22=b8×1=b8

Also, fπ2=a

If f(x) is continuous at x = π2, then

limx→π2-fx =lim x→π2+fx=fπ2

⇒13 =b8 = a

⇒a=13 and b=83

Q40.

Answer :

(b) x = 3

If x≤1, then fx=152×2+3.
Since 2×2+3 is a polynomial function and 15 is a constant function, both of them are continuous. So, their product will also be continuous.
Thus, fx is continuous at x≤1.

If 1<x<3, then fx=6-5x.

Since 5x is a polynomial function and 6 is a constant function, both of them are continuous. So, their difference will also be continuous.
Thus, fx is continuous for every 1<x<3.

If x≥3, then fx=x-3.
Since x-3 is a polynomial function, it is continuous. So, fx is continuous for every x≥3.

Now,
Consider the point x=1. Here,

limx→1-fx=limh→0f1-h=limh→01521-h2+3=1

limx→1+fx=limh→0f1+h=limh→06-51+h=1

Also,
f1=15212+3=1

Thus,
limx→1-fx=limx→1+fx=f1

Hence, fx is continuous at x=1.

Now,
Consider the point x=3. Here,

limx→3-fx=limh→0f3-h=limh→06-53-h=-9

limx→3+fx=limh→0f3+h=limh→03+h-3=0

Also,
f1=15212+3=1

Thus,
limx→3-fx≠limx→3+fx

Hence, fx is discontinuous at x=3.

So, the only point of discontinuity of fx is x=3.

 

Page 9.45 (Multiple Choice Questions)

Q41.

Answer :

(d) −1

Given: fx=5x-4, if 0<x≤14×2+3ax, if 1<x<2

If fx is continuous in its domain, then it will be continuous at x=1.

Now,
limx→1-fx=limh→0f1-h=limh→051-h-4=5-4=1limx→1+fx=limh→0f1+h=limh→041+h2+3a1+h=4+3a

Since f(x) is continuous at x = 1,
limx→1-fx=limx→1+fx

⇒4+3a=1⇒3a=-3⇒a=-1

Q42.

Answer :

(a) 0

Given: fx=sincos x-cos xπ-2×2, x≠π2k, x=π2

If f(x) is continuous at x=π2, then
limx→π2fx=fπ2

⇒limx→π2sincos x-cos xπ-2×2=k
Now,
π2-x=y
⇒π-2x=2y

Also, x→π2, y→0

⇒limy→0sincosπ2-y-cosπ2-y4y2=k

⇒limy→0sinsin y-siny4y2=k

⇒limy→02 sinsin y-y2 cossin y+y24y2=k ∵ sin C – sin D=2 sinC-D2 cosC+D2⇒12limy→0sinsin y-y2 ycossin y+y2y=k⇒12limy→0sin y-y2 sinsin y-y2 ysin y-y2cossin y+y2y=k⇒12limy→0sin y-y2ysinsin y-y2sin y-y2cossin y+y2y=k⇒12limy→0sin y-y2ylimy→0sinsin y-y2sin y-y2limy→0cossin y+y2y=k⇒14limy→0sin yy-1limy→0sinsin y-y2sin y-y2limy→0cossin y+y2y=k⇒14×0×1×limy→0cossin y+y2y=k⇒0=k

 

DIFFERENTIABILITY

Page 10.9 Ex.10.1

Q1.

Answer :

Given: f(x) = |x-2| = x-2, x≥2-x+2, x<2

Continuity at x=2: We have,

(LHL at x = 2)
=limx→2- f(x) = limh→0 f(2-h) = lim h→0 (-2+h)+2= 0.

(RHL at x = 2)
=lim x→2+f(x) = limh→0 f(2+h) = limh→0 2+h-2 = 0.

and f(2) = 0

Thus, limx→2- f(x) = limx→2+ f(x) = f(2)f(2).
Hence, f(x) is continuous at x=2.

Differentiability at x = 2: We have,

(LHD at x = 2)
=limx→2- f(x) – f(2)x-2 = limx→2 (-x+2) – 0x-2 = limx→2 -(x-2)x-2 = limx→2 (-1) =-1

(RHD at x=2)
= =limx→2+ f(x) – f(2)x-2 = limx→2 (x-2) – 0x-2 = limx→2 1 = 1

Thus, limx→2- f(x) ≠ limx→2+ f(x).

Hence, f(x) is not differentiable at x=2 .

Q2.

Answer :

Disclaimer: It might be a wrong question because f(x) is differentiable at x=0

Given: f(x) = x13.
We have,
(LHD at x = 0)
limx→0- f(x) – f(0)x-0=limh→0 f(0-h) – f(0)0-h-0=limh→0 0-h13-013-h=limh→0 -h13-h=limh→0 -h-23= 0

(RHD at x = 0)
limx→0+ f(x) – f(0)x-0=limh→0 f(0+h) – f(0)0+h-0=limh→0 0+h13-013-h=limh→0 h13h=limh→0 h-23= 0

LHD at (x = 0)= RHD at (x = 0)

Hence, f(x) = x13 is differentiable at x = 0

Q3.

Answer :

Given: f(x) =12x-13, x≤3.2×2 + 5, x>3.

We have to show that the given function is differentiable at x = 3.

We have,

(LHD at x=3) = lim x→3- f(x) – f(3)x-3

= lim x→3 12x-13 – 23x-3= limx→3 12x-36x-3= limx→3 12 (x-3)x-3= limx→3 12 = 12

(RHD at x = 3) = limx→3+ f(x) – f(3)x-3

= limx→3 2×2+5 – 23x-3= limx→3 2×2 -18x-3= limx→3 2 (x2 -9)x-3=limx→3 2(x+3) = 2×6 = 12

Thus, (LHD at x=3) = (RHD at x=3) = 12.

So, f(x) is differentiable at x=3 and f'(3) = 12.

Q4.

Answer :

Given:
f(x) = 3x-2, 0<x≤12×2-x, 1<x≤25x-4, x>2

First , we will show that f(x) is continuos at x=2.

We have,

(LHL at x=2)

=lim x→2- f(x) = lim h→0 f(2-h) = limh→0 2(2-h)2 – (2-h) = limh→0 (8 + 2h2 – 8h – 2 + h) = 6

(RHL at x = 2)

=limx→2+ f(x) = limh→0 f(2+h) = limh→0 5(2+h) – 4 = limh→0 (10 + 5h -4) = 6

and f(2) = 2×4 – 2 = 6.

Thus, limx→2- f(x) = limx→2+ f(x) = f(2).

Hence the function is continuous at x=2.
Now, we will check whether the given function is differentiable at x = 2.

We have,

(LHD at x = 2)

limx→2- f(x) – f(2)x-2 = limh→0 f(2-h) – f(2)-h = limh→0 2h2 -7h + 6 – 6-h =limh→0 -2h + 7 = 7

(RHD at x = 2)

limx→2+ f(x) – f(2)x-2 = limh→0 f(2+h) – f(2)h = limh→0 10 + 5h – 4 -6h= 5

Thus, LHD at x=2 ≠ RHD at x = 2.

Hence, function is not differentiable at x = 2.

Q5.

Answer :

Given:
f(x) = xm sin1x0 x≠0 , x=0

(i) Let m=2, then the function becomes f(x) = x2 sin1x0 , x≠0, x=0

Differentiability at x=0:
limx→0 f(x) – f(0)x-0 = limx→0 f(x)x = limx→0 x sin1x =0.
[ ∵ limx→0 x sin1x = 0 , as x sin1x – 0 = x sin1x = x sin1x ≤x (∵sinθ≤1 for all θ) and hence x sin1x<0 when x-0<εx-0<ε ]
So, f'(0) = 0, which means f is differentiable at x=0.
Hence the given function is differentiable at x=0.

(ii) Let m=12, 0<m<1. Then the function becomes
f(x) = x120sin1x , x≠0 , x=0

Continuity at x=0:
(LHL at x=0) = limx→0- f(x) = limh→0 f(0-h) = limh→0 (-h)12 sin10-h = limh→0 h12 sin1h = limh→0 h32 = 0.
(RHL at x=0) = limx→0+ f(x) = limh→0 f(0+h) = limh→0 h12 sin1h = limh→0 h32 = 0.
and f(0) = 0
LHL at x=0 = RHL at x=0 = limx→0 f(x),
Hence continuous.
Now Differentiabilty at x=0 when 0<m<1.
(LHD at x=0) = limx→0- f(x) – f(0)x-0 = limh→0 f(0-h) – f(0)0-h-0 =limh→0 (-h)12 sin1-h-h

Q6.

Answer :

Given:
f(x) = x2+3x+a, x≤1bx+2, x>1

It is given that the function is differentiable at each x∈R and every differentiable function is continuous.
So, f(x) is continuous at x=1.

Therefore,

limx→1- f(x)=limx→1+ f(x) = f(1)

⇒limx→1 x2+3x+a = limx→1 bx+2 = a+4 Using def. of f(x) ⇒ a+4 = b+2 = a+4 …(i)
Since, f(x) is differentiable at x=1. So,

(LHD at x = 1) = (RHD at x = 1)

limx→1- f(x) – f(1)x-1 = limx→1+ f(x) – f(1)x-1⇒limx→1 x2+3x+a-a-4x-1 = limx→1 bx+2 -4-ax-1 Using def. of f(x)⇒ limx→1 (x+4) (x-1)x-1= limx→1 bx-2-ax-1⇒ limx→1 (x+4) (x-1)x-1= limx→1 bx-bx-1 Using (i) ⇒ limx→1 (x+4) (x-1)x-1 = limx→1 b(x-1)x-1⇒ 5 = b

From (i), we have

a+4 = b+2⇒a+4 = 5+2⇒a = 7-4 ⇒a= 3
Hence, a=3 , b=5.

Q7.

Answer :

Given: f(x) = 2x-3 [x] , x≥1sinπx2, x<1

Continuity at x = 1:
(LHL at x = 1) = limx→1-f(x)=limh→0f(1-h)=limh→0 sinπ (1-h)2=sinπ2=1

(RHL at x = 1) = limx→1+ f(x) = limh→0 f(1+h) = limh→0 2(1+h)-31+h=limh→0 2(1+h)-3=1

Hence, (LHL at x = 1) = (RHL at x = 1)

Differentiability at x = 1:

LHD at x=1=limx→1-fx-f1x-1LHD at x=1=limh→0f1-h-f11-h-1LHD at x=1=limh→0f1-h-f1-hLHD at x=1=limh→0sinπ1-h2-1-hLHD at x=1=limh→0cosπh2-1-hLHD at x=1=-π2limh→0cosπh2-1π2h=0RHD at x=1=limx→1+fx-f1x-1RHD at x=1=limh→0f1+h-f11+h-1RHD at x=1=limh→0f1+h-f1hRHD at x=1=limh→0-21+h-3-1hRHD at x=1=limh→0-2hh=-2

LHD ≠ RHD

Hence, the function is continuous but not differentiable at x = 1.

Q8.

Answer :

Given: f(x) =ax2+b, x<11x, x≥1
⇒ f(x) = -1x , x<-1ax2-b, -1<x<11x, x≥1

It is given that the given function is differentiable at x = 1.

We know every differentiable function is continuous. Therefore it is continuous at x=1. Then,

lim x→1- f(x) = limx→1+ f(x) ⇒limx→1 ax2-b = limx→1 1x⇒ a-b = 1 …(i)
It is also differentiable at x=1. Therefore,

(LHD at x = 1) = (RHD at x = 1)

⇒limx→1-f(x) – f(1)x-1 = limx→1+f(x) – f(1)x-1⇒ limx→1 ax2-b – 1x-1= limx→1 1x – 1x-1 ⇒ limx→1 ax2+1-a-1x-1=limx→1 -(x-1)x-1 Using (i) ⇒ limx→1 a (x+1)= limx→1 -1 ⇒ 2a=-1 ⇒ a =-12
From (i), we have:
a-b = 1⇒-12 – b = 1⇒ b =- 32

Hence, when a=-12 and b=-32 the function is differentiable at x = 1.

Q9.

Answer :

Given: f(x) = x2, x≤cax+b, x>c

It is given that the function is differentiable at x=c.

Every differentiable function is continuous. Therefore, it is continuous at x = c.

Then,

limx→c-f(x) = limx→c+f(x) = f(c)⇒ limx→c x2 = limx→c ax+b = c2⇒ c2 = ac+b ….(i)

Now, f(x) is differentiable at x = c.

(LHD at x=c) = (RHD at x=c)

⇒limx→c-f(x) – f(c)x-c = limx→c+f(x) – f(c)x-c

⇒limx→cx2-c2x-c = limx→cax+b-c2x-c
⇒limx→c (x+c) = limx→cax+b – ac-bx-c [Using (i)]

⇒limx→c (x+c) = limx→c a⇒2c=a
From (i), we have

c2= ac+b⇒c2 = 2c2 + b⇒b =-c2

Hence, when a=2c and b=-c2, the given function is differentiable at x=c.

Q10.

Answer :

The function f(x) = x-0+x-1+x-2+x-3+x-4 is continuous everywhere

but not differentiable at x = 0,1,2,3 and 4

 

Page 10.15 Ex.10.2

Q1.

Answer :

Given: f(x) = x2.

We know a polynomial function is everywhere differentiable. Therefore f(x) is differentiable at x=2.

f'(2) = limh→0 f(2+h) – f(2)h⇒ f'(2) = limh→0 (2+h)2 – 22h⇒ f'(2) = limh→0 (4+h2+4h) – 4h⇒ f'(2) = limh→0 h (h+4)h⇒ f'(2) = 4

Q2.

Answer :

Given: f(x) = x2-4x+7

Clearly, f(x) being a polynomial function, is everywhere differentiable. The derivative of f at x is given by:

f'(x) = limh→0 f(x+h) – f(x)h⇒ f'(x) = limh→0 x+h2 -4(x+h) +7 – (x2 -4x+7)h⇒ f'(x) = limh→0 x2+h2+2xh -4x-4h+7 -x2+4x-7h⇒ f'(x) = limh→0 h2 +2xh -4hh⇒ f'(x) = limh→0 h(h+2x-4)h⇒ f'(x) = 2x-4

Now,

f'(5) = 2×5 – 4= 6f’72 = 2×72 – 4 = 3
Therefore, f'(5) = 2×3 = 2f’72
Hence proved.

Q3.

Answer :

Given: f(x) = 2×3-9×2+12x+9

Clearly, being a polynomial function, is differentiable everywhere. Therefore the derivative of f at x is given by:

f'(x) = limh→0 f(x+h – f(x)h⇒ f'(x) = limh→0 2(x+h)3-9(x+h)2+12(x+h) + 9 – 2×3+9×2-12x-9h⇒ f'(x) = limh→0 2×3 + 2h3+6x2h +6xh2 -9×2-9h2-18xh+12x+12h+9 -2×3+9×2-12x-9h⇒ f'(x) = limh→0 2h3 +6x2h +6xh2 -9h2 -18xh+12hh⇒ f'(x) = limh→0 h(h2 +6×2+6xh -9h-18x+12)h⇒ f'(x) = 6×2-18x+12

So,

f'(1) = 6×2-3x+2 = 6×(1-3+2) = 0f'(2) = 6×2-3x+2 = 6×(4-6+2) = 0

Hence the derivative at x=1 and x=2 are equal.

Q4.

Answer :

Given: ϕ(x) = λx2+7x-4

Clearly, being a polynomial function, is differentiable everywhere. Therefore the derivative of ϕ at x is given by:

ϕ'(x) = limh→0 ϕ(x+h) – ϕ(x)h⇒ ϕ'(x) =limh→0 λ(x+h)2 +7(x+h) -4 – λx2-7x+4h⇒ ϕ'(x) = limh→0 λx2 +λh2+2λxh+7x+7h-4-λx2-7x+4h⇒ ϕ'(x) = limh→0 λh2 +2λxh+7hh⇒ ϕ'(x) = limh→0 h(λh +2λx+7)h⇒ ϕ'(x) = 2λx+7
It is given ϕ'(5) = 97
Thus,
ϕ'(5) = 10λ + 7 = 97⇒ 10λ+7 =97⇒ 10λ = 90⇒ λ = 9

Q5.

Answer :

Given: f(x) = x3+7×2+8x-9

Clearly, being a polynomial function, is differentiable everywhere. Therefore the derivative of f at x is given by:

f'(x) = limh→0f(x+h) – f(x)h⇒ f'(x) = limh→0 (x+h)3+7(x+h)2+8(x+h)-9 – x3 -7×2-8x+9h⇒ f'(x) = limh→0 x3+h3+3x2h + 3xh2+7×2+7h2+14xh+8x+8h-9-x3-7×2-8x+9h⇒ f'(x) = limh→0 h3+3x2h+3xh2+7h2+14xh+8hh⇒ f'(x) = limh→0 h(h2+3×2+3xh+7h+14x+8)h⇒ f'(x) = limh→0 h2+3×2+3xh+7h+14x+8⇒ f'(x) = 3×2+14x+8
Thus,
f'(4) = 3×42+14×4+8 = 48+56+8 =112

Q6.

Answer :

Given: f(x) = mx+c

Clearly, being a polynomial function, is differentiable everywhere. Therefore the derivative of f at x is given by:

f'(x) = limh→0 f(x+h) – f(x)h⇒ f'(x) = limh→0 m(x+h) +c -mx-ch⇒ f'(x) = limh→0 mx+mh+c-mx-ch⇒ f'(x) = limh→0 mhh ⇒ f'(x) = m

Thus, f'(0) = m

Q7.

Answer :

We have,
f (x) = |log |x||

x=-x -∞<x<-1-x -1<x<0 x 0<x<1 x 1<x<∞log x=log -x -∞<x<-1log -x -1<x<0 log x 0<x<1 log x 1<x<∞log x=log -x -∞<x<-1-log -x -1<x<0 -log x 0<x<1 log x 1<x<∞
LHD at x=-1=limx→-1-fx-f-1x+1 =limx→-1-log -x-0x+1 =limh→0log 1+h-1-h+1 =-limh→0log 1+hh=-1

RHD at x=-1=limx→-1+fx-f-1x+1 =limx→-1+-log -x-0x+1 =limh→0-log 1-h-1+h+1 =limh→0-log 1-hh=1
Here, LHD ≠ RHD
So, function is not differentiable at x = − 1

At 0 function is not defined.
LHD at x=1=limx→1-fx-f1x-1 =limx→1–log x-0x-1 =limh→0-log 1-h1-h-1 =-limh→0log 1-hh=-1
RHD at x=1=limx→1+fx-f1x-1 =limx→1+log x-0x-1 =limh→0log 1+h1+h-1 =limh→0log 1+hh=1
Here, LHD ≠ RHD
So, function is not differentiable at x = 1
Hence, function is not differentiable at x = 0 and ± 1
At 0 function is not defined.
So, at 0 function is not continuous.
LHL at x=-1=limx→-1-fx =limx→-1-log -x =log 1=0RHL at x=-1=limx→-1+fx =limx→-1+-log -x =-log 1=0f-1=0Therefore, fx=log x is continuous at x=-1
LHL at x=1=limx→1-fx =limx→1–log x =-log 1=0RHL at x=1=limx→1+fx =limx→1+log x =log 1=0f1=0Therefore, at x=1, fx=log x is continuous.

Hence, function f (x) = |log |x|| is not continuous at x = 0

Q8.

Answer :

Given: f(x) = ex
⇒ f(x) = ex, x≥0e-x, x<0

Continuity:

(LHL at x = 0)

limx→0- f(x) = limh→0 f(0-h) = limh→0 e-(0-h) = limh→0 eh = 1

(RHL at x = 0)

limx→0+ f(x) = limh→0 f(0+h) = limh→0 e(0+h) = 1

and f(0) = e0 = 1

Thus, limx→0- f(x) = limx→0+ f(x) = f(0)

Hence,function is continuous at x = 0 .

Differentiability at x = 0.

(LHD at x = 0)

limx→0-f(x) – f(0)x-0= limh→0f(0-h) – f(0)0-h-0= limh→0 e-(0-h) – 1-h= limh→0 eh-1-h = -1 ∵ limh→0 eh-1h =1
(RHD at x = 0)

limx→0+f(x) – f(0)x-0= limh→0f(0+h) – f(0)0+h-0= limh→0 e(0+h) – 1h= limh→0 eh-1h = 1 ∵ limh→0 eh-1h =1

LHD at (x = 0)≠RHD at (x = 0)

Hence the function is not differentiable at x = 0.

Q9

Answer :

Given: fx=x-c cos 1x-c,x≠c0 ,x=c

Continuity:

(LHL at x = c)

limx→c- f(x) = limh→0 f(c-h) = limh→0 (c-h-c) cos1c-h-c = limh→0 -h cos1h Since , cos 1h is a bounded function and 0 ×bounded function is 0=0

(RHL at x = c)

limx→c+ f(x) =limh→0 f(c+h) = limh→0 (c+h-c) cos1c+h-c = limh→0 h cos1h Since, cos1h is a bounded function and 0× bounded function is 0=0

and
Differentiability at x = c

(LHD at x = c)
limx→c- f(x) – f(c)x-c = limh→0f(c-h) – f(c)c-h-c = limh→0 -h cos1-h – 0-h ∵0.cos 1c-c=0, as cos function is bounded function.=lim h→0cos1h=A number which oscillates between -1 and 1∴LHD (x=c) does not exist . Similarly , we can show that RHD(x=c) does not exist . Hence , f(x) is not differentiable at x=c

Q10.

Answer :

Let, f(x) = |sin x|

sin x=0, for x=nπ,sin x=-sin x 2m-1π< x<2mπ , where m∈Z sin x 2mπ< x<2m+1π , where m∈Z- sin x 2m+1π< x<2m+1π , where m∈Z

LHD at x=2mπ=limx→2mπ-fx-f2mπx-2mπ =limx→2mπ–sinx-0x-2mπ =limh→0-sin2mπ-h2mπ-h-2mπ =limh→0sinh-h=-1
RHD at x=2mπ=limx→2mπ+fx-f2mπx-2mπ =limx→2mπ+sinx-0x-2mπ =limh→0sin2mπ+h2mπ+h-2mπ =limh→0sinhh=1
Here, LHD ≠ RHD So, function is not differentiable at x=2mπ, where, m∈Z …..1
LHD at x=2m+1π=limx→2m+1π-fx-f2m+1πx-2m+1π =limx→2m+1π-sin x-0x-2m+1π =limh→0sin 2m+1π-h2m+1π-h-2m+1π =limh→0sin h-h=-1
RHD at x=2m+1π=limx→2m+1π+fx-f2m+1πx-2m+1π =limx→2m+1π+-sin x-0x-2m+1π =limh→0-sin 2m+1π+h2m+1π+h-2m+1π =limh→0sin hh=1
Here, LHD ≠ RHD. So, function is not differentiable at x=2m+1π, where, m∈Z …..2
From, 1 and 2, we getfx=sin x is not differentiable at x=nπ

We know that,cos x=cos x For all x∈RAlso we know that cos x is differentiable at all real points.Therefore, cos x is differentiable everywhere.

 

Page 10.16 (Very Short Answers)

Q1.

Answer :

Let f(x) be a real valued function defined on an open interval (a,b) and let c∈(a,b).
Then f(x) is said to be differentiable or derivable at x=c iff
limx→c f(x) – f(c)x-c exists finitely.

or, f'(c) =limx→c f(x) – f(c)x-c.

Q2.

Answer :

Yes, if a function is differentiable at a point then it is necessary continuous at that point.

Proof :Let a function f(x) be differentiable at x=c . Then, limx→c f(x)-f(c)x-cexists finitely.Let limx→c f(x)-f(c)x-c=f'(c)In order to prove that f(x) is continous at x=c , it is sufficient to show that limx→c f(x)=f(c) limx→c f(x)=limx→c f(x)-f(c)x-cx-c+f(c)⇒ limx→c f(x)=limx→c f(x)-f(c)x-cx-c+f(c)⇒ limx→c f(x)=limx→c f(x)-f(c)x-c. lim x→c x-c+f(c)⇒ limx→c f(x)=f'(c) ×0+f(c)⇒ limx→c f(x)=f(c)Hence, f(x) is continuous at x=c.

Q3.

Answer :

No, function may be continuous at a point but may not be differentiable at that point .
For example: function f(x) = |x| is continuous at x=0 but it is not differentiable at x=0.

Q4.

Answer :

Consider a function, f(x) = x, x>0-x, x≤0
This mod function is continuous at x=0 but not differentiable at x=0.

Continuity at x=0, we have:

(LHL at x = 0)

limx→0- f(x) = limh→0 f(0-h) = limh→0 -(0-h) = 0

(RHL at x = 0)

limx→0+ f(x) = limh→0 f(0+h) = limh→0 (0+h) = 0

and f(0) = 0

Thus, limx→0- f(x) = limx→0+ f(x) = f(0).

Hence, f(x) is continuous at x=0.

Now, we will check the differentiability at x=0, we have:

(LHD at x = 0)

limx→0- f(x) – f(0)x-0 = limh→0 f(0-h) – f(0)0-h-0 = limh→0 -(0-h) – 0-h = -1

(RHD at x = 0)

limx→0+ f(x) – f(0)x-0 = limh→0 f(0+h) – f(0)0+h-0 = limh→0 0+h – 0h = 1

Thus, limx→0- f(x) ≠ limx→0+ f(x)

Hence f(x) is not differentiable at x=0.

Q5.

Answer :

Given: f(x) is differentiable at x=c. Then,
limx→c f(x) – f(c)x-c exists finitely.

or, limx→c f(x) – f(c)x-c = f'(c).

Consider,
limx→c f(x) = limx→c f(x) – f(c)x-c (x-c) + f(c) limx→c f(x) = limx→c f(x) – f(c)x-c (x-c) + f(c)limx→c f(x) = limx→c f(x) – f(c)x-c limx→c (x-c) + f(c)limx→c f(x) = f'(c) × 0 + f(c) = f(c)

Q6.

Answer :

Given: f(x) = x-2 = x-2, x>2-x+2, x≤2

Now,

(LHD at x = 2)

limx→2- f(x) – f(2)x-2 = limh→0 f(2-h) – f(2)2-h-2 = limh→0 (-2+h+2) -0-h = -1

(RHD at x = 2)

limx→2+f(x) – f(2)x-2 = limh→0 f(2+h) – f(2)2+h-2 = limh→0 2+h-2 – 0h=1

Thus, (LHD at x = 2) ≠ (RHD at x = 2)

Hence, limx→2 f(x) – f(2)x-2 = f'(2) does not exist.

Q7.

Answer :

Given: f(x) = logex = -logex, 0<x<1logex, x≥1
Clearly f(x) is differentiable for all x>1 and for all x<1. So, we have to check the differentiability at x=1.
We have,
(LHD at x = 1)

limx→1- f(x) – f(1)x-1

= limx→1- -log x – log 1x-1=- limx→1- log xx-1=- limh→0 log (1-h)1-h-1=-limh→0log (1-h)-h =-1

(RHD at x=1)
= limx→1+ f(x) – f(1)x-1

=limx→1+ log x – log 1x-1=limx→1+ log xx-1= limh→0 log (1+h)1+h-1= limh→0 log (1+h)h=1

Thus, (LHD at x =1) ≠ (RHD at x =1)
So, f(x) is not differentiable at x=1.

Q8.

Answer :

We have,
f (x) = |log |x||

x=-x -∞<x<-1-x -1<x<0 x 0<x<1 x 1<x<∞log x=log -x -∞<x<-1log -x -1<x<0 log x 0<x<1 log x 1<x<∞log x=log -x -∞<x<-1-log -x -1<x<0 -log x 0<x<1 log x 1<x<∞
LHD at x=-1=limx→-1-fx-f-1x+1 =limx→-1-log -x-0x+1 =limh→0log 1+h-1-h+1 =-limh→0log 1+hh=-1

RHD at x=-1=limx→-1+fx-f-1x+1 =limx→-1+-log -x-0x+1 =limh→0-log 1-h-1+h+1 =limh→0-log 1-hh=1
Here, LHD ≠ RHD
So, function is not differentiable at x = − 1

At 0 function is not defined.
LHD at x=1=limx→1-fx-f1x-1 =limx→1–log x-0x-1 =limh→0-log 1-h1-h-1 =-limh→0log 1-hh=-1
RHD at x=1=limx→1+fx-f1x-1 =limx→1+log x-0x-1 =limh→0log 1+h1+h-1 =limh→0log 1+hh=1
Here, LHD ≠ RHD
So, function is not differentiable at x = 1
Hence, function is not differentiable at x = 0 and ± 1

Q9.

Answer :

Given: f(x) = x3 = x3, x≥0-x3, x<0

(LHD at x = 0)
limx→0-f(x) – f(0)x-0= limh→0 f(0-h) – f(0) x= limh→0 h3-h = 0.

(RHD at x = 0)

limx→0+ f(x) – f(0)x-0 = limx→0+ f(0+h) – f(0)x= limh→0 h3 – 0h = 0

and f(0) = 0.

Thus, (LHD at x=0) = (RHD at x = 0) = f(0)

Hence, limx→0f(x) – f(0)x-0 = f'(0) = 0

Q10.

Answer :

Given:
f(x) = x + x-1
⇒f(x) = -x-(x-1), x<0x-(x-1), 0≤x<1x+(x-1), x≥1⇒ f(x) = -2x+1, x<01, 0≤x<12x-1, x≥1

When x<0, we have:

f(x) =-2x+1 which, being a polynomial function is continuous and differentiable.

When 0≤x<1, we have:
f(x) =1 which, being a constant function is continuous and differentiable on (0,1).

When x≥1, we have:
f(x) =2x-1 which, being a polynomial function is continuous and differentiable on x>2.

Thus, the possible points of non- differentiability of f(x) are 0 and 1.
Now,
(LHD at x = 0)

limx→0-f(x) – f(0)x-0

= limx→0 -2x+1 – 1x-0 [∵ f(x) =-2x+1, x<0]

= limx→0 -2xx =-2

(RHD at x = 0)

= limx→0+ f(x) – f(0)x-0

= limx→01-1x-1=0 [∵ f(x)=1, 0≤x<1 ]

Thus, (LHD at x=0) ≠ (RHD at x=0)

Hence f(x) is not differentiable at x=0

Now, f(x) is not differentiable at x=1.

(LHD at x = 1)

limx→1-f(x) – f(1)x-1
= limx→1 1- 1x-1 =0

(RHD at x = 1)
= limx→1+f(x) – f(1)x-1
= limx→1 2x-1 – 1x-1= limx→1 2(x-1)x-1 = 2

Thus, (LHD at x =1) ≠ (RHD at x=1)
.
Hence f(x) is not differentiable at x=1.

Therefore, 0,1 are the points where f(x) is continuous but not differentiable.

Q11.

Answer :

Given: limx→cf(x) – f(c)x-c exists finitely. Then,

limx→c f(x) – f(c)x-c = f'(c).

Now,
limx→c f(x) = lim x→c f(x) – f(c)x-c (x-c) + f(c) = limx→c f(x) – f(c)x-c (x-c) + f(c) = limx→c f(x) – f(c)x-c limx→c (x-c) + f(c) = f'(c)×0 + f(c) = f(c)

Q12.

Answer :

Given: f(x) = x-1 + x-3

⇒ f(x) = -(x-1) -(x-3), x<1x-1 – (x-3), 1≤x<3 (x-1) + (x-3), x≥3

⇒ f(x) = -2x+4, x<12, 1≤x<32x-4, x≥3

We check differentiability at x = 2

(LHD at x = 2)

limx→2- f(x) – f(2)x-2 = limh→0 f(2-h) – f(2)2-h-2 = limh→0 2-2-h =0

Q13.

Answer :

Given: f(x) = x2 + 9
Now,
f(4) = 16+9 = 25 =5

So, f(x) – f(4)x-4 = x2 + 9 – 5x-4

On rationalising the numerator, we get

f(x) – f(4)x-4 = x2+9 -5x-4×x2+9 + 5×2+9 + 5 = x2+9 – 25(x-4) x2+9 + 5 = x2 – 16(x-4) x2+9 + 5 = (x+4)x2+9 + 5

Taking limit x→4, we have

limx→4 f(x) – f(4)x-4 = limx→4 (x+4)x2+9 + 5 = 810 = 45

 

Page 10.16 (Multiple Choice Questions)

Q1.

Answer :

Option (a) f (x) and g (x) both are continuous at x = 0

Given: fx = x , gx = x3

We know x is continuous at x=0 but not differentiable at x = 0 as (LHD at x = 0) ≠ (RHD at x = 0).
Now, for the function gx = x3 = x3, x≥0-x3, x<0
Continuity at x = 0:

(LHL at x = 0) = limx→0-gx = limh→0 g0-h = limh→0–h3 = limh→0 h3 = 0.

(RHL at x = 0) = limx→0+fx = limh→0f0+h = limh→0 h3 = 0.

and g0 = 0.
Thus, limx→0-gx = limx→0+gx = g0.
Hence, g(x) is continuous at x = 0.

Differentiability at x = 0:

(LHD at x = 0) = limx→0-fx – f0x-0 = limh→0f0-h – f00-h-0 = limh→0h3 -0-h = 0.

(RHD at x = 0) = limx→c+fx – f0x-0 = limh→0f0+h – f00+h-0 = limh→0h3 -0h = limh→0h3h =0
Thus, (LHD at x = 0) = (RHD at x = 0).
Hence, the function gx is differentiable at x = 0.

Q2.

Answer :

(b) continuous at x = 0

Given: f(x) = sin-1cos x.

Continuity at x = 0:

We have,
(LHL at x = 0)

limx→0- f(x) =limh→0 sin-1cos0-h = limh→0 sin-1cos h= sin-11= π2

(RHL at x = 0)

limx→0+ fx= limh→0 sin-1cos0+h= limh→0 sin-1cos h = sin-11 = π2

f(0) = sin-1cos 0 = sin-11 = π2

Differentiability at x = 0:
(LHD at x = 0)

limx→0- fx – f0x-0 = limh→0 sin-1cos0-h – π2-h = limh→0 sin-1cos-h -π2-h = limh→0 sin-1cosh -π2-h= limh→0 sin-1sin π2-h -π2-h= limh→0-h-h=1

RHD at x = 0

limx→0+ fx – f0x-0 = limh→0 sin-1cos0+h-π2h = limh→0 sin-1cosh-π2h = limh→0 sin-1sin π2-h-π2-h= limh→0-hh=-1

∴ LHD≠RHD

Hence, the function is not differentiable at x = 0 but is continuous at x = 0.

 

Page 10.17 (Multiple Choice Questions)

Q3.

Answer :

(a) -∞, ∞

We have,fx=xx⇒fx=-x2, x<0 0 , x=0 x2, x>0When, x<0, we have fx=-x2 which being a polynomial function is continuous and differentiable in -∞, 0When, x>0, we have fx=x2 which being a polynomial function is continuous and differentiable in 0, ∞Thus possible point of non-differentiability of fx is x=0Now, LHD at x=0 =limx→0- fx- f0x-0 =limx→0–x2- 0x =limh→0–h2-h =limh→0h =0And RHD at x=0 =limx→0+ fx- f0x-0 =limx→0+x2- 0x =limh→0h2h =lim h→0h =0∴LHD at x=0=RHD at x=0So, fx is also differentiable at x=0i.e. fx is differentiable in -∞, ∞

Q4.

Answer :

(b) not continuous at x = − 2

Given:
f(x) = x+2tan-1(x+2) , x≠-2 2 , x=-2
⇒ f(x) = -(x+2)tan-1(x+2), x<-2 (x+2)tan-1(x+2), x>-22 , x=-2
Continuity at x = − 2.
(LHL at x= − 2) = limx→-2-f(x)=limh→0f(-2-h)=limh→0-(-2-h+2)tan-1(-2-h+2)=limh→0htan-1(-h) =-1.

(RHL at x = −2) = limx→-2+f(x=limh→0f(-2+h=limh→0(-2+h+2)tan-1(-2+h+2)=limh→0htan-1(h) =1.

Also f(-2) = 2
Thus, limx→-2-f(x)≠limx→-2+ f(x) ≠ f(-2).
Therefore, given function is not continuous at x = − 2

Q5.

Answer :

(a) f is continuous
(c) f’ is continuous

We have,fx=x+x x =xx+x2 =xx+x2fx=2×2 x≥00 x<0To check continuity of fx at x=0LHL at x=0=limx→0-fx =limx→0-0 =0RHL at x=0=limx→0+fx =limx→0+2×2 =0And f0=0Here, LHL=RHL=f0Therefore, fx is continuous at x=0Hence, fx is continuous everywhere.

To check the differentiability of fx at x=0LHD at x=0=limx→0-fx-f0x-0 =limx→0-0-0x=0RHD at x=0=limx→0+fx-f0x-0 =limx→0-2×2-0x =limx→0-2×2-0x =limx→0-2x=0LHD=RHDTherefore, fx is derivative at x=0Hence, fx is differentiable everywhere.

f’x=4x x≥00 x<0To check continuity of f’x at x=0LHL at x=0=limx→0-f’x =limx→0-0 =0RHL at x=0=limx→0+f’x =limx→0+4x =0And f’0=0Here, LHL=RHL=f’0Therefore, f’x is continuous at x=0Hence, f’x is continuous everywhere.
f”x=4 x≥00 x<0To check continuity of f”x at x=0LHL at x=0=limx→0-f”x =limx→0-0 =0RHL at x=0=limx→0+f”x =limx→0+4 =4Therefore, LHL≠RHL Therefore, f”x is not continuous at x=0Hence, f”x is not continuous everywhere.

Q6.

Answer :

(a) continuous everywhere but not differentiable at x = 0

Given: f(x) = e-x = ex, x ≥0e-x, x<0Continuity :limx→0- f(x) = limh→0 f(0-h) = limh→0 e-(0-h) = limh→0 eh = 1

RHL at x = 0

limx→0+ f(x) = limh→0 f(0+h) = limh→0 e(0+h) = 1

and f(0) = f(0) = e0 = 1
Thus, limx→0- f(x) = limx→0+ f(x) = f

Hence, function is continuous at x = 0

Differentiability at x = 0

(LHD at x = 0)

limx→0-f(x) – f(0)x-0= limh→0f(0-h) – f(0)0-h-0= limh→0 e-(0-h) – 1-h= limh→0 ehh = ∞

Therefore, left hand derivative does not exist.
Hence, the function is not differentiable at x = 0.

Q7.

Answer :

(b) everywhere continuous but not differentiable at (2n + 1) π/2, n ∈ Z

We have,fx=cos x⇒fx=cos x, 2nπ≤x<4n+1π20, x=4n+1π2 -cos x, 4n+1π2<x<4n+3π2 0 , x=4n+3π2 cos x, 4n+3π2< x≤2n+2πWhen, x is in first quadrant, i.e. 2nπ≤x<4n+1π2 , we have fx=cos x which being a trigonometrical function is continuous and differentiable in 2nπ, 4n+1π2When, x is in second quadrant or in third quadrant, i.e., 4n+1π2<x<4n+3π2 , we have fx=-cos x which being a trigonometrical function is continuous and differentiable in 4n+1π2, 4n+3π2When, x is in fourth quadrant, i.e., 4n+3π2< x≤2n+2π , we have fx=cos x which being a trigonometrical function is continuous and differentiable in 4n+3π2, 2n+2πThus possible point of non-differentiability of fx are x=4n+1π2, 4n+3π2Now, LHD at x=4n+1π2 =limx→4n+1π2- fx- f4n+1π2x-4n+1π2 =limx→4n+1π2- cos x- 0x-4n+1π2 =limx→4n+1π2- -sin x1-0 By L’Hospital rule =-1And RHD at x=4n+1π2 =limx→4n+1π2+ fx- f4n+1π2x-4n+1π2 =limx→4n+1π2+ -cos x- 0x-4n+1π2 =limx→4n+1π2+ sin x1-0 By L’Hospital rule =1∴lim x→4n+1π2-fx ≠limx→4n+1π2+fxSo fx is not differentiable at x=4n+1π2Now, LHD at x=4n+3π2 =limx→4n+1π2- fx- f4n+3π2x-4n+3π2 =limx→4n+3π2- -cos x- 0x-4n+3π2 =limx→4n+3π2- sin x1-0 By L’Hospital rule =1And RHD at x=4n+3π2 =limx→4n+3π2+ fx- f4n+3π2x-4n+3π2 =limx→4n+3π2+ cos x- 0x-4n+3π2 =limx→4n+3π2+ -sin x1-0 By L’Hospital rule =-1∴lim x→4n+3π2-fx ≠limx→4n+3π2+fxSo fx is not differentiable at x=4n+3π2Therefore, fx is neither differentiable at 4n+1π2 nor at 4n+3π2i.e. fx is not differentiable at odd multiples of π2i.e. fx is not differentiable at x=2n+1π2Therefore, f(x) is everywhere continuous but not differentiable at 2n+1π2 .

Q8.

Answer :

b continuous on -1,1 and differentiable on -1,0∪0,1

We have,fx=1-1-x2Here, function will be defined for those values of x for which1-x2≥0⇒1≥x2⇒x2≤1⇒x≤1⇒-1≤x≤1Therefore, function is continuous in -1, 1
Now, we need to check the differentiability of fx=1-1-x2 in the interval -1, 1.Now, we will check the differentiability at x=0LHD at x=0=limx→0-fx-f0x-0 =limx→0-1-1-x2-0x =limx→0-1-1-x2x =limh→01-1-0-h20-h =limh→01-1-h2-h=-∞RHD at x=0=limx→0+fx-f0x-0 =limx→0+1-1-x2-0x =limx→0+1-1-x2x =limh→01-1-0+h20+h =limh→01-1-h2h=∞ So, the function is not differentiable at x=0.

Q9.

Answer :

(b) a=0, b=0; c∈R

We have,fx=a sin x+be x+c x3 =a sin x+bex+cx3 0<x<π2-a sin x+be-x-cx3 -π2<x<0Here, fx is differentiable at x=0Therefore, LHD at x=0=RHD at x=0⇒limx→0-fx-f0x-0=limx→0+fx-f0x-0⇒limx→0–a sinx+be-x-cx3-bx=limx→0+a sin x+bex+cx3-bx⇒limh→0-a sin0-h+be-0-h-c0-h3-b0-h=limh→0a sin 0+h+be0+h+c0+h3-b0+h⇒limh→0a sin h+be h+ch3-b-h=limh→0a sin h+beh+ch3-bh⇒limh→0a cos h+beh+3ch2-1=limh→0a cos h+beh+3ch21 By L’Hospital rule⇒-a+b=a+b ⇒-2a+b=0⇒a+b=0This is true for all value of c∴c∈RIn the given options, option b satisfies a+b=0 and c∈R

Q10.

Answer :

(b) is discontinuous

We have,fx=x2+x21+x2+x21+x2+…+x21+x2+….,When x=0 then x2=0 and x21+x2=0∴f0=0+0+0+0…….⇒f0=0When, x≠0Then, x2>0and 1+x2>x2⇒0<x21+x2<1∴limx→0 fx=lim x→0x2+x21+x2+x21+x2+…+x21+x2+…., =limx→0x21+11+x2+11+x2+…+11+x2+…., =limx→0x211-11+x2 Sum of infinite series where, r=11+x2 =limx→0x21+x2x2 =limx→01+x2 =1∴limx→0 fx≠f0∴fx is discontinuous at x=0

Q11.

Answer :

(a) f’ 1+=1 and (b) f’ 1=-1

fx=logex, = – loge x , for 0 < x < 1loge x , for x ≥1Differentiablity at x = 1,we have , (LHD at x = 1 ) =lim x →1- f(x) – f(1)x -1 = lim x →1- -log x – log 1x -1 = -lim x →1- log x x -1 = -lim h →0 log (1 – h) 1 -h – 1 = -lim h →0 log (1 – h) -h = -1

(RHD at x = 1 ) = lim x →1+ f(x) – f(1)x -1 = lim x →1+ log x – log (1)x -1 = lim h → 0 log (1 + h)x -1 = lim h → 0 log (1 + h)h = 1

Q12.

Answer :

(b) f (x) is continuous for all x in its domain but not differentiable at x = ± 1

We have,fx=loge |x|We know that log function is defined for positive value.Here, x is positive for all non zero x.Therefore, domain of function is R-0
And we know that logarithmic function is continuous in its domain.
Therefore, logex is continuous in its domain.
We will check the differentiability at its critical points. logex=loge-x -∞<x<-1-loge-x -1<x<0-logex 0<x<1logex 1<x<∞LHD at x=-1=limx→-1-fx-f-1x–1 =limx→-1-loge-x-0x+1 =limh→0loge–1-h-1-h+1 =limh→0loge1+h-h =-1RHD at x=-1=limx→-1+fx-f-1x–1 =limx→-1+-loge-x-0x+1 =limh→0-loge–1+h-1+h+1 =limh→0-loge1-hh =-limh→0loge1-hh =-1×-1=1Here, LHD≠RHDTherefore, the given function is not differentiable at x=-1.

LHD at x=1=limx→1-fx-f1x-1 =limx→1–logex-0x-1 =limh→0-loge1-h1-h-1 =limh→0loge1-hh =-1RHD at x=1=limx→1+fx-f1x-1 =limx→1+logex-0x-1 =limh→0loge1+h1+h-1 =limh→0loge1+hh =1Here, LHD≠RHDTherefore,the given function is not differentiable at x=1.
Therefore, given function is continuous for all x in its domain but not differentiable at x = ± 1

 

Page 10.18 (Multiple Choice Questions)

Q13.

Answer :

(b) a=-12, b=32

We have,fx=-1x, x≤-1ax2+b, -1<x<11x, x≥1Given: fx is differentiable and continuous at every point.Consider a point x=1limx→1-fx=limx→1+fx⇒limx→1-ax2+b=limx→1+1x⇒a+b=1 …iIt is also differentiable at x=1limx→1-fx-f1x-1=limx→1+fx-f1x-1⇒limx→1-ax2+b-1x-1=limx→1+1x-1x-1⇒limx→1-ax2-ax-1=limx→1+1-xx-1x Using i⇒limx→1-ax+1=limx→1+-x⇒2a=-1⇒a=-12Plugging a=-12 in i we get,b=32∴a=-12, b=32

Q14.

Answer :

(c) continuous at non-integer points only

We have,fx=x-xConsider n be an integer.fx=x-x=x-n-1 n-1≤x<n0 x=nx-n n≤x<n+1Now,LHL at x=n=limx→n-fx=x-n-1=x-n+1RHL at x=n=limx→n+fx=x-n=x-nAs, LHL≠RHL at x=ni.e., given function is not continuous at n.Now, n is any integer.Therefore, given function is not continuous at integers.

Therefore, given points are continuous at non-integer points only.

Q15.

Answer :

(d) a = 1/2
Given: f(x) = ax2+1, x>1x+12, x≤1
The function is derivable at x = 1, iff left hand derivative and right hand derivative of the function are equal at x = 1.

LHD at x=1=limx→1-fx-f1x-1LHD at x=1=limh→0f1-h-f11-h-1LHD at x=1=limh→0f1-h-f1-hLHD at x=1=limh→01-h+12-32-h=1RHD at x=1=limx→1+fx-f1x-1RHD at x=1=limh→0f1+h-f11+h-1RHD at x=1=limh→0f1+h-f1hRHD at x=1=limh→0a1+h2+1-32hRHD at x=1=limh→0a1+h2+2h-12h∵ LHD=RHD⇒a-12=0⇒a=12

Q16.

Answer :

(b) f (x) is everywhere continuous but not differentiable at x = n π, n ∈ Z

We have,fx=sin x⇒fx=0 , x=2nπ sin x, 2nπ<x<2n+1π0, x=2n+1π-sin x, 2n+1π<x<2n+2πWhen, x is in first or second quadrant, i.e., 2nπ<x<2n+1π , we have fx=sin x which being a trigonometrical function is continuous and differentiable in 2nπ, 2n+1πWhen, x is in third or fourth quadrant, i.e., 2n+1π<x<2n+2π , we have fx=-sin x which being a trigonometrical function is continuous and differentiable in 2n+1π, 2n+2πThus possible point of non-differentiability of fx are x=2nπ and 2n+1πNow, LHD at x=2nπ =limx→2nπ- fx- f2nπx-2nπ =limx→2nπ- -sin x- 0x-2nπ =limx→2nπ- -cos x1-0 By L’Hospital rule =-1And RHD at x=2nπ =limx→2nπ+ fx- f2nπx-2nπ =limx→2nπ+ sin x- 0x-2nπ =limx→2nπ+ cos x1-0 By L’Hospital rule =1∴lim x→2nπ-fx ≠limx→2nπ+fxSo fx is not differentiable at x=2nπNow, LHD at x=2n+1π =limx→2n+1π- fx- f2n+1πx-2n+1π =limx→2n+1π- sin x- 0x-2n+1π =limx→2n+1π- cos x1-0 By L’Hospital rule =-1And RHD at x=2n+1π =limx→2n+1π+ fx- f2n+1πx-2n+1π =limx→2n+1π+ -sin x- 0x-2n+1π =limx→2n+1π+ -cos x1-0 By L’Hospital rule =1∴lim x→2n+1π-fx ≠limx→2n+1π+fxSo fx is not differentiable at x=2n+1πTherefore, fx is neither differentiable at 2nπ nor at 2n+1πi.e.fx is neither differentiable at even multiple of π nor at odd multiple of πi.e. fx is not differentiable at x=nπTherefore, f(x) is everywhere continuous but not differentiable at nπ.

Q17.

Answer :

(c) f (x) is everywhere continuous but not differentiable at x=2n+1π2, n∈Z.

We have,fx=cos x⇒fx=cos x, 2nπ≤x<4n+1π20, x=4n+1π2 -cos x, 4n+1π2<x<4n+3π2 0 , x=4n+3π2 cos x, 4n+3π2< x≤2n+2πWhen, x is in first quadrant, i.e. 2nπ≤x<4n+1π2 , we have fx=cos x which being a trigonometrical function is continuous and differentiable in 2nπ, 4n+1π2When, x is in second quadrant or in third quadrant, i.e., 4n+1π2<x<4n+3π2 , we have fx=-cos x which being a trigonometrical function is continuous and differentiable in 4n+1π2, 4n+3π2When, x is in fourth quadrant, i.e., 4n+3π2< x≤2n+2π , we have fx=cos x which being a trigonometrical function is continuous and differentiable in 4n+3π2, 2n+2πThus possible point of non-differentiability of fx are x=4n+1π2, 4n+3π2Now, LHD at x=4n+1π2 =limx→4n+1π2- fx- f4n+1π2x-4n+1π2 =limx→4n+1π2- cos x- 0x-4n+1π2 =limx→4n+1π2- -sin x1-0 By L’Hospital rule =-1And RHD at x=4n+1π2 =limx→4n+1π2+ fx- f4n+1π2x-4n+1π2 =limx→4n+1π2+ -cos x- 0x-4n+1π2 =limx→4n+1π2+ sin x1-0 By L’Hospital rule =1∴lim x→4n+1π2-fx ≠limx→4n+1π2+fxSo fx is not differentiable at x=4n+1π2Now, LHD at x=4n+3π2 =limx→4n+1π2- fx- f4n+3π2x-4n+3π2 =limx→4n+3π2- -cos x- 0x-4n+3π2 =limx→4n+3π2- sin x1-0 By L’Hospital rule =1And RHD at x=4n+3π2 =limx→4n+3π2+ fx- f4n+3π2x-4n+3π2 =limx→4n+3π2+ cos x- 0x-4n+3π2 =limx→4n+3π2+ -sin x1-0 By L’Hospital rule =-1∴lim x→4n+3π2-fx ≠limx→4n+3π2+fxSo fx is not differentiable at x=4n+3π2Therefore, fx is neither differentiable at 4n+1π2 nor at 4n+3π2i.e. fx is not differentiable at odd multiples of π2i.e. fx is not differentiable at x=2n+1π2Therefore, f(x) is everywhere continuous but not differentiable at 2n+1π2 .

Q18.

Answer :

(b) continuous everywhere

Graph of the function f (x) = 1 + |cos x| is as shown below:

1

From the graph, we can see that f (x) is everywhere continuous but not differentiable at x=2n+1π2, n∈Z

Q19.

Answer :

(b) continuous but not differentiable at x = (2n + 1) π/2, n ∈ Z

We have,fx=cos x⇒fx=cos x, 2nπ≤x<4n+1π20, x=4n+1π2 -cos x, 4n+1π2<x<4n+3π2 0 , x=4n+3π2 cos x, 4n+3π2< x≤2n+2πWhen, x is in first quadrant, i.e. 2nπ≤x<4n+1π2 , we have fx=cos x which being a trigonometrical function is continuous and differentiable in 2nπ, 4n+1π2When, x is in second quadrant or in third quadrant, i.e., 4n+1π2<x<4n+3π2 , we have fx=-cos x which being a trigonometrical function is continuous and differentiable in 4n+1π2, 4n+3π2When, x is in fourth quadrant, i.e., 4n+3π2< x≤2n+2π , we have fx=cos x which being a trigonometrical function is continuous and differentiable in 4n+3π2, 2n+2πThus possible point of non-differentiability of fx are x=4n+1π2, 4n+3π2Now, LHD at x=4n+1π2 =limx→4n+1π2- fx- f4n+1π2x-4n+1π2 =limx→4n+1π2- cos x- 0x-4n+1π2 =limx→4n+1π2- -sin x1-0 By L’Hospital rule =-1And RHD at x=4n+1π2 =limx→4n+1π2+ fx- f4n+1π2x-4n+1π2 =limx→4n+1π2+ -cos x- 0x-4n+1π2 =limx→4n+1π2+ sin x1-0 By L’Hospital rule =1∴lim x→4n+1π2-fx ≠limx→4n+1π2+fxSo fx is not differentiable at x=4n+1π2Now, LHD at x=4n+3π2 =limx→4n+1π2- fx- f4n+3π2x-4n+3π2 =limx→4n+3π2- -cos x- 0x-4n+3π2 =limx→4n+3π2- sin x1-0 By L’Hospital rule =1And RHD at x=4n+3π2 =limx→4n+3π2+ fx- f4n+3π2x-4n+3π2 =limx→4n+3π2+ cos x- 0x-4n+3π2 =limx→4n+3π2+ -sin x1-0 By L’Hospital rule =-1∴lim x→4n+3π2-fx ≠limx→4n+3π2+fxSo fx is not differentiable at x=4n+3π2Therefore, fx is neither differentiable at 4n+1π2 nor at 4n+3π2i.e. fx is not differentiable at odd multiples of π2i.e. fx is not differentiable at x=2n+1π2Therefore, f(x) is everywhere continuous but not differentiable at 2n+1π2 .

Q20.

Answer :
(a) continuous as well as differentiable for all x ∈ R

Here, fx=sin πx-π4+x2

Since, we know that πx-π=nπ and sinnπ=0.

∵4+x2≠0

∴f(x) = 0 for all x

Thus, f(x) is a constant function and it is continuous and differentiable everywhere.

 

Page 10.19 (Multiple Choice Questions)

Q21.

Answer :

(b) b = 0

We have,fx=a+bx+cx4fx=a+bx+cx4        x≥0a-bx+cx4        x<0Here, fx is differentiable at x=0∴ LHD at x=0 = RHD at x=0⇒limx→0-fx-f0x-0=limx→0+fx-f0x-0⇒limx→0-a-bx+cx4-ax=limx→0+a+bx+cx4-ax⇒limh→0a-b0-h+c0-h4-a0-h=limh→0a+b0+h+c0+h4-a0+h⇒limh→0a+bh+ch4-a-h=limh→0a+bh+ch4-ah⇒limh→0bh+ch4-h=limh→0bh+ch4h⇒limh→0-b-ch3=limh→0b+ch3⇒-b=b⇒2b=0⇒b=0

Q22.

Answer :

(d) neither differentiable nor continuous at x = 3

We have,fx=3-x+3+x, where x denotes the least integer greater than or equal to x.fx=3-x+3+3, 2<x<3-3+x+3+4, 3<x<4⇒ fx=-x+9 2<x<3x+4 3<x<4Here,LHL at x=3=limx→3-fx=limx→3–x+9=-3+9=6RHL at x=3=limx→3+fx=limx→3-x+4=3+4=7Since, LHL at x=3≠RHL at x=3Hence, given function is not continuous at x= 3Therefore, the function will also not be differentiable at x=3

Q23.

Answer :

(d) none of these

we have,

(LHL at x = 0 )= limx →0- f(x) = limh →0 f(0 – h) = limh →0 f(- h)= limh →0 11 + e1/-h= limh →0 11 + 1e1/h [limh→01e1/h = 0] = 11 + 0= 1(RHL at x = 0) = limx →0+ f(x) = limh →0 f(0 + h)= limh →0 11 + e1/h= 11 + e1/0 = 11 + e∞ = 11 + ∞

So, f(x) is not continuous at x = 0

Differentiability at x = 0

(LHD at x = 0 ) = limx →0- f(x) – f(0)x – 0= limh→0 f(0 -h) – f(0)0 -h – 0= limh→0 f(-h) – 0 -h= limh→0 11 + e1/ – h -h= limh→0 11 + 1e1/ h -h = limh→0 11 + 0 -h = limh→0 1 -h = -∞(RHD at x = 0) = limx →0+ f(x) – f(0)x – 0= limh →0 f(0 + h) – f(0)0 +h – 0= limh →0 f(h) -0 h = limh→0 11 + e1/ hh = ∞So, f(x) is also not differentiable at x = 0.

Q24.

Answer :

(a) continuous and differentiable

we have,

fx=1-cos xx sin x,x≠012 ,x=0

fx=1-cos xx sin x,x≠012 ,x=0Continuity at x = 0(LHL at x = 0) = limx →0- f(x) = limh →0 f(0 – h) = limh →0 f(- h) = limh →0 1-cos (-h)(-h) sin (-h) = limh →0 1-cos hh sin h = limh →0 1-cosh limh →0 1h sin h = 1 -cos(0) . 10 sin 0 = 0
(RHL at x = 0) = limx →0+ f(x) = limh →0 f(0 + h) = limh →0 f( h) = limh →0 1-cos (h)(h) sin (h) = limh →0 1-cos hh sin h = limh →0 1-cosh limh →0 1h sin h = 1 – cos 0. 10 sin 0 = 0
Hence, f(x)is continuous at x = 0.
For differentiability at x = 0

(LHD at x = 0 ) =limx →0- f(x) – f(0)x -0 = limh→0 f(0 – h) – f(0)0 – h -0 = limh→0 f(- h) -12- h = limh→0 1 – cos(-h)- h sin(-h) -12- h = 1h limh→0 1 – cosh h sin h -limh→0 12 = 12 – 0= 12

RHD at x = 0 ) =limx →0+ f(x) – f(0)x -0 = limh→0 f(0 + h) – f(0)0 – h -0 = limh→0 f( h) -12- h = limh→0 1 – cos(h)- h sin(h) -12- h = -1hlimh→0 1 – cosh h sin h -limh→0 12 = 12 – 0 = 12

Q25.

Answer :

(b) R-3

LHD at x=3=limx→3-fx-f3x-3LHD at x=3=limh→0f3-h-f33-h-3LHD at x=3=limh→0f3-h-f3-hLHD at x=3=limh→03-h-3cos3-h-f3-hLHD at x=3=limh→0hcos3-h-0-h=-cos3RHD at x=3=limx→3+fx-f3x-3RHD at x=3=limh→0f3+h-f33+h-3RHD at x=3=limh→0f3+h-f3hRHD at x=3=limh→03+h-3cos3+h-f3hRHD at x=3=limh→0hcos3+h-0h=cos3

So, f(x) is not differentiable at x = 3.

Also, f(x) is differentiable at all other points because both modulus and cosine functions are differentiable and the product of two differentiable function is differentiable.

Q26.

Answer :

(b) differentiable at x = − 1

fx=1 ,x≤-1x,-1<x<10 ,x≥1

Differentiabilty at x = − 1
(LHD x = − 1)
lim x →- 1- f(x) – f(-1) x + 1=lim x →- 1 f(x) – f(-1) x + 1= lim x →- 1 1 – 1 -1 + 1= 0

(RHD x = − 1)
= limx →-1+f (x) – f(-1)x + 1 = limx →-1f (x) – f(-1)x + 1 = limx →-1f (x) – f(-1)x + 1= limx →-1|x| – |-1|x + 1= 1 – 1|-1 + 1= 0

 

DIFFERENTIATION

Page 11.15 Ex.11.1

Q1.

Answer :

Let fx=e-x⇒fx+h=e-x+h ddxfx=limh→0fx+h-fxh =limh→0e-x+h-e-xh =limh→0e-x×e-h-e-xh =limh→0e-xe-h-1-h×-1 =-e-x limh→0e-h-1-h =-e-x ∵limh→0e-h-1-h=1So, ddxe-x=-e-x

Q2.

Answer :

Let fx=e3x⇒fx+h=e3x+hddxfx=limh→0fx+h-fxh =limh→0e3x+h-e3xh =limh→0e3xe3h-e3xh =limh→0e3xe3h-13h×3 =3e3xlimh→0e3h-13h =3e3xHence, ddxe3x=3e3x

Q3.

Answer :

Let fx=eax+b ⇒ fx+h=eax+h+b ∴ ddxfx=limh→0fx+h-fxh =limh→0eax+h+b-eax+bh =limh→0eax+beah-eax+bh =limh→0eax+beah-1ah×a =aeax+blimh→0eah-1ah =aeax+bSo, ddxeax+b=aeax+b

Q4.

Answer :

Let fx=ecosx ⇒ fx+h=ecosx+h ∴ ddxfx=limh→0fx+h-fxh =limh→0ecosx+h-ecosxh =limh→0 ecosxecosx+h-cosx-1h =limh→0 ecosxecosx+h-cosx-1cosx+h cosx×cosx+h-cosxh =ecosxlim h→0 cosx+h-cosxh ×limh→0ecosx+h-cosx-1cosx+h-cosx =ecosxlimh→0 cosx+h-cosxh ∵limh→0ex-1x=1 =ecosxlimh→0 -2sinx+h+x2sinx+h-x2h ∵ cosA-cosB=-2sin A+B2sinA-B2 =ecosxlimh→0-sin2x+h21×sinh2h2 =ecosxlimh→0-sin2x+h21× lim h→0sinh2h2 =ecosxlimh→0-sin2x+h2 ∵ sinxx=1 =ecosx-sinx =-sinxecosxHence, ddxecosx=-sinxecosx

Q5.

Answer :

Let fx=e2x ⇒fx+h=e2x+h ∴ ddxfx=limh→0fx+h-fxh =limh→0e2x+h-e2xh =limh→0 e2xe2x+h-2x-1h =e2xlimh→0 e2x+h-2x-12x+h-2x×limh→02x+h-2xh =e2xlimh→02x+h-2xh ∵ limh→0eh-1h=1 =e2xlimh→0 2x+h-2xh × 2x+h+2x2x+h+2x Rationalising the numerator =e2xlimh→02x+h-2xh2x+h+2x =e2xlimh→02x+2h-2xh2x+h+2x =e2xlimh→02hh2x+h+2x =e2xlimh→022x+h+2x =e2x2xHence, ddxe2x=e2x2x

Q6.

Answer :

Let fx=log cosx⇒fx+h=log cosx+h∴ddxfx=limh→0fx+h=fxh =limh→0log cosx+h-log cosxh =limh→0logcosx+hcosxh ∵logA-logB=logAB =limh→0log1+cosx+hcosx-1h =limh→0log1+cosx+h-cosxcosxcosx+h-cosxcosx×limh→0cosx+h-cosxcosx =1×limh→0cosx+h-cosxcosx × h ∵limx→0log1+xx=1 =limh→0-2sinx+h+x2sinx+h-x2cosx × h =-2limh→0sin2x+h2×sinh22cosx ×h2 =-2sinx2cosx ∵ limx→0sinxx=1 =-tanxSo, ddxlog cosx=-tanx

Q7.

Answer :

i Let fx=ecotx⇒fx+h=ecotx+h∴ ddxfx=limh→0fx+h-fxh =limh→0ecotx+h-ecotxh =limh→0ecotxecotx+h-cotx-1h =ecotxlimh→0ecotx+h-cotx-1cotx+h-cotx×cotx+h-cotxh =ecotxlimh→0cotx+h-cotxh×cotx+h+cotxcotx+h+cotx ∵limx→0ex-1x=1 and rationalizing the numerator =ecotxlimh→0cotx+h-cotxhcotx+h+cotx =ecotxlimh→0cotx+hcotx+1cotx-x-hhcotx+h+cotx ∵cotA-B=cotAcotB+1cotB-cotA =ecotxlimh→0cotx+hcotx+1cot-h×hcotx+h+cotx =-ecotxlimh→0cotx+hcotx+1htanhcotx+h+cotx =ecotx×cot2x+12cotx ∵ limx→0tanxx=1 =-ecotx×cosec2x2cotx ∵ 1+cot2x=cosec2x∴ddxecotx=-ecotx×cosec2x2cotx

ii Let fx=x2ex⇒fx+h=x+h2ex+h =limh→0fx+h-fxh =limh→0x+h2ex+h-x2exh =limh→0x2ex+h-x2exh+2xhex+hh+h2ex+hh =limh→0x2exex+h-x-1h+2xex+h+hex+h =limh→0x2exeh-1h+2xex+h+hex+h =x2ex+2xex+0xex ∵limx→0ex-1x=1∴ddxx2ex=exx2+2x

iii Let fx=log cosecx ⇒ fx+h=log cosecx+h∴ddxfx=limh→0fx+h-fxh =limh→0log cosecx+h-log cosecxh =limh→0logcosecx+hcosecxh =limh→0log1+sinxsinx+h-1h =limh→0log1+sinx-sinx+hsinx+hsinx-sinx+hsinx+hsinx-sinx+hsinx+hh =limh→02cosx+x+h2sinx-x-h2sinx+hh ∵limx→0log1+xx=1 and sinA-sinB=2cosA+B2sinA-B2 =limh→02cos2x+h2sinx+h -2sin-h2-h2 ∵limx→0sinxx=1 =-cotx∴ddxlog cosecx=-cotx

iv Let fx=sin-12x+3 ⇒fx+h=sin-12x+h+3 ⇒fx+h=sin-12x+2h+3∴ ddxfx=limh→0fx+h-fxh =limh→0sin-12x+2h+3-sin-12x+3h =limh→0sin-12x+2h+31-2x+32-2x+31-2x+2h+32h ∵ sin-1x-sin-1y=sin-1×1-y2-y1-x2 =limh→0sin-1zz×zhwhere, z=2x+2h+31-2x+32-2x+31-2x+2h+32 and limh→0sin-1hh=1 =limh→0zh =limh→0 2x+2h+31-2x+32-2x+31-2x+2h+32 h =limh→02x+2h+321-2x+32-2x+321-2x+2h+32h2x+2h+31-2x+32+2x+31-2x+2h+32 Rationalizing numerator =limh→02x+32+4h2+4h2x+31-2x+32-2x+321-2x+32-4h2-4h2x+3h2x+2h+31-2x+32+2x+31-2x+2h+32 =limh→02x+32+4h2+4h2x+3-2x+34-4h22x+32-4h2x+33-2x+32+2x+34+4h22x+32+4h2x+33h2x+2h+31-2x+32+2x+31-2x+2h+32 =limh→04hh+2x+3h2x+2h+31-2x+32+2x+31-2x+2h+32 =42x+32x+31-2x+32+2x+31-2x+32 =42x+322x+31-2x+32 =21-2x+32∴ ddxsin-12x+3=21-2x+32

 

Page 11.35 Ex.11.2

Q1.

Answer :

Let y=sin3x+5Differentiating y with respect to x we get,dydx=ddxsin3x+5 =cos3x+5ddx3x+5 using chain rule =cos3x+5 ×3 =3cos3x+5So,ddxsin3x+5=3cos3x+5

Q2.

Answer :

Let y=tan2xDifferentiating with respect to x we get,dydx=2 tanxddxtanx using chain rule =2 tanx × sec2x So, ddxtan2x=2 tanxsec2x

Q3.

Answer :

Let, y=tanx°+45°⇒y=tanx+45π180Differentiating it with respect to x we get,dydx=ddxtanx+45π180 =sec2x+45π180×ddxx+45π180 Using chain rule =π180sec2x°+45°So, ddxtanx°+45°=π180sec2x°+45°

Q4.

Answer :

Let y=sinlogxDifferentiate it with respect to x we get,dydx=ddxsinlogx =coslogxddxlogx using chain rule =1xcoslogxSo, ddxsinlogx=1xcoslogx

Q5.

Answer :

Let y=esinxDifferentiate it with respect to x we get,dydx=ddxesinx =esinxddxsinx using chain rule =esinx×cosxddxx using chain rule =esinx×cosx×12x =cosx esinx2xSo, ddxesinx=cosx esinx2x

Q6.

Answer :

Let y=etanxDifferentiate it with respect to x we get,dydx=ddxetanx =etanxddxtanx using chain rule =etanx × sec2xSo, ddxetanx= sec2xetanx

Q7.

Answer :

Let y=sin22x+1Differentiate it with respect to x we get,dydx=ddxsin22x+1 =2sin2x+1ddxsin2x+1 using chain rule =2sin2x+1 cos2x+1 ddx2x+1 using chain rule =4sin2x+1 cos2x+1 =2sin22x+1 ∵ sin2A=2sinAcosA =2 sin4x+2So, ddxsin22x+1=2 sin4x+2

Q8.

Answer :

Let y=log72x-3⇒ y=log2x-3log7 ∵ logab=logblogaDifferentiate it with respect to x we get,dydx=1log7ddxlog2x-3 =1log7×12x-3ddx2x-3 using chain rule =22x-3log7Hence, ddxlog72x-3=22x-3log7

Q9.

Answer :

Let y=tan5x°⇒ y=tan5x×π180Differentiate it with respect to x we get,dydx=ddxtan5x×π180 =sec25x×π180ddx5x×π180 using chain rule =5π180sec25x×π180 =5π180sec25x°Hence, ddxtan5x°=5π180sec25x°

Q10.

Answer :

Let y=2x3Differentiate it with respect to x we get,dydx=ddx2x3 =2×3×loge2ddxx3 using chain rule =3×2 × 2×3×loge2Hence, ddx2x3=3×2 × 2x3loge2

Q11.

Answer :

Let y=3exDifferentiate it with respect to x we get,dydx=ddx3ex =3exlog3ddxex using chain rule =ex×3exlog3So, ddx3ex=ex×3exlog3

Q12.

Answer :

Let y=logx3 ⇒ y=log3logx ∵ logab=logblogaDifferentiate it with respect to x we get,dydx=ddxlog3logx =log3ddxlogx-1 =log3 × -1logx-2ddxlogx using chain rule =-log3logx2×1x =-log3logx2×1x×1log3 =-1xlog3log3x2 ∵logbloga=logabSo, ddxlogx3=-1xlog3log3x2

Q13.

Answer :

Let y=3×2+2xDifferentiate it with respect to x we get,dydx=ddx3x2+2x =3×2+2x × loge3ddxx2+2x using chain rule =2x+23×2+2x loge3So, ddx3x2+2x=2x+23×2+2x loge3

Q14.

Answer :

Let y=a2-x2a2+x2⇒ y=a2-x2a2+x212Differentiate it with respect to x we get,dydx=ddxa2-x2a2+x212 =12a2-x2a2+x212-1×ddxa2-x2a2+x2 Using chain rule =12a2-x2a2+x2-12×a2+x2ddxa2-x2-a2-x2ddxa2+x2a2+x22 =12a2+x2a2-x212-2xa2+x2-2xa2-x2a2+x22 =12a2+x2a2-x212-2xa2-2×3-2xa2+2x3a2+x22 =12a2+x2a2-x212-4xa2a2+x22 =-2xa2a2-x2a2+x232So, ddxa2-x2a2+x2=-2a2xa2-x2a2+x232

Q15.

Answer :

Let y=3x logxDifferentiate it with respect to x we get,dydx=ddx3x logx =3x logx×loge3ddxx logx Using chain rule =3x logx×loge3xddxlogx+logxddxx =3x logx×loge3xx+logx =3x logx1+logx×loge3So, ddx3x logx=3x logx1+logxloge3

Q16.

Answer :

Let y=1+sinx1-sinxDifferentiate it with respect to x we get,dydx=ddx1+sinx1-sinx12 =121+sinx1-sinx12-1ddx1+sinx1-sinx =121-sinx1+sinx121-sinxcosx-1+sinx-cosx1-sinx2 =121-sinx121+sinx12cosx-cosx sinx+cosx+sinx cosx1-sinx2 =12×2cosx1+sinx1-sinx32 =cosx1+sinx1-sinx32 =cosx1+sinx1-sinx1-sinx =cosx1-sin2x×1-sinx =cosxcosx1-sinx Using 1-sin2x=cos2x =11-sinx×1+sinx1+sinx =1+sinx1-sin2x =1+sinxcos2x =1cosx1cosx+sinxcosx =secxsecx+tanxHence, dydx=secxsecx+tanx

Q17.

Answer :

Let y=1-x21+x2⇒ y=1-x21+x212Differentiate it with respect to x we get,dydx=ddx1-x21+x212 =121-x21+x212-1×ddx1-x21+x2 Using chain rule =121-x21+x2-12×1+x2ddx1-x2-1-x2ddx1+x21+x22 =121+x21-x212-2×1+x2-2×1-x21+x22 =121+x21-x212-2x-2×3-2x+2×31+x22 =121+x21-x212-4×1+x22 =-2×1-x21+x232

Q18.

Answer :

Let y=log sinx2Differentiate with respect to x we get,dydx=ddxlog sinx2 =2log sinxddxlog sinx =2log sinx×1sinxddxsinx =2log sinx×1sinx×cosx =2log sinxcotxSo, ddxlog sinx2=2log sinxcotx

Q19.

Answer :

Let y=1+x1-x⇒ y=1+x1-x12Differentiate it with respect to x we get,dydx=ddx1+x1-x12 =121+x1-x12-1×ddx1+x1-x Using chain rule =121+x1-x-12×1-xddx1+x-1+xddx1-x1-x2 Using quotient rule =121-x1+x121-x1-1+x-11-x2 =121-x1+x121-x+1+x1-x2 =121-x121+x12×21-x2 =11+x1-x32So, ddx1+x1-x=11+x1-x32

Q20.

Answer :

Let y=sin1+x21-x2Differentiate it with respect to x we get,dydx=ddxsin1+x21-x2 =cosx1+x21-x2ddx1+x21-x2 Using chain rule =cosx1+x21-x21-x2ddx1+x2-1+x2ddx1-x21-x22 Using quotient rule =cosx1+x21-x21-x22x-1+x2-2×1-x22 =cosx1+x21-x22x-2×3+2x+2×31-x22 =4×1-x22cosx1+x21-x2So,ddxsin1+x21-x2=4×1-x22cosx1+x21-x2

Q21.

Answer :

Let y=e3x cos2xDifferentiate it with respect to x we get,dydx=ddxe3x cos2x =e3x×ddxcos2x+cos2xddxe3x Using product rule =e3x×-sin2xddx2x+cos2xe3xddx3x Using chain rule =-2e3x sin2x+3e3x cos2x =e3x3 cos2x-2 sin2xSo,ddxe3x cos2x=e3x3 cos2x-2 sin2x

Q22.

Answer :

Let y=sinlog sinxDifferentiate it with respect to x we get,dydx=ddxsinlog sinx =coslog sinxddxlog sinx Using chain rule =coslog sinx×1sinxddx sinx Using chain rule =coslog sinxcosxsinx =coslog sinx cotxHence, ddxsinlog sinx=coslog sinx cotx

 

Page 11.36 Ex.11.2

Q23.

Answer :

Let y=etan3xDifferentiate it with respect to x we get,dydx=ddxetan3x =etan3xddxtan3x =etan3xsec23x ×ddx3x =etan3xsec23x ×3So, ddxetan3x=3etan3xsec23x

Q24.

Answer :

Let y=ecotx⇒ y=ecotx12Differentiate it with respect to x we get,dydx=ddxecotx12 =ecotx12×ddxcotx12 Using chain rule =ecotx×12cotx12-1ddxcotx =-ecotx×cosec2x2cotxSo, ddxecotx=-ecotx×cosec2x2cotx

Q25.

Answer :

Let y=logsinx1+cosxDifferentiate it with respect to x, we getdydx=ddxlogsinx1+cosx =1sinx1+cosx×ddxsinx1+cosx Using chain rule =1+cosxsinx1+cosxddxsinx-sinxddx1+cosx1+cosx2 Using quotient rule =1+cosxsinx1+cosxcosx-sinx-sinx1+cosx2 =1+cosxsinxcosx+cos2x+sin2x1+cosx2 =1+cosxsinx1+cosx1+cosx2 =1sinx =cosecxSo, ddxlogsinx1+cosx=cosecx

Q26.

Answer :

Let y=log1-cosx1+cosx⇒ y=log1-cosx1+cosx12⇒ y=12log1-cosx1+cosx using logab=blogaDifferentiate it with respect to x we get,dydx=ddx12log1-cosx1+cosx =12×11-cosx1+cosx×ddx1-cosx1+cosx Using chain rule =121+cosx1-cosx1+cosxddx1-cosx-1-cosxddx1+cosx1+cosx2 Using quotient rule =121+cosx1-cosx1+cosxsinx-1-cosx-sinx1+cosx2 =121+cosx1-cosxsinx+sinx cosx+sinx-sinx cosx1+cosx2 =121+cosx1-cosx2sinx1+cosx2 =sinx1-cosx1+cosx =sinx1-cos2x =sinxsin2x =1sinx =cosecxSo, ddxlog1-cosx1+cosx=cosecx

Q27.

Answer :

Let y=tanesinxDifferentiate it with respect to x we get, dydx=ddxtanesinx =sec2esinxddxesinx Using chain rule =sec2esinx×esinx×ddxsinx =cosxsec2esinx×esinxSo, ddxtanesinx=cosxsec2esinxesinx

Q28.

Answer :

Let y=logx+x2+1Differentiate with respect to x we get,dydx=ddxlogx+x2+1 =1x+x2+1ddxx+x2+112 Using chain rule =1x+x2+11+12×2+112-1ddxx2+1 =1x+x2+11+12×2+1×2x =1x+x2+1×2+1+xx2+1 =1×2+1So, ddxlogx+x2+1=1×2+1

Q29.

Answer :

Let y=exlogxx2Differentiate with respect to x we get,dydx=x2ddxexlogx-exlogxddxx2x22 Using quotient rule =x2exddxlogx+logxddxex-ex logx×2xx4 Using product rule =x2exx+ex logx-2xex logxx4 =x2ex1+xlogxx-2xex logxx4 =xex1+xlogx-2logxx4 =xexx31x+x logxx-2logxx =exx-21x+logx-2xlogxSo, ddxexlogxx2 = exx-21x+logx-2xlogx

Q30.

Answer :

Let y=log cosecx-cotxDifferentiate it with respect to x we get,dydx=ddxlog cosecx-cotx =1cosecx-cotxddxcosecx-cotx =1cosecx-cotx×-cosecx cotx+cosec2x =cosecxcosecx-cotxcosecx-cotx =cosecxSo,ddxlog cosecx-cotx=cosecx

Q31.

Answer :

Let y=e2x+e-2xe2x-e-2x
Differentiate with respect to x we get,
dydx=ddxe2x+e-2xe2x-e-2x =e2x-e-2xddxe2x+e-2x-e2x+e-2xddxe2x-e-2xe2x-e-2×2 Using quotient rule and chain rule =e2x-e-2xe2xddx2x+e-2xddx-2x-e2x+e-2xe2xddx2x-e-2xddx-2xe2x-e-2×2 =e2x-e-2x2e2x-2e-2x-e2x+e-2x2e2x+2e-2xe2x-e-2×2 =2e2x-e-2×2-2e2x+e-2x2e2x-e-2×2 =2e4x+e-4x-2e2xe-2x-e4x-e-4x-2e2xe-2xe2x-e-2×2 =-8e2x-e-2x2So, ddxe2x+e-2xe2x-e-2x=-8e2x-e-2×2

Q32.

Answer :

Let y=logx2+x+1×2-x+1

Differentiate with respect of x we get,

dydx=ddxlogx2+x+1×2-x+1 =1×2+x+1×2-x+1ddxx2+x+1×2-x+1 Using chain rule and quotient rule =x2-x+1×2+x+1×2-x+1ddxx2+x+1-x2+x+1ddxx2-x+1×2-x+12 =x2-x+1×2+x+1×2-x+12x+1-x2+x+12x-1×2-x+12 =x2-x+1×2+x+12×3-2×2+2x+x2-x+1-2×3-2×2-2x+x2+x+1×2-x+12 =-4×2+2×2+2×2+x+1×2-x+1 =-4×2+2×2+2×2+12-x2 =-2×2-1×4+1+2×2-x2 =-2×2-1×4+x2+1So, ddxlogx2+x+1×2-x+1=-2×2-1×4+x2+1

Q33.

Answer :

Let y=tan-1ex
Differentiate it with respect to x we get,
dydx=ddxtan-1ex =11+ex2ddxex Using chain rule =11+e2x×ex =ex1+e2xSo, ddxtan-1ex=ex1+e2x

Q34.

Answer :

Let y=esin-12x
Differentiate it with respect to x we get,
dydx=ddxesin-12x =esin-12x×ddxsin-12x Using chain rule =esin-12x×11-2x2ddx2x =2esin-12×1-4x2So, ddxesin-12x=2esin-12×1-4×2

Q35.

Answer :

Let y=sin2 sin-1x
Differentiate it with respect to x we get,
dydx=ddxsin2sin-1x =cos2 sin-1xddx2 sin-1x Using chain rule =cos2 sin-1x×211-x2 =2cos2 sin-1×1-x2So,ddxsin2sin-1x=2cos2 sin-1×1-x2

Q36.

Answer :

Let y=etan-1x
Differentiate it with respect to x we get,
dydx=ddxetan-1x =etan-1xddxtan-1x Using chain rule =etan-1x×11+x2ddxx =etan-1×1+x×12x =etan-1x2x1+xSo, ddxetan-1x=etan-1x2x1+x

Q37.

Answer :

Let y=tan-1×2⇒y=tan-1×212
Differentiate it with respect to x we get,
dydx=ddxtan-1×212 =12tan-1×212-1ddxtan-1×2 Using chain rule =12tan-1×2-12×11+x22×ddxx2 =444+x2tan-1×2 =14+x2tan-1x2So, ddxtan-1×2=14+x2tan-1×2

Q38.

Answer :

Let y=logtan-1x
Differentiate it with respect to x we get,
dydx=ddxlogtan-1x =1tan-1x×ddxtan-1x Using chain rule =11+x2tan-1xSo, ddxlogtan-1x=11+x2tan-1x

Q39.

Answer :

Let y=2x cosxx2+32
Differentiate it with respect to x we get,
dydx=ddx2x cosxx2+32 =x2+32ddx2x cosx-2x cosxddxx2+32×2+322 Using quotient rule =x2+322xddxcosx+cosxddx2x-2x cosx2x2+3ddxx2+3×2+34 Using Product rule and chain rule =x2+32-2x sinx+cosx2x loge2-22x cosxx2+32xx2+34 =2xx2+3×2+3cosx loge2-sinx-4x cosxx2+34 =2xx2+32cosx loge2-sinx-4x cosxx2+3So, ddx2x cosxx2+32=2xx2+32cosx loge2-sinx-4x cosxx2+3

Q40.

Answer :

Let y=x sin2x+5x+kk+tan2x3

Differentiate it with respect to x we get,

dydx=ddxx sin2x+5x+kk+tan6x =ddxx sin2x+ddx5x+ddxkk+ddxtan6x =xddxsin2x+sin2xddxx+5x loge5+0+6tan5x×ddxtanx Using product rule and chain rule =x cos2xddx2x+sin2x+5xloge5+6tan5x sec2x =2x cos2x+sin2x+5x loge5+6tan5x sec2xSo, ddxx sin2x+5x+kk+tan2x3=2xcos2x+sin2x+5x loge5+6tan5x sec2x

Q41.

Answer :

Let y=log3x+2-x2log2x-1
Differentiate it with respect to x we get,

dydx=ddxlog3x+2-x2log2x-1 =ddxlog3x+2-ddxx2log2x-1 =13x+2ddx3x+2-x2ddxlog2x-1+log2x-1ddxx2 Using product rule and chain rule =33x+2-2x22x-1-2x log2x-1So, ddxlog3x+2-x2log2x-1=33x+2-2x22x-1-2x log2x-1

Q42.

Answer :

Let y=3×2 sinx7-x2
Differentiate it with respect to x we get,
dydx=ddx3x2 sinx7-x212 =7-x212×ddx3x2 sinx-3×2 sinxddx7-x2127-x2122 Using quotient rule, chain rule and product rule =7-x212× 3x2ddxsinx+sinxddxx2-3x2sinx × 127-x2×ddx7-x27-x2 =7-x2123x2cosx+2x sinx-3×2 sinx × 127-x2-12-2×7-x2 =7-x212× 3×2 cosx+2x sinx7-x2+3x3sinx7-x2-127-x2 =6x sinx+3x2cosx7-x2+3×3 sinx7-x232So, ddx3x2 sinx7-x2=6x sinx+3x2cosx7-x2+3×3 sinx7-x232

Q43.

Answer :

Let y=sin2log2x+3
⇒dydx=ddxsin2log2x+3 =2 sinlog2x+3ddxsinlog2x+3 Using chain rule =2sinlog2x+3 coslog2x+3ddxlog2x+3 =sin2log2x+3×12x+3ddx2x+3 ∵ 2sinA cosA=sin2A =sin2log2x+322x+3So, ddxsin2log2x+3=sin2 log2x+322x+3

Q44.

Answer :

Let y=exlog sin2x
Differentiate it with respect to x we get,

dydx=ddxex log sin2x =exddxlog sin2x+log sin2xddxex Using product rule and chain rule =ex1sin2xddxsin2x+log sin2xex =exsin2xcos2x ddx2x+ex log sin2x =2cos2xexsin2x+ex log sin2x =2excot2x+exlog sin2xSo, ddxex log sin2x=2excot2x+exlog sin2x

Q45.

Answer :

We have, x2+1+x2-1×2+1-x2-1By rationalising we get,x2+1+x2-1×2+1-x2-1×x2+1+x2-1×2+1+x2-1=x2+1+x2-12×2+12-x2-12=x2+12+x2-12+2×2+1×2-1×2+1-x2+1=x2+1+x2-1+2×4-12=2×2+2×4-12=x2+x4-1Now, Let y=x2+x4-1

Differentiate it with respect to x we get,

dydx=ddxx2+x4-1 =2x+12×4-1×ddxx4-1 =2x+12×4-1×4×3 =2x+2x3x4-1

Q46.

Answer :

Let y=logx+2+x2+4x+1
Differentiate it with respect to x we get,
dydx=ddxlogx+2+x2+4x+1 =1x+2+x4+4x+1ddxx+2+x2+4x+112 Using chain rule =1x+2+x4+4x+1×1+0+12×2+4x+1-12ddxx2+4x+1 =1+2x+42×2+4x+1x+2+x4+4x+1 =x2+4x+1+x+2x+2+x2+4x+1×x2+4x+1 =1×2+4x+1So, ddxlogx+2+x2+4x+1=1×2+4x+1

Q47.

Answer :

Let y=sin-1×44
Differentiate it with respect to x we get,
dydx=ddxsin-1×44 =4sin-1x43ddxsin-1×4 Using chain rule =4sin-1×4311-x42ddxx4 Using chain rule =4sin-1x434x31-x8 =16x3sin-1×431-x8So, ddxsin-1×44=16x3sin-1×431-x8

Q48.

Answer :

Let y=sin-1xx2+a2
Differentiate it with respect to x we get,
dydx=ddxsin-1xx2+a2 =11-xx2+a22×ddxxx2+a2 Using chain rule and quotient rule =11-xx2+a22×x2+a212ddxx-xddxx2+a212x2+a2122 =x2+a2x2+a2-x2x2+a2- x2x2+a2ddxx2+a2x2+a2 =x2+a2ax2+a2x2+a2-x2x2+a2×2x =x2+a2ax2+a2x2+a2-x2x2+a2 =a2ax2+a2 =ax2+a2So,ddxsin-1xx2+a2=ax2+a2

Q49.

Answer :

Let y=exsinxx2+23
Differentiate it with respect to x we get,
dydx=x2+23ddxexsinx-exsinxddxx2+23×2+232 Using quotient rule =x2+23excosx+sinxex-ex sinx 3×2+222xx2+26 Using product rule =x2+23excosx+exsinx-6xex sinxx2+22×2+26 =x2+22×2+2excosx+exsinx-6xex sinxx2+26 =x2+2excosx+exsinx-6xex sinxx2+24 =ex sinx+ex cosxx2+23-6xex sinxx2+24So, dydx=ex sinx+ex cosxx2+23-6xex sinxx2+24

Q50.

Answer :

Let y=3e-3x log1+x
Differentiate it with respect to x we get,

dydx=3ddxe-3x log1+x =3e-3×11+x+log1+x-3e-3x Using product rule and chain rule =3e-3×1+x-3e-3xlog1+x =3e-3×11+x-3 log1+xSo, ddx3e-3x log1+x=3e-3×11+x-3 log1+x

Q51.

Answer :

Let y=x2+2cosx
Differentiate it with respect to x we get,
dydx=cosxddxx2+2-x2+2ddxcosxcosx2 Using quotient rule and chain rule =2xcosx-x2+2-12sinxcosxcosx =2xcosx+x2+2sinx2cosxcosx =4x cosx+x2+2sinx2cosx32 =2xcosx+12×2+2sinxcosx32 =1cosx2x+12×2+2sinxcosx =1cosx2x+x2+2tanx2So, ddxx2+2cosx=1cosx2x+x2+2tanx2

Q52.

Answer :

Let y=x21-x23cos 2x
⇒dydx=cos2xddxx21-x23-x21-x23ddxcos2xcos22x =cos2xx2ddx1-x23+1-x23ddxx2-x21-x23-2sin2xcos22x =cos2x-6×31-x22+1-x232x+2×21-x23sin2xcos22x =2×1-x22cos2x-6×31-x22cos2x+2×21-x23sin2xcos22x =2×1-x2sec2x1-4×2+x1-x2tan2xSo, ddxx21-x23cos2x=2×1-x2sec2x1-4×2+x1-x2tan2x

Q53.

Answer :

Let y=log 3x+2-x2 log 2x-1
Differentiating with respect to x,
dydx=ddxlog 3x+2-x2 log2x-1 =33x+2-x2ddxlog 2x-1+log2x-1ddxx2 =33x+2-2x22x-1+2xlog2x-1 =33x+2-2x22x-1-2xlog2x-1So, ddxlog 3x+2-x2 log2x-1=33x+2-2x22x-1-2xlog2x-1

Q54.

Answer :

Let y=eax secx tan2x
Differentiate it with respect to x,
dydx=ddxeax secx tan2x =eaxddxsecx tan2x+secx tan2xddxeax =eaxsecx tanx tan2x+2sec22xsecx+aeax secx tan2x =eaxsecx tanx tan2x+2sec22xsecx+aeax secx tan2x =aeax secx tan2x+eaxsecx tanx tan2x+2eax secxsec22x =eax secxa tan2x+tanx tan2x+2sec22xSo,ddxeax secx tan2x=eax secxa tan2x+tanx tan2x+2sec22x

Q55.

Answer :

Let y=log cosx2
Differentiating with respect to x,
dydx=ddxlogcosx2 = -2x sinx2cosx2 =-2x tanx2So, ddxlogcosx2=-2x tanx2

Q56.

Answer :

Let y=cos log x2
Differentiating with respect to x,
dydx=ddxcoslog x2 =-sinlog x2ddxlog x2 =-sinlog x22logxx =-2logx sinlog x2 xSo, ddxcoslog x2=-2logx sinlog x2 x

Q57.

Answer :

Let y=log x-1x+1⇒ y=log x-1x+112⇒ y=12log x-1x+1⇒ y=12logx-1-logx+1
Differentiate it with respect to x
dydx=12ddxlogx-1-ddxlogx+1 =121x-1-1x+1 =122×2-1 =1×2-1So,dydx=1×2-1

Q58.

Answer :

Here, y=logx-1-x+1
Differentiate it with respect to x we get,
dydx=ddxlogx-1-x+1 =1x-1-x+1ddxx-1-x+1 Using chain rule =1x-1-x+1ddxx-1-ddxx+1 =1x-1-x+112x-1-12-12x+1-12 =121x-1-x+11x-1-1x+1 =121x-1-x+1-x-1-x+1x-1x+1 =-121x-1x+1 =-12×2-1So,dydx=-12×2-1

Q59.

Answer :

We have, y=xx+2
Differentiating with respect to x,

dydx=ddxxx+2⇒dydx=x+2ddxx-xddxx+2x+22 ⇒dydx=x+2-xx+22⇒dydx=x+2x+22-xx+22⇒dydx=1x+2-xy2x2 ∵x+2=xy⇒dydx=yx-y2x⇒dydx=1xy1-y⇒xdydx=1-yy Hence proved

Q60.

Answer :

We have, y=xx+2
Differentiating with respect to x,

dydx=ddxxx+2⇒dydx=x+2ddxx-xddxx+2x+22 ⇒dydx=x+2-xx+22⇒dydx=x+2x+22-xx+22⇒dydx=1x+2-xy2x2 ∵x+2=xy⇒dydx=yx-y2x⇒dydx=1xy1-y⇒xdydx=1-yy Hence proved

Q61.

Answer :

We have, y=logx+1x
Differentiate it with respect to x,
dydx=ddxlogx+1x =1x+1xddxx+1x =xx+112x-12xx =12xx+1x-1xx =x-12xx+1So, dydx=x-12xx+1

Q62.

Answer :

We have, y=1+ex1-ex
Differentiate it with respect to x,
dydx=ddx1+ex1-ex⇒dydx=121+ex1-ex×ddx1+ex1-ex ⇒dydx=12×1-ex1+ex1-exddx1+ex-1+exddx1-ex1-ex2⇒dydx=121-ex1+ex1-exex+1+exex1-ex2⇒dydx=121-ex1+ex×2ex1-ex2⇒dydx=ex1+ex1-ex11-ex⇒dydx=ex1-ex1-e2x

 

Page 11.37 Ex.11.2

Q63.

Answer :

We have, y=x+1x
Differentiate with respect to x,
⇒dydx=ddxx+1x⇒dydx=ddxx+ddx1x⇒dydx=12x+-12xx⇒dydx=12x-12xx⇒dydx=x-12xx⇒2xdydx=x-1x⇒2xdydx=xx-1x⇒2xdydx=x-1x

Q64.

Answer :

We have, y=x sin-1×1-x2
Differentiating with respect to x,
dydx=ddxx sin-1×1-x2⇒dydx=1-x2ddxx sin-1x-x sin-1xddx1-x21-x22 ⇒dydx=1-x2xddxsin-1x+sin-1xddxx-x sin-1×121-x2ddx1-x21-x2 ⇒dydx=1-x2x1-x2+sin-1x-x sin-1x-2×21-x21-x2⇒dydx=x+1-x2sin-1x+x2sin-1×1-x21-x2⇒1-x2dydx=x+1-x2sin-1×1+x2sin-1×1-x2⇒1-x2dydx=x+1-x2sin-1x+x2sin-1×1-x2⇒1-x2dydx=x+sin-1x-x2 sin-1x+x2sin-1×1-x2⇒1-x2dydx=x+sin-1×1-x2⇒1-x2dydx=x+yx ∵y=x sin-1×1-x2

Q65.

Answer :

We have, y=ex-e-xex+e-x
Differentiating with respect to x,
dydx=ddxex-e-xex+e-x =ex+e-xddxex-e-x-ex-e-xddxex+e-xex+e-x2 =ex+e-xex-e-xddx-x-ex-e-xex+e-xddx-xex+e-x2 =ex+e-xex+e-x-ex-e-xex-e-xex+e-x2 =ex+e-x2-ex-e-x2ex+e-x2 =1-ex-e-x2ex+e-x2 =1-ex-e-xex+e-x2 =1-y2So, dydx=1-y2

Q66.

Answer :

We have, y=x-1 logx-1-x+1 logx+1
Differentiating with respect to x,
dydx=ddxx-1 logx-1-x+1 logx+1 =x-1ddxlogx-1+logx-1ddxx-1-x+1ddxlogx+1+logx+1ddxx+1 =x-1×1x-1ddxx-1+logx-1×1-x+1×1x+1×ddxx+1+logx+11 =1+logx-1-1+logx+1 =logx-1-logx+1 =logx-1x+1 So, dydx=logx-1x+1

Q67.

Answer :

We have, y=ex cosx
Differentiating with respect to x,
dydx=ddxex cosx =exddxcosx+cosxddxex =ex-sinx+excosx =excosx-sinx =2ex cosx2-sinx2 Multiplying and dividing by 2 =2excosπ4cosx-sinπ4sinx =2ex cosx+π4So, dydx=2ex cosx+π4

Q68.

Answer :

We have, y=12log1-cos2x1+cos2x⇒y=12log2sin2x2cos2x ⇒y=12logtan2x⇒y=22log tanx ⇒y=log tanx
Differentiate with respect to x,
dydx=log tanx =1tanx×ddxtanx =sec2xtanx =1cos2x × sinxcosx =1sinx cosx =22sinx cosx =2sin2x So,dydx=2cosec 2x

Q69.

Answer :

We have, y=x sin-1x+1-x2
Differentiate it with respect to x,
dydx=ddxx sin-1x+1-x2 =ddxx sin-1x+ddx1-x2 =x ddxsin-1x+sin-1xddxx+121-x2ddx1-x2 =x1-x2+sin-1x-2×21-x2 =x1-x2+sin-1x-x1-x2 =sin-1x

Q70.

Answer :

We have, y=x2+a2
Squaring both sides we get,
y2=x2+a2⇒2ydydx=ddxx2+a2⇒2ydydx=2x⇒2ydydx=2x⇒ydydx=x⇒ydydx-x=0Hence proved

Q71.

Answer :

We have, y=ex+e-x
Differentiate it with respect to x,
dydx=ddxex+e-x =ddxex+ddxe-x =ex+e-xddx-x Using chain rule =ex+e-x-1 =ex-e-x =ex+e-x2-4ex×e-x ∵a-b=a+b2-4ab =y2-4 ∵ ex+e-x=y

Q72.

Answer :

We have, y=a2-x2

Squaring both sides we get,⇒y2=a2-x2Differentiating both sides w.r.t x, we get,⇒2ydydx=ddxa2-x2⇒2ydydx=0-2x ⇒ydydx=-x⇒ydydx+x=0 Hence proved

Q73.

Answer :

We have, xy=4⇒y=4x
Differentiate it with respect to x,
dydx=ddx4x⇒dydx=4ddxx-1⇒dydx=4-1× x-1-1⇒dydx=4-1×2⇒dydx=-4×2⇒dydx=-44y2 ∵x=4y⇒dydx=-4y216⇒dydx=-y24⇒4dydx=-y2⇒4dydx=3y2-4y2⇒4dydx+4y2=3y2⇒4dydx+y2=3y2
Dividing both side by x,
⇒4xdydx+y2=3y2x⇒ydydx+y2=3y2x ⇒xdydx+y2=3y2y⇒xdydx+y2=3y

Q74.

Answer :

ddxx2a2-x2+a22sin-1xa=a2-x2LHS=ddxx2a2-x2+a22sin-1xa =ddxx2a2-x2+ddxa22sin-1xa =12xddxa2-x2+a2-x2ddxx+a22×11-xa2×ddxxa =12x × 12a2-x2ddxa2-x2+a2-x2+a22×1a2-x2a2×1a =12x-2x2a2-x2+a2-x2+a22aa2-x2×1a =12-2×2+2a2-x22a2-x2+a22a2-x2 =122a2-2x22a2-x2+a22a2-x2 =a2-2x22a2-x2+a22a2-x2 =a2-2×2+a22a2-x2 =2a2-2x22a2-x2 =2a2-x22a2-x2 =a2-x2a2-x2 =a2-x2=RHSHence proved

Q75.

Answer :

Let y=log1+tanx1-tanx⇒y=log1+tanx1-tanx12⇒y=12log1+tanx1-tanx⇒y=12log1+tanx-log1-tanx⇒dydx=12ddxlog1+tanx-ddxlog1-tanx =1211+tanx×ddx1+tanx-11-tanx×ddx1-tanx =1211+tanx0+sec2x-11-tanx0-sec2x =12sec2x1+tanx+sec2x1-tanx =12sec2x1-tanx+1+tanx1-tan2x =12sec2x21-tan2x =sec2x1-tan2x =1+tan2x1-tan2x =11-tan2x1+tan2x =1cos2x =sec2x

 

Page 11.62 Ex.11.3

Q1.

Answer :

Let, y=cos-12×1-x2Put x=cosθ y=cos-12cosθ1-cos2θ y=cos-12cosθ sinθ y=cos-1sin2θ Since, sin2θ=2sinθcosθ y=cos-1cosπ2-2θ …iNow, 12<x<1⇒12<cosθ<1⇒ 0<θ<π4⇒ 0<2θ<π2⇒ 0>-2θ>-π2⇒π2>π2-2θ>0Hence, from equation iy=π2-2θ Since, cos-1cosθ=θ, if θ∈0,πy=π2-2cos-1x Since, x=cosθ differentiating it with respect to x,dydx=ddxπ2-2ddxcos-1xdydx=0-2-11-x2dydx=21-x2

Q2.

Answer :

Let, y=cos-11+x2Put x=cos2θ y=cos-11+cos 2θ2 y=cos-12cos2θ2 y=cos-1cosθ …iHere, -1<x<1 ⇒ -1<cos2θ<1 ⇒ 0<2θ<π ⇒ 0<θ<π2So, from equation i y=θ since ,cos-1cosθ=θ, ifθ∈0,π⇒ y=12cos-1x Since , x=cos2θDifferentiating it with respect to x,dydx=-121-x2

Q3.

Answer :

Let, y=sin-11-x2Put x=cos 2θ y=sin-11-cos2θ2 y=sin-12 sin2θ2 y=sin-1sinθ …iHere, 0<x<1⇒ 0<cos 2θ<1⇒ 0< 2θ<π2⇒ 0< θ<π4So, from equation i, y=θ Since, sin-1sinθ=θ, if θ∈-π2,π2 y=12cos-1x Since, x=cos 2θDifferentiating it with respect to x,dydx=-121-x2

Q4.

Answer :

Let, y=sin-11-x2Put, x=cos θ y=sin-11-cos2θ y=sin-1sinθ …iHere, 0<x<1⇒ 0<cos θ<1⇒ 0< θ<π2So, from equation i, y=θ Since, sin-1sinθ=θ, if θ∈-π2,π2 y=cos-1x Since, x=cos θDifferentiating it with respect to x,dydx=-11-x2

Q5.

Answer :

Let, y=tan-1xa2-x2Put x=a sinθ y=tan-1a sinθa2-a2sin2θ y=tan-1a sinθa21-sin2θ y=tan-1a sinθa cosθ y=tan-1tanθ …iHere, -a<x<a⇒ -1<xa<1⇒ sin-π2< sinθ<sinπ2 ∵x=a sinθ⇒ -π2< θ<π2So, from equation i, y=θ Since, tan-1tanθ=θ, if θ∈-π2,π2 y=sin-1xa Since, x=a sinθDifferentiating it with respect to x,Using chain rule,dydx=11-xa2ddxxadydx=aa2-x2×1adydx=1a2-x2

Q6.

Answer :

Let, y=sin-1xx2+a2put x=a tanθ⇒ y=sin-1a tanθa2tan2θ+a2⇒ y=sin-1a tanθa2tan2θ+1⇒ y=sin-1a tanθa secθ ⇒ y=sin-1sinθ ⇒ y=θ⇒ y=tan-1xa since, x=a tanθ Differentiating it with respect to x using chain rule, dydx=11+xa2ddxxa⇒dydx=a2a2+x2×1a∴dydx=aa2+x2

Q7.

Answer :

Let, y=sin-12×2-1Put x=cos θ y=sin-12cos2θ-1 y=sin-1cos2θ y=sin-1sinπ2-2θ …i Here, 0<x<1⇒ 0<cos θ<1⇒ 0< θ<π2⇒ 0< 2θ<π⇒ 0> -2θ>-π⇒ π2>π2-2θ>-π2⇒ -π2<π2-2θ<π2So, from equation i, y=π2-2θ Since, sin-1sinθ=θ, if θ∈-π2,π2 ⇒ y=π2-2cos-1x Since, x=cos θDifferentiating it with respect to x, dydx=0-2ddxcos-1x⇒dydx=-2-11-x2∴dydx=21-x2

Q8.

Answer :

Let, y=sin-11-2x2put x=sin θ⇒ y=sin-11-2sin2θ⇒ y=sin-1cos2θ⇒ y=sin-1sinπ2-2θ …i Here, 0<x<1⇒ 0<sin θ<1⇒ 0< θ<π2⇒ 0< 2θ<π⇒ 0> -2θ>-π⇒ π2>π2-2θ>π2-π⇒ π2>π2-2θ>-π2⇒ -π2<π2-2θ<π2So, from equation i, y=π2-2θ Since, sin-1sinθ=θ, if θ∈-π2,π2⇒ y=π2-2sin-1x Since, x=sin θDifferentiating it with respect to x, dydx=0-211-x2∴ dydx=-21-x2

Q9.

Answer :

Let, y=cos-1xx2+a2Put x=a cotθ⇒ y=cos-1a cotθa2cot2θ+a2⇒ y=cos-1a cotθa2cot2θ+1⇒ y=sin-1a cotθa cosecθ⇒ y=cos-1 cosθsinθ1sinθ⇒ y=cos-1cosθ ⇒ y=θ⇒ y=cot-1xa since, x=a cotθ Differentiating it with respect to x using chain rule,dydx=-11+xa2ddxxa⇒dydx=-a2a2+x2×1a∴dydx=-aa2+x2

Q10.

Answer :

Let, y=sin-1sinx+cosx2⇒ y=sin-1sinx12+cosx12⇒ y=sin-1sinx cosπ4+cosx sinπ4⇒ y=sin-1sinx+π4 …iHere, -3π4<x<π4⇒ -3π4+π4<x+π4<π4+π4⇒ -π2<x+π4<π2From i we get,⇒ y= x+π4 Since, sin-1sinθ=θ, if θ∈-π2,π2Differentiating it with respect to x,dydx=1+0∴dydx=1

Q11.

Answer :

Let, y=cos-1cosx+sinx2 y=cos-112cosx+12sinx y=cos-1cosπ4cosx +sinπ4sinx y=cos-1cosπ4-x …iHere, -π4<x<π4⇒ π4>-x>-π4⇒ -π4<-x<π4⇒ -π4+π4<-x+π4< π4+π4⇒ 0<π4-x<π2So, from equation i, y= π4-x Since, cos-1cosθ=θ, if θ∈0, π Differentiating it with respect to x,dydx=0-1dydx=-1

Q12.

Answer :

Let, y=tan-1×1+1-x2Put x=sinθ y=tan-1sinθ1+1-sin2θ y=tan-1 sinθ1+cosθ y=tan-12 sinθ2cosθ22cos2θ2 y=tan-1tan θ2 …iHere, -1<x<1⇒ -1<sinθ<1⇒ -π2< θ<π2⇒ -π4< θ2<π4So, from equation i, y=θ2 Since, tan-1tanθ=θ, if θ∈-π2,π2 y=12sin-1x Since, x= sinθDifferentiating it with respect to x,dydx=121-x2

Q13.

Answer :

Let, y=tan-1xa+a2-x2Put x=a sinθ⇒ y=tan-1a sinθa+a2-a2sin2θ⇒ y=tan-1a sinθa+a21-sin2θ ⇒ y=tan-1 a sinθa+a cosθ⇒ y=tan-1a sinθa1+cosθ ⇒ y=tan-1 sinθ1+cosθ ⇒ y=tan-1 2sinθ2cosθ22 cos2θ2⇒ y=tan-1tan θ2 …i Here, -a<x<a⇒ -1<xa<1⇒ -1< sinθ<1⇒ -π2< θ<π2⇒ -π4< θ2<π4So, from equation i, y=θ2 Since, tan-1tanθ=θ, if θ∈-π2,π2⇒ y=12sin-1xa Since, x=a sinθDifferentiating it with respect to x, dydx=12×11-xa2ddxxa⇒dydx=a2a2-x2×1a∴ dydx=12a2-x2

Q14.

Answer :

Let, y=sin-1x+1-x22putting x=sinθ∴ y=sin-1sinθ+1-sin2θ2⇒ y=sin-1sinθ+cosθ2⇒ y=sin-1sinθ12+cosθ12⇒y=sin-1sinθ cosπ4+cosθ sinπ4⇒y=sin-1sinθ+π4 …..1Here, -1<x<1⇒ -1<sinθ<1 ⇒ -π2<θ<π2 ⇒ -π2+π4< π4+θ <3π4⇒ -π4< π4+θ <3π4So, from 1, y=θ+π4 Since, sin-1sinα=α, if α∈-π2,π2 ⇒ y=sin-1x+π4 Differentiating it with respect to x, dydx=11-x2+0∴dydx=11-x2

Q15.

Answer :

Let y=cos-1x+1-x22Put, x=cosθ y=cos-1cosθ+1-cos2θ2 y=cos-1cosθ+sinθ2 y=cos-1cosθ12+sinθ12 y=cos-1cosθcosπ4+sinθ sinπ4 y=cos-1cosθ-π4 …iHere, -1<x<1⇒ -1<cosθ<1 ⇒ 3π4<θ<5π4 ⇒ 3π4-π4<θ-π4<5π4-π4⇒ π2< θ-π4<πSo, from equation i, y=θ-π4 Since, cos-1cosθ=θ, if θ∈0,π y=cos-1x-π4 Since, x=sinθDifferentiating it with respect to x,dydx=-11-x2+0dydx=-11-x2

Q16.

Answer :

Let, y=tan-14×1-4x2put 2x=tanθ ⇒ y=tan-12 tanθ1-tan2θ ⇒ y=tan-1tan2θ …iHere, -12<x<12⇒ -1<2x<1⇒ -1< tanθ<1⇒ -π4< θ<π4⇒ -π2< 2θ<π2So, from equation i, y=2θ Since, tan-1tanθ=θ, if θ∈-π2,π2 ⇒ y=2tan-12x Since, 2x=tanθDifferentiating it with respect to x,dydx=211+2x2ddx2x⇒dydx=211+4×2×2∴ dydx=41+4×2

Q17.

Answer :

Let, y=tan-12x+11-4xput 2x=tanθ y=tan-12x×21-2×2 y=tan-12 tanθ1-tan2θ y=tan-1tan2θ …iHere, -∞<x<0⇒ 2-∞<2x<2°⇒ 0< 2x<1⇒ 0< θ<π4⇒ 0<2θ<π2So, from equation i, y=2θ Since, tan-1tanθ=θ, if θ∈-π2,π2 y=2 tan-12x Differentiating it with respect to x,dydx=21+2x2ddx2xdydx=2×2x loge21+4xdydx=2x+1 loge21+4x

Q18.

Answer :

Let, y=tan-12ax1-a2xput ax=tanθ ⇒ y=tan-12×ax1-ax2 ⇒ y=tan-12 tanθ1-tan2θ ⇒ y=tan-1tan2θ …iHere, -∞<x<0⇒ a-∞<ax<2°⇒ 0< tanθ<1⇒ 0< θ<π4⇒ 0<2θ<π2So, from equation i, y=2θ Since, tan-1tanθ=θ, if θ∈-π2,π2 ⇒ y=2 tan-1ax Differentiating it with respect to x,dydx=21+ax2ddxax⇒dydx=2×ax logea1+a2x∴dydx=2ax logea1+a2x

Q19.

Answer :

Let, y=sin-11+x+1-x2put x=cos 2θ⇒ y=sin-11+cos 2θ+1-cos 2θ2⇒ y=sin-12cos2θ+2sin2θ2 ⇒ y=sin-12 cosθ+2 sinθ2 ⇒ y=sin-1cosθ12+12sinθ ⇒ y=sin-1 cosθ sinθπ4+cosπ4sinθ ⇒ y=sin-1sinθ+π4 …iHere, 0<x<1⇒ 0<cos 2θ<1 ⇒ 0< 2θ<π2 ⇒ 0< θ<π4⇒ π4< θ+π4<π2So, from equation i, y=θ+π4 Since, sin-1sinθ=θ, if θ∈-π2,π2⇒ y=12cos-1x+π4Differentiate it with respect to x,dydx=12-11-x2+0∴dydx=-121-x2

Q20.

Answer :

Let, y=tan-11+a2x2-1axput ax=tanθ∴ y=tan-11+tan2θ-1tanθ⇒ y=tan-1secθ-1tanθ⇒ y=tan-11-cosθsinθ⇒ y=tan-12sin2θ22θ2θ2⇒ y=tan-1tanθ2⇒ y=θ2⇒ y=12tan-1ax

Differentiate it with respect to x using chain rule,

dydx=12×11+ax2ddxax⇒dydx=121+a2x2a∴dydx=a21+a2x2

Q21.

Answer :

Let fx=tan-1sinx1+cosx

This function is defined for all real numbers where cos x ≠ 1

fx=tan-1sinx1+cosx⇒fx=tan-12 sinx2cosx22 cos2x2⇒fx=tan-1tanx2=x2Thus, f’x=ddxx2=12

Q22.

Answer :

Let, y=sin-111+x2put x=cot θ∴ y=sin-111+cot2θ⇒ y=sin-11cosec2θ⇒ y=sin-1sinθ ⇒ y=θ⇒ y=cot-1x since, cotθ=x

Differentiate it with respect to x,

dydx=-11+x2

Q23.

Answer :

Let, y=cos-11-x2n1+x2nPut xn=tanθ∴ y=cos-11-xn21+xn2⇒ y=cos-11-tan2θ1+tan2θ ⇒ y=cos-1cos 2θ …iHere, 0<x<∞⇒ 0<xn<∞⇒ 0<tanθ<∞⇒ 0<θ<π2⇒ 0<2θ<πSo, from equation i, y=2θ Since, cos-1cos θ=θ, if θ∈0, π ⇒y=2 tan-1xn

Differentiate it with respect to x using chain rule,

dydx=211+xn2ddxxn⇒dydx=21+x2n×nxn-1∴dydx=2nxn-11+x2n

Q24.

Answer :

Let, y=sin-11-x21+x2+sec-11+x21-x2⇒ y=sin-11-x21+x2+cos-11-x21+x2 Since, sec-1x=cos-11x⇒ y=π2 Since, sin-1x+cos-1x=π2

Differentiate it with respect to x,

∴ dydx=0

Q25.

Answer :

Let, y=tan-1a+x1-ax⇒ y=tan-1a+tan-1x Since, tan-1x+tan-1y=tan-1x+y1-xy

Differentiate it with respect to x,

dydx=ddxtan-1a+ddxtan-1x⇒dydx=0+11+x2∴ dydx=11+x2

Q26.

Answer :

Let, y=tan-1x+a1-xa⇒ y=tan-1x+tan-1a Since, tan-1x+tan-1y=tan-1x+y1-xy

Differentiate it with respect to x using chain rule,

dydx=ddxtan-1x+ddxtan-1a⇒dydx=11+x2ddxx+0⇒dydx=11+x12x∴dydx=12×1+x

Q27.

Answer :

Let, y=tan-1a+b tanxb-a tanx⇒ y=tan-1a+b tanxbb-a tanxb⇒ y=tan-1ab+tanx1-abtanx⇒ y=tan-1tantan-1ab+ tanx1-tantan-1ab×tanx⇒ y=tan-1tantan-1ab+x⇒ y=tan-1ab+x

Differentiate it with respect to x,

dydx=0+1∴ dydx=1

Q28.

Answer :

Let, y=tan-1a+bxb-ax⇒ y=tan-1a+bxbb-axb⇒ y=tan-1ab+bxbbb-axb⇒ y=tan-1ab+x1-abx⇒ y=tan-1ab+tan-1x Since, tan-1x+tan-1y=tan-1x+y1-xy

Differentiate it with respect to x,

dydx=0+11+x2⇒dydx=11+x2

Q29.

Answer :

Let, y=tan-1x-ax+a⇒ y=tan-1x-axx+ax⇒ y=tan-1xx-axxx+ax⇒ y=tan-11-ax1+1×ax⇒ y=tan-11-tan-1ax

Differentiate it with respect to x,

dydx=0-11+ax2ddxax⇒ dydx=-x2x2+a2-ax2∴ dydx=aa2+x2

Q30.

Answer :

Let, y=tan-1×1+6×2⇒ y=tan-13x-2×1+3x2x⇒ y=tan-13x-tan-12x Since, tan-1x-tan-1y=tan-1x-y1+xy

Differentiate it with respect to x using chain rule,

dydx=11+3x2ddx3x-11+2x2ddx2x⇒dydx=11+9×23-11+4×22∴dydx=31+9×2-21+4×2

Q31.

Answer :

Let, y=tan-15×1-6×2⇒ y=tan-13x+2×1-3x2x⇒ y=tan-13x+tan-12x Since, tan-1x+tan-1y=tan-1x+y1-xy

Differentiate it with respect to x using chain rule,

dydx=11+3x2ddx3x+11+2x2ddx2x⇒dydx=11+9×2×3+11+4×2×2∴dydx=31+9×2+21+4×2

Q32.

Answer :

Let, y=tan-1cosx+sinxcosx-sinx⇒ y=tan-1cosx+sinxcosxcosx-sinxcosx⇒ y=tan-1cosxcosx+sinxcosxcosxcosx-sinxcosx⇒ y=tan-11+tanx1-tanx⇒ y=tan-1tanπ4+tanx1-tanπ4tanx⇒ y=tan-1tanπ4+x⇒ y=π4+x

Differentiate it with respect to x,

dydx=0+1∴dydx=1

Q33.

Answer :

Let, y=tan-1×13+a131-ax13⇒ y=tan-1×13+tan-1a13 Since, tan-1x+tan-1y=tan-1x+y1-xy

Differentiate it with respect to x using chain rule,

dydx=11+x132×ddxx13+0⇒dydx=13× x13-11+x23∴dydx=13×231+x23

Q34.

Answer :

Let y=sin-1 11+x2Putting x=cot θ ⇒θ=cot-1x∴y=sin-1 11+cot θ2=sin-1 11+cot2 θ=sin-1 1cosec θ=sin-1 sin θ=θ∴ y=cot-1xDiff w.r.t.to x, we getdydx=-11+x2

Q35.

Answer :

Let, y=sin-12×1+x2+sec-11+x21-x2⇒ y=sin-12×1+x2+cos-11-x21+x2Put, x=tanθ∴ y=sin-12 tanθ1+tan2θ+cos-11-tan2θ1+tan2θ ⇒ y=sin-1sin 2θ+cos-1cos 2θ …iHere, 0<x<1⇒ 0<tanθ<1⇒ 0<θ<π4⇒ 0<2θ<π2So, from equation i, y=2θ+2θ Since, sin-1sinθ=θ, if θ∈-π2,π2 cos-1cosθ=θ, if θ∈0,π⇒y=4θ⇒y=4tan-1x Since, x=tanθ

Differentiate it with respect to x,

∴ dydx=41+x2

 

Page 11.63 Ex.11.3

Q36.

Answer :

Let, y=sin-1×1+x2+cos-111+x2Put x=tanθ∴ y=sin-1 tanθ1+tan2θ+cos-111+tan2θ⇒ y=sin-1sinθcosθsecθ+cos-11secθ⇒ y=sin-1sinθcosθ1cosθ+cos-1cosθ⇒ y=sin-1sin θ+cos-1cos θ …iHere, 0<x<∞⇒ 0<tanθ<∞⇒ 0<θ<π2So, from equation i,y=θ+θ Since, sin-1sinθ=θ, if θ∈-π2,π2 cos-1cosθ=θ, if θ∈0,π⇒y=2θ⇒y=2tan-1x Since, x=tanθ

Differentiate it with respect to x,

∴ dydx=21+x2

Q37.

Answer :

Here, y=tan-11+x2+1-x21+x2-1-x2Put x2=cos2θ⇒ y=tan-11+cos2θ+1-cos2θ1+cos2θ-1-cos2θ⇒ y=tan-12 cos2θ+2 sin2θ2 cos2θ-2 sin2θ⇒ y=tan-12cosθ+sinθ2cosθ-sinθ⇒ y=tan-1cosθ+sinθcosθcosθ-sinθcosθ Dividing numerator and denominator by cosθ⇒ y=tan-1cosθcosθ+sinθcosθcosθcosθ-sinθcosθ⇒ y=tan-11+tanθ1-tanθ⇒ y=tan-1tanπ4+tanθ1+tanπ4+tanθ ⇒ y=tan-1tanπ4+θ ⇒ y=π4+θ⇒ y=π4+12cos-1×2 Using x2=cos 2θ

Differentiate it with respect to x,

dydx=0+12-11-x22×2xdydx=-x1-x4

Q38.

Answer :

Let, y=cot-11+sinx+1-sinx1+sinx-1-sinx …iWe have, 1+sinx+1-sinx1+sinx-1-sinx =1+sinx+1-sinx21+sinx-1-sinx1+sinx+1-sinx =1+sinx+1-sinx+21-sinx1+sinx1+sinx-1-sinx =2+21-sin2x2sinx =1+cosxsinx =2cos2x22sinx2cosx2 =cotx2Therefore, equation i becomes y=cot-1cotx2⇒y=x2∴dydx=12Hence, dydx is independent of x.

Q39.

Answer :

Here, y=tan-12×1-x2+sec-11+x21-x2⇒ y=tan-12×1-x2+cos-11-x21+x2 Put x=tanθ∴ y=tan-12tanθ1-tan2θ+cos-11-tan2θ1+tan2θ ⇒ y=tan-1tan 2θ+cos-1cos 2θ⇒ y=2θ+2θ ⇒ y=4θ⇒ y=4 tan-1x using, x=tanθ

Differentiate it with respect to x,

∴ dydx=41+x2

Q40.

Answer :

Here, y=sec-1x+1x-1+sin-1x-1x+1⇒ y=cos-1x-1x+1+sin-1x-1x+1 Since, sec-1x=cos-11x⇒ y=π2 Since, cos-1α+sin-1α=π2

Differentiate it with respect to x,

∴ dydx=0

Q41.

Answer :

Here, y=sin2 tan-11-x1+xPut x=cos 2θWe have, y=sin2 tan-11-cos 2θ1+cos 2θ =sin2 tan-12 sin2θ2 cos2θ =sin2 tan-1tan2θ =sin2 tan-1tanθ =sin2θ =sin2×12cos-1x Since, x=cos 2θ =sinsin-11-x2 =1-x2

Differentiate it with respect to x using chain rule,

dydx=121-x2ddx1-x2⇒dydx=121-x2-2x∴dydx=-x1-x2

Q42.

Answer :

Here, y=cos-12x+2 cos-11-4x2Put 2x=cosθ∴ y=cos-1cos θ+2 cos-11-cos2θ⇒ y=cos-1cos θ+2 cos-1sinθ⇒ y=cos-1cos θ+2 cos-1cosπ2-θ …iHere, 0<x<12⇒ 0<2x<1⇒ 0<cosθ<1⇒ 0<θ<π2and⇒ 0>-θ>-π2⇒ π2>π2-θ>0⇒ 0<π2-θ<π2So, from equation i, y=θ+2π2-θ Since, cos-1cosθ=θ, if θ∈0,π⇒ y=+π-2θ⇒ y=π-θ⇒ y=π-cos-12x Since, 2x=cosθ

Differentiate it with respect to x using chain rule,

dydx=0–11-2x2ddx2x⇒dydx=11-4×22∴dydx=21-4×2

Q43.

Answer :

Here, ddxtan-1a+bx=1 at x=0⇒ 11+a+bx2ddxa+bxx=0=1⇒ 11+a+bx2×bx=0=1⇒b1+a+02=1⇒ b=1+a2∴1+a2 = b

Q44.

Answer :

Here, y=cos-12x+2 cos-11-4x2Put 2x=cosθ∴ y=cos-1cos θ+2 cos-11-cos2θ⇒ y=cos-1cos θ+2 cos-1sinθ⇒ y=cos-1cos θ+2 cos-1cosπ2-θ …iNow, -12<x<0⇒ -1<2x<0⇒ -1<cosθ<0⇒ π2<θ<πAnd⇒ -π2>-θ>-π⇒ π2-π2>π2-θ>π2-π⇒ 0>π2-θ>-π2⇒ -π2<π2-θ<0So, from equation i,y=θ+2-π2-θ Since, cos-1cosθ=θ, if θ∈0,π cos-1cosθ=-θ, if θ∈-π,0y=θ-2×π2+2θy=-π+3θy=-π+3cos-12x Since, 2x=cosθ

Differentiate it with respect to x using chain rule,

dydx=0+3-11-2x2ddx2x⇒dydx=-31-4×2×2∴dydx=-61-4×2

Q45.

Answer :

Here, y=tan-11+x-1-x1+x+1-xPut x=cos2θ ∴ y=tan-11+cos2θ-1-cos2θ1+cos2θ+1-cos2θ =tan-12 cos2θ-2 sin2θ2 cos2θ+2 sin2θ =tan-12cosθ-sinθ2cosθ+sinθ =tan-1cosθ-sinθcosθcosθ+sinθcosθ Dividing numerator and denominator by cosθ =tan-1cosθcosθ-sinθcosθcosθcosθ+sinθcosθ =tan-11-tanθ1+tanθ

=tan-1tanπ4-tanθ1+tanπ4×tanθ =tan-1tanπ4-θ =π4-θ =π4-12cos-1x Using x=cos2θ

Differentiate it with respect to x,

dydx=0-12-11-x2∴dydx=121-x2

Q46.

Answer :

Let, y=cot-11-x1+xPut x=tanθ ∴ y=cot-11-tanθ1+tanθ =cot-1tanπ4-tanθ1+tanπ4tanθ =cot-1tanπ4-θ =cot-1cotπ2-π4+θ =π4+θ =π4+tan-1x Since, x=tanθ

Differentiate it with respect to x,

dydx=0+11+x2⇒dydx=11+x2

Q47.

Answer :

Let y=cos-12x-31-x213Put, x=cosθ y=cos-12cosθ-31-cos2θ13 y=cos-12cosθ-3sinθ13 y=cos-1cosθ213+sinθ313Let cosϕ=213 and sinϕ=313 y=cos-1cosθcosϕ+sinθ sinϕ y=cos-1cosθ-ϕ …i y=θ-ϕ y=cos-1x-ϕ Differentiating it with respect to x,dydx=-11-x2+0dydx=-11-x2

Q48.

Answer :

i Let, fx=cos-1sinx⇒fx=cos-1cosπ2-x⇒fx=π2-xThus, f’x=ddxπ2-x= -1

ii Let, y=sin-12x+11+4x Put 2x=tanθ ∴ y=sin-12x×21+2×2 ⇒ y=sin-12tanθ1+tan2θ ⇒ y=sin-1sin2θ ⇒ y=2θ Since, sin-1sinθ=θ ⇒ y=2tan-12x Since, 2x=tanθ

Differentiate with respect to x using chain rule,

dydx=21+2x2ddx2x⇒dydx=2×2xlog21+4x∴dydx=2x+11+4xlog2

 

Page 11.70 Ex.11.4

Q1.

Answer :

We have, xy=c2
Differentiating with respect to x, we get,
ddxxy=ddxc2⇒xdydx+yddxx=0 Using product rule⇒xdydx+y=0⇒xdydx=-y⇒dydx=-yx

Q2.

Answer :

We have, y3-3xy2=x3+3x2y
Differentiating with respect to x, we get,
⇒ddxy3-ddx3xy2=ddxx3+ddx3x2y⇒3y2dydx-3xddxy2+y2ddxx=3×2+3x2ddxy+yddxx2 Using product rule⇒3y2dydx-3x2ydydx+y2=3×2+3x2dydx+y2x⇒3y2dydx-6xydydx-3y2=3×2+3x2dydx+6xy⇒3y2dydx-6xydydx-3x2dydx=3×2+6xy+3y2⇒3dydxy2-2xy-x2=3×2+2xy+y2⇒dydx=3x+y23y2-2xy-x2⇒dydx=x+y2y2-2xy-x2

Q3.

Answer :

We have,  x23+y23=a23

Differentiating it with respect to x, we get,

ddxx23+ddxy23=ddxa23⇒23×23-1+23y23-1dydx=0⇒23x-13+23y-13dydx=0⇒23y-13dydx=-23x-13⇒dydx=-23x-13×32y-13⇒dydx=-x-13y-13⇒dydx=-y13x13⇒dydx=-yx13

Q4.

Answer :

We have, 4x+3y= log4x-3y
Differentiating with respect to x, we get,

ddx4x+ddx3y=ddxlog4x-3y⇒4+3dydx=14x-3yddx4x-3y ⇒4+3dydx=14x-3y4-3dydx⇒3dydx+34x-3ydydx=44x-3y-4⇒3dydx1+14x-3y=414x-3y-1⇒3dydx4x-3y+14x-3y=41-4x+3y4x-3y⇒dydx=431-4x+3y4x-3y4x-3y4x-3y+1⇒dydx=431-4x+3y4x-3y+1

Q5.

Answer :

We have, x2a2+y2b2=1
Differentiating with respect to x, we get,
ddxx2a2+y2b2=ddx1⇒ddxx2a2+ddxy2b2=0⇒1a22x+1b22ydydx=0⇒2yb2dydx=-2xa2⇒dydx=-2xa2b22y⇒dydx=-b2xa2y

Q6.

Answer :

We have, x5+y5=5xy
Differentiating with respect to x, we get,

ddxx5+ddxy5=ddx5xy⇒5×4+5y4dydx=5xdydx+yddxx⇒5×4+5y4dydx=5xdydx+y1⇒5×4+5y4dydx=5xdydx+5y⇒5y4dydx-5xdydx=5y-5×4⇒5dydxy4-x=5y-x4⇒dydx=5y-x45y4-x⇒dydx=y-x4y4-x

Q7.

Answer :

We have, x+y2=2axy
Differentiating with respect to x, we get,
⇒ddxx+y2=ddx2axy⇒2x+yddxx+y=2axdydx+yddxx ⇒2x+y1+dydx=2axdydx+y1⇒2x+y+2x+ydydx=2axdydx+2ay⇒dydx2x+y-2ax=2ay-2x+y⇒dydx=2ay-x-y2x+y-ax⇒dydx=ay-x-yx+y-ax

Q8.

Answer :

We have, x2+y2=xy
Differentiating with respect to x, we get,
⇒ddxx2+y22=ddxxy⇒2×2+y2ddxx2+y2=xdydx+yddxx ⇒2×2+y22x+2ydydx=xdydx+y1⇒4xx2+y2+4yx2+y2dydx=xdydx+y⇒4yx2+y2dydx-xdydx=y-4xx2+y2⇒dydx4yx2+y2-x=y-4xx2+y2⇒dydx=y-4xx2+y24yx2+y2-x⇒dydx=4xx2+y2-yx-4yx2+y2

Q9.

Answer :

We have, tan-1×2+y2=a
Differentiate with respect to x, we get,
ddxtan-1×2+y2=ddxa⇒11+x2+y22×ddxx2+y2=0⇒11+x2+y222x+2ydydx=0⇒2x+2ydydx=0⇒x+ydydx=0⇒dydx=-xy

Q10.

Answer :

We have, ex-y=logxy
Differentiate with respect to x,
ddxex-y=ddxlogxy⇒ex-yddxx-y=1xy×ddxxy ⇒ex-y1-dydx=yxyddxx-xdydxy2 ⇒ex-y-ex-ydydx=1xyy1-xdydx⇒ex-y-ex-ydydx=1x-1ydydx⇒1ydydx-ex-ydydx=1x-ex-y⇒dydx1y-ex-y1=1x-ex-y1⇒dydx1-yex-yy=1-xex-yx⇒dydx=yx1-xex-y1-yex-y⇒dydx=-y-xxex-y-1yex-y-1⇒dydx=yxxex-y-1yex-y-1

Q11.

Answer :

We have, sinxy+cosx+y=1
Differentiating with respect to x, we get,
ddxsinxy+ddxcosx+y=ddx1⇒cosxyddxxy-sinx+yddxx+y=0 ⇒cosxyxdydx+yddxx-sinx+y1+dydx=0⇒cosxyxdydx+y1-sinx+y-sinx+ydydx=0⇒xcosxydydx+ycosxy-sinx+y-sinx+ydydx=0⇒xcosxy-sinx+ydydx=sinx+y-ycosxy⇒dydx=sinx+y-y cosxyxcosxy-sinx+y

Q12.

Answer :

We have, 1-x2+1-y2=ax-yLet x=sinA , y=sinB⇒1-sin2A+1-sin2B=asinA-sinB⇒cosA+cosB=asinA-sinB ⇒a=cosA+cosBsinA-sinB⇒a=2 cosA+B2cosA-B22 cosA+B2sinA-B2 ∵sinA-sinB=2 cosA+B2sinA-B2∵cosA+cosB=2 cosA+B2cosA-B2⇒a=cotA-B2⇒cot-1a=A-B2⇒2cot-1a=A-B⇒2cot-1a=sin-1x-sin-1y ∵x=sinA,y=sinB
Differentiating with respect to x, we get,
ddx2cot-1a=ddxsin-1x-ddxsin-1y⇒0=11-x2-11-y2dydx⇒11-y2dydx=11-x2⇒dydx=1-y21-x2⇒dydx=1-y21-x2

 

Page 11.71 Ex.11.4

Q13.

Answer :

We have, y1-x2+x1-y2=1Let x=sinA , y=sinB⇒sinB1-sin2A+sinA1-sin2B=1⇒sinBcosA+sinAcosB=1 ∵sinx+y=sinx cosy+cosxsiny⇒sinA+B=1⇒A+B=sin-11⇒sin-1x+sin-1y=π2 ∵ x=sinA, y=sinB
Differentiate with respect to x,
⇒ddxsin-1x+ddxsin-1y=ddxπ2⇒11-x2+11-y2dydx=0⇒dydx=-1-y21-x2

Q14.

Answer :

We have, xy=1
Differentiating with respect to x, we get,
ddxxy=ddx1⇒xdydx+yddxx=0 Using product rule⇒xdydx+y1=0⇒dydx=-yx ⇒dydx=-y1y ∵ x=1y⇒dydx=-y2⇒dydx+y2=0

Q15.

Answer :

We have, xy2=1 …i
Differentiating with respect to x, we get,

ddxxy2=ddx1⇒xddxy2+y2ddxx=0 ⇒x2ydydx+y21=0⇒2xydydx=-y2⇒dydx=-y22xy⇒dydx=-y2xput x=1y2 from equation i⇒dydx=-y21y2⇒2dydx=-y3⇒2dydx+y3=0

Q16.

Answer :

We have, x1+y+y1+x=0⇒ x1+y=-y1+xSquaring both sides,we get,⇒ x1+y2=-y1+x2⇒x21+y=y21+x⇒x2+x2y=y2+y2x⇒x2-y2=y2x-x2y⇒x-yx+y=xyy-x⇒x+y=-xy⇒y+xy=-x⇒y1+x=-x⇒y=-x1+x
Differentiating with respect to x, we get,
⇒dydx=-1+xddxx–xddxx+11+x2⇒dydx=-1+x1+x11+x2⇒dydx=-1-x+x1+x2⇒dydx=-11+x2⇒1+x2dydx=-1⇒1+x2dydx+1=0

Q17.

Answer :

We have, logx2+y2=tan-1xy⇒logx2+y212=tan-1yx⇒12logx2+y2=tan-1yx
Differentiate with respect to x, we get,
⇒ 12ddxlogx2+y2=ddxtan-1yx⇒ 121×2+y2ddxx2+y2=11+yx2ddxyx⇒121×2+y22x+2ydydx=x2x2+y2xdydx-yddxxx2⇒1×2+y2x+ydydx=x2x2+y2xdydx-yddxxx2⇒1×2+y2x+ydydx=x2x2+y2xdydx-y1x2⇒ x+ydydx=xdydx-y⇒ydydx-xdydx=-y-x⇒dydxy-x=-y+x⇒dydx=-y+xy-x⇒dydx=x+yx-y

Q18.

Answer :

We have, secx+yx-y=a⇒ x+yx-y=sec-1a
Differentiate with respect to x, we get,
⇒ x-yddxx+y-x+yddxx-yx-y2=0⇒ x-y 1+dydx-x+y 1-dydx=0⇒ x-y+x-ydydx-x+y+x+ydydx=0⇒dydxx-y+x+y=x+y-x+y⇒dydx2x=2y⇒dydx=yx

Q19.

Answer :

We have, tan-1×2-y2x2+y2=a⇒ x2-y2x2+y2=tana⇒ x2-y2=tanax2+y2
Differentiating with respect to x,
⇒ ddxx2-y2=tanaddxx2+y2⇒ 2x-2ydydx=tana2x+2ydydx⇒ 2x-2ydydx=2xtana+2ytanadydx⇒2ytanadydx+2ydydx=2x-2xtana⇒2y1+tanadydx=2×1-tana⇒dydx=xy1-tana1+tana
Hence proved

Q20.

Answer :

We have, xy logx+y=1
Differentiating it with respect to x,
⇒ ddxxy logx+y=ddx1⇒ xyddxlogx+y+x logx+ydydx+y logx+yddxx=0 using chain rule and product rule⇒xy1x+yddxx+y+x logx+ydydx+y logx+y1=0⇒xyx+y 1+dydx+x logx+ydydx+y logx+y=0⇒xyx+ydydx+xyx+y+x1xydydx+y1xy=0 ∵xy logx+y=1⇒dydxxyx+y+1y=-1x+xyx+y⇒ dydxxy2+x+yx+yy=-x+y+x2yxx+y⇒ dydx=-x+y+x2yxx+yyx+yxy2+x+y⇒ dydx=-yxx+y+x2yx+y+xy2
Hence proved

Q21.

Answer :

We have, y=x sina+y
Differentiate with respect to y,
dydx=ddxx sina+y⇒dydx=xddxsina+y+sina+yddxx using product rule and chain rule⇒dydx=x cosa+yddxa+y+sina+y1⇒dydx1-x cosa+y=sina+y⇒dydx=sina+y1-x cosa+y⇒dydx=sina+y1-ysina+y cosa+y∵y=xsina+y ⇒dydx=sin2a+ysin a+y-y cos a+y
Hence proved

Q22.

Answer :

We have, xsina+y+sinacosa+y=0
Differentiate with respect to x,
⇒ddxx sina+y+ddxsin a cosa+y=0⇒xddxsin a+y+sina+yddxx+sin addxcosa+y=0 ⇒x cosa+yddxa+y+sina+y1+sin a-sina+yddxa+y=0⇒x cosa+ydydx+sina+y- sinasina+ydydx=0⇒dydxx cosa+y-sina sina+y=-sina+y⇒dydx-sin acos2a+ysina+y-sin a sina+y=-sina+y ∵x=-sinacosa+ysina+y⇒-dydxsin a cos2a+y+sin a sin2a+ysina+y=-sina+y⇒dydx=sina+ysina+ysinacos2a+y+sin2a+y⇒dydx=sin2a+ysina

Q23.

Answer :

We have, y=x siny
Differentiating with respect to x, we get,
dydx=ddxx siny⇒dydx=xddxsiny+sinyddxx⇒dydx=xcosydydx+siny⇒dydx1-xcosy=siny⇒dydx=siny1-xcosy

Q24.

Answer :

We have, yx2+1=logx2+1-x
Differentiating with respect to x, we get,
⇒ddxyx2+1=ddxlogx2+1-x using product rule and chain rule⇒yddxx2+1+x2+1dydx=1×2+1-x×ddxx2+1-x⇒y2x2+1×ddxx2+1+x2+1dydx=1×2+1-x×12×2+1ddxx2+1-1⇒2xy2x2+1+x2+1dydx=1×2+1-x2x2x2+1-1⇒x2+1dydx=1×2+1-xx-x2+1×2+1-xyx2+1⇒x2+1dydx=-1×2+1-xyx2+1⇒x2+1dydx=-1+xyx2+1⇒x2+1dydx=-1+xy⇒x2+1dydx+1+xy=0

Q25.

Answer :

We have, y=logcosx sinxlogsinx cosx-1+sin-12×1+x2⇒ y=logcosx sinxlogcosx sinx+sin-12×1+x2 ∵logab=logba-1⇒y=log sinxlog cosx2+sin-12×1+x2 ∵logab=logbloga
Differentiating with respect to x,
dydx=ddxlog sinxlog cosx2+ddxsin-12×1+x2⇒dydx=2log sinxlog cosxddxlog sinxlog cosx+11-2×1+x22×ddx2x1+x2 ⇒dydx=2log sinxlog cosxlog cosxddxlog sinx-log sinxddxlog cosxlog cosx2+1+x21+x4-2×21+x22-2x2x1+x22 ⇒dydx=2log sinxlog cosxlog cosx×1sinxddxsinx-log sinx×1cosxddxcosxlog cosx2+1+x21+x4-2×21+x22-2x2x1+x22 ⇒dydx=2log sinxlog cosxlog cosx×cosxsinx+log sinx × sinxcosxlog cosx2+1+x21-x222+2×2-4×21+x22⇒dydx=2log sinxlog cosx3cotx log cosx+tanx log sinx+21+x2put x=π4⇒dydx=2log sinπ4log cosπ43 cotπ4 log cosπ4+tanπ4 log sinπ4+211+π42⇒dydx=21log1221× log12+1× log12+21616+π2 ⇒dydx=2×2log12log122+3216+π2⇒dydx=41log12+3216+π2⇒dydx=41-12log2+ 3216+π2⇒dydx=-8log2+3216+π2So, dydxx=π4=8416+π2-1log2

Q26.

Answer :

We have, sinxy+yx=x2-y2
Differentiating with respect to x, we get,
⇒ddxsin xy+ddxyx=ddxx2-ddxy2⇒cosxyddxxy+xdydx-yddxxx2=2x-2ydydx ⇒cosxyxdydx+yddxx+xdydx-y1x2=2x-2ydydx⇒cosxyxdydx+y1+1x2xdydx-y=2x-2ydydx⇒x cosxydydx+y cosxy+1xdydx-yx2=2x-2ydydx⇒dydxx cosxy+1x+2y=yx2-y cosxy+2x⇒dydxx2cosxy+1+2xyx=1x2y-x2y cosxy+2×3⇒dydx=2×3+y-x2y cosxyxx2 cosxy+1+2xy

Q27.

Answer :

Here, y+x+y-x=c
Differentiating with respect to x,
⇒ddxy+x+ddxy-x=ddxc⇒12y+xddxy+x+12y-xddxy-x=0 ⇒12y+xdydx+1+12y-xdydx-1=0⇒dydx12y+x+dydx12y-x=12y-x-12y+x⇒dydx×121y+x+1y-x=12y+x-y-xy-xy+x⇒dydxy-x+y+xy+xy-x=y+x-y-xy-xy+x⇒dydx=y+x-y-xy+x+y-x×y+x-y-xy+x-y-x rationalizing the denominator⇒dydx=y+x+y-x-2y+xy-xy+x-y+x⇒dydx=2y-2y2-x22x⇒dydx=2y2x-2y2-x22x⇒dydx=yx-y2-x2x2⇒dydx=yx-y2x2-1

Q28.

Answer :

We have, tanx+y+tanx-y=1
Differentiating with respect to x, we get,
⇒ddxtanx+y+ddxtanx-y=ddx1⇒sec2x+yddxx+y+sec2x-yddxx-y=0 ⇒sec2x+y1+dydx+sec2x-y1-dydx=0⇒sec2x+ydydx-sec2x-ydydx=-sec2x+y+sec2x-y⇒dydxsec2x+y-sec2x-y=-sec2x+y+sec2x-y⇒dydx=sec2x+y+sec2x-ysec2x-y-sec2x+y

Q29.

Answer :

We have, ex+ey=ex+y
Differentiating with respect to x, we get
⇒ddxex+ddxey=ddxex+y⇒ex+eydydx=ex+yddxx+y⇒ex+eydydx=ex+y1+dydx⇒eydydx-ex+ydydx=ex+y-ex⇒dydx=ex×ey-exey-ex×ey⇒dydx=exey-1ey1-ex⇒dydx=-exey-1eyex-1

Q30.

Answer :

We have, cos y=x cosa+yDifferentiating with respect to x, we get,ddxcosy=ddxxcosa+y⇒-sinydydx=cosa+yddxx+xddx cosa+y ⇒-sinydydx=cosa+y+x-sina+ydydx⇒xsina+y-sin ydydx=cosa+y ⇒ cosycosa+ysina+y-sin ydydx=cosa+y ∵cosy=x cosa+y⇒x=cosycosa+y ⇒cosysina+y-sinycosa+ydydx=cos2a+y⇒sina+y-ydydx=cos2a+y⇒dydx=cos2a+ysina

 

Page 11.83 Ex.11.5

Q1.

Answer :

Let y=x1x …i
Taking log on both sides,
log y=log x1x⇒ log y=1xlog x ∵log ab=blog a
Differentiating with respect to x,
⇒1ydydx=1xddxlog x+log xddxx-1 Using product rule⇒1ydydx=1x×1x+log x×-1×2 ⇒1ydydx=1×2-logxx2⇒1ydydx=1-logxx2
⇒dydx=x1x1-log xx [From (i)]

Q2.

Answer :

Let y=xsinx …i
Taking log on both sides,
log y=log xsinx⇒log y=sinx log x ∵log ab=b loga
Differentiating with respect to x, we get,

⇒1ydydx=sinxddxlog x+log xddxsinx using product rule⇒1ydydx=sinx1x+log xcosx⇒dydx=ysinxx+log xcosx
,⇒dydx=xsinxsinxx+log xcosx [From (i)]

Q3.

Answer :

Let y=1+cosxx …i
Taking log on both sides,
log y=log1+cosxx⇒log y=x log1+cosx
Differentiating with respect to x,
1ydydx=xddxlog1+cosx+log1+cosxddxx ⇒1ydydx=x×11+cosxddx1+cosx+log1+cosx1⇒1ydydx=x1+cosx0-sin x+log1+cosx⇒1ydydx=log1+cosx-x sinx1+cosx⇒dydx=ylog1+cosx-x sinx1+cosx⇒dydx=1+cosxxlog1+cosx-x sinx1+cosx using equation i

Q4.

Answer :

Let y=xcos-1x …i
Taking log both sides,
log y=log xcos-1x⇒log y=cos-1x log x
Differentiating with respect to x,
1ydydx=cos-1xddxlog x+log xddxcos-1x ⇒1ydydx=cos-1x1x+log x-11-x2⇒1ydydx=cos-1xx-log x1-x2⇒dydx=ycos-1xx-log x1-x2⇒dydx=xcos-1xcos-1xx-log x1-x2 Using equation i

Q5.

Answer :

Let y=logxx …i
Taking log on both sides,
logy=loglogxx⇒logy=xloglogx
Differentiating with respect to x using chain rule,
1ydydx=xddxloglogx+loglogxddxx⇒1ydydx=x1logxddxlogx+loglogx1⇒1ydydx=xlogx1x+loglogx⇒1ydydx=1logx+loglogx⇒dydx=y1logx+loglogx⇒dydx=logxx1logx+loglogx using equation i

Q6.

Answer :

Let y=logxcosx …i
Taking log on both sides,
logy=loglogxcosx⇒logy=cosx loglogx
Differentiating with respect to x,
⇒1ydydx=cosxddxloglogx+loglogxddxcosx⇒1ydydx=cosxlogxddxlogx+loglogx×-sinx⇒1ydydx=cosxlogx×1x-sinx loglogx⇒dydx=ycosxx logx-sinx loglogx⇒dydx=logxcosxcosxx logx-sinx loglogx using equation i

Q7.

Answer :

Let y=sinxcosx …iTaking log on both sides,logy=logsinxcosx⇒logy=cosx log sinx Differentiating with respect to x,1ydydx=cosxddxlog sinx+log sinxddxcosx ⇒1ydydx=cosx1sinxddxsinx+log sinx-sinx⇒1ydydx=cosxsinxcosx-sinx log sinx⇒dydx=ycosx cotx-sinx log sinx⇒dydx=sinxcosxcosx cotx-sinx log sinx using equation i

Q8.

Answer :

Let y=ex logx Taking log on both sides,logy=xlogxloge⇒logy=x logx Differentiating with respect to x,1ydydx=xddxlogx+logxddxx ⇒1ydydx=x1x+logx1⇒1ydydx=1+logx⇒dydx=y1+logx⇒dydx=exlogx1+logx using equation i⇒dydx=elogxx1+logx ⇒dydx=xx1+logx

Q9.

Answer :

Let y=sinxlogx …iTaking log on both sides,logy=logsinxlogx⇒logy=logx log sinx Differentiating with respect to x,1ydydx=logxddxlog sinx+log sinxddxlogx ⇒1ydydx=logx1sinxddxsinx+log sinx1x⇒1ydydx=logxsinxcosx+ log sinxx⇒dydx=ylogx cotx+log sinxx⇒dydx=sinxlogxlogx cotx+log sinxx using equation i

Q10.

Answer :

Let y=10log sinx …iTaking log on both sides,logy=log10log sinx⇒logy=log sinx log10 Differentiating with respect to x,⇒1ydydx=log10ddxlog sinx ⇒1ydydx=log101sinxddxsinx⇒1ydydx=log101sinxcosx⇒dydx=ylog10×cotx⇒dydx=10log sinx×log1

Q11.

Answer :

Let y=logxlogx ….iTaking log on both sides,logy=loglogxlogx⇒logy=logx log logx Differentiating both side with respect to x,⇒1ydydx=loglogxddxlogx+logx ddxloglogx ⇒dydx=yloglogx1x+logx1logxddxlogx⇒dydx=y1xloglogx+1x∴dydx=logxlogx1+loglogxx using equation i

Q12.

Answer :

Let y=1010x …iTaking log on both sides,logy=loge1010xlogy=10x loge10 Differentiating with respect to x,⇒1ydydx=loge10×10xloge10 ⇒1ydydx=10x×loge102⇒dydx=y10x×loge102 ∴dydx=1010x×10x×loge102 using equation i

Q13.

Answer :

Let y=sin xx ⇒ sin-1y=xx …iTaking log on both sides,logsin-1y=logxx⇒logsin-1y=x logx Differentiating with respect to x,⇒1sin-1ydydxsin-1y=xddxlogx+logxddxx ⇒1sin-1y×11-y2dydx=x1x+logx⇒dydx=sin-1y1-y21+logx⇒dydx=sin-1sin xx1-sin xx21+logx⇒dydx=sin-1sinxx1-sin xx2 1+logx ∴ dydx=xxcosxx1+logx using equation i

Q14.

Answer :

Let y=sin-1xx …iTaking log on both sides,logy=logsin-1xx⇒logy=x logsin-1x Differentiating with respect to x,1ydydx=xddxlog sin-1x+log sin-1xddxx ⇒1ydydx=x1sin-1xddxsin-1x+log sin-1x⇒1ydydx=xsin-1×11-x2+ log sin-1x⇒dydx=ylog sin-1x+xsin-1×1-x2⇒dydx=sin-1xxlog sin-1x+xsin-1×1-x2 using equation i

Q15.

Answer :

Let y=xsin-1x …iTaking log on both sides,logy=logxsin-1x⇒logy=sin-1x logx Differentiating with respect to x,1ydydx=sin-1xddxlogx+logxddxsin-1x ⇒1ydydx=sin-1x1x+logx11-x2⇒dydx=ysin-1xx+logx1-x2⇒dydx=xsin-1xsin-1xx+logx1-x2 using equation i

Q16.

Answer :

Let y=tanx1x …iTaking log on both sides,logy=logtanx1x⇒logy=1xlogtanx Differentiating with respect to x,1ydydx=1xddxlogtanx+logtanxddx1x ⇒1ydydx=1x×1tanxddxtanx+logtanx-1×2⇒1ydydx=1xtanxsec2x-logtanxx2⇒dydx=ysec2xxtanx-logtan xx2⇒dydx=tanx1x sec2xxtanx-logtan xx2 using equation i

Q17.

Answer :

Let y=xtan-1x …iTaking log on both sides,logy=log xtan-1x⇒logy=tan-1x logx Differentiating with respect to x,1ydydx=tan-1xddxlogx+logxddxtan-1x ⇒1ydydx=tan-1x1x+logx11+x2⇒dydx=ytan-1xx+logx1+x2⇒dydx=xtan-1xtan-1xx+logx1+x2 using equation i

Q18.

Answer :

(i)
Let y=xxx …iTaking log on both sides,logy=logxxx⇒logy=logxx+logx12 ⇒logy=x logx+12logx
Differentiating with respect to x,
1ydydx=xddxlogx+logxddxx+12ddxlogx ⇒1ydydx=x1x+logx1+121x⇒1ydydx=1+logx+12x⇒dydx=y1+logx+12x⇒dydx=xxx1+logx+12x using equation i⇒dydx=xx+122x+12x+logx
ii Let y=xsinx-cosx+x2-1×2+1⇒ y=elogxsinx-cosx+x2-1×2+1⇒y=esinx-cosxlogx+x2-1×2+1
Differentiate it with respect to x using chain rule,
dydx=ddxesinx-cosxlogx+ddxx2-1×2+1 =esinx-cosxlogxddxsinx-cosxlogx+x2+1ddxx2-1-x2-1ddxx2+1×2+12 =elogxsinx-cosxsinx-cosxddxlogx+logxddxsinx-cosx+x2+12x-x2-12xx2+12 =xsinx-cosxsinx-cosx1x+logxsinx+cosx+2×3+2x-2×3+2xx2+12 =xsinx-cosxsinx-cosxx+sinx+cosxlogx+4xx2+12

iii Let y=xx cosx+x2+1×2-1Also, Let u=xx cosx and v=x2+1×2-1 ∴ y=u+v⇒dydx=dudx+dvdx …iNow, u=xx cosx⇒log u=logxx cosx⇒log u=x cosx logx
Differentiating both sides with respect to x,
1ududx=cosx logxddxx+xlogxddxcosx+x cosxddxlogx⇒dudx=ucosx logx+x-sinxlogx+x cosx1x⇒dudx=xx cosxcosx logx-x sinx logx+cosx⇒dudx=xx cosxcosx1+logx-x sinx logx …2Again, v=x2+1×2-1⇒log v=logx2+1-logx2-1
Differentiating both sides with respect to x,
1vdvdx=2xx2+1-2xx2-1⇒dvdx=v2xx2-1-2xx2+1×2+1×2-1⇒dvdx=x2+1×2-1-4xx2+1×2-1⇒dvdx=-4xx2-12 …3From i,ii and iii, we obtaindydx=xx cosxcosx1+logx-x sinx logx-4xx2-12

iv Let y=x cosxx+x sinx1x Also, Let u=x cosxx and v=x sinx1x∴ y=u+v⇒dydx=dudx+dvdx …iNow, u=x cosxx⇒log u=logx cosxx⇒log u=x logx cosx⇒log u=xlogx+log cosx⇒log u=xlogx+xlog cosx
Differentiate both sides with respect to x,
1ududx=ddxx logx+ddxx log cosx⇒dudx=ulogxddxx+xddxlogx+log cosxddxx+xddxlog cosx⇒dudx=x cosxxlogx1+x1x+log cosx1+x1cosxddxcosx⇒dudx=x cosxxlogx+1+log cosx+xcosx-sinx⇒dudx=x cosxx1+logx+log cosx-x tanx⇒dudx=x cosxx1-x tanx+logx+log cosx⇒dudx=x cosxx1-x tanx+logx cosx …iiAgain,v=x sinx1x⇒log v=logx sinx1x⇒log v=1xlogx sinx⇒log v=1xlogx+log sinx⇒log v=1xlogx+1xlog sinx
Differentiating both sides with respect to x,
1vdvdx=ddx1xlogx+ddx1xlogsinx⇒1vdvdx=logxddx1x+1xddxlogx+logsinxddx1x+1xddxlogsinx⇒1vdvdx=logx-1×2+1x1x+logsinx-1×2+1x1sinxddxsinx⇒1vdvdx=1×21-logx+-logsinxx2+1x sinxcosx⇒dvdx=x sinx1x1-logxx2+-logsinx+x cotxx2⇒dvdx=x sinx1x1-logx-logsinx+x cotxx2⇒dvdx=x sinx1x1-logxsinx+x cotxx2 …iiiFrom i,ii and iii, we obtaindydx=x cosxx1-x tanx+logx cosx+x sinx1xx cotx+1-logx sinxx2

v Let y=x+1x x+x1+1xAlso, Let u=x+1x x and v=x1+1x∴ y=u +v⇒dydx=dudx+dvdx …iThen, u=x+1x x⇒ log u=logx+1x x⇒log u=x logx+1x
Differentiate both sides with respect to x,
1ududx=logx+1xddxx+xddxlogx+1x⇒1ududx= logx+1x+x1x+1xddxx+1x⇒dudx=ulogx+1x+xx+1x×1-1×2⇒dudx=x+1xxlogx+1x+x-1xx+1x⇒dudx=x+1xxlogx+1x+x2-1×2+1⇒dudx=x+1xxx2-1×2+1+logx+1xAgain, v=x1+1x⇒log v=logx1+1x⇒log v=1+1xlog x
Differentiating both sides with respect to x,
1vdvdx=logxddx1+1x+1+1xddxlogx⇒ 1vdvdx=-1x2logx+1+1x1x⇒ 1vdvdx=-logxx2+1x+1×2⇒dvdx=v-logx+x+1×2⇒dvdx=x1+1xx+1-logxx2 …iiiFrom i,ii and iii, we obtaindydx=x+1xxx2-1×2+1+logx+1x+x1+1xx+1-logxx2

vii Let y=esinx+tanxx⇒ y=esinx+elogtanxx⇒y=esinx+exlogtanx
Differentiating with respect to x,
dydx=ddxesinx+ddxexlogtanx =esinxddxsinx+exlogtanxddxx logtanx =esinxcosx+elogtanxxxddxlogtanx+logtanxddxx =esinxcosx+tanxxxtanxsec2x+logtanx =esinxcosx+tanxxxsecxcosecx+logtanx

viii Let y=cosxx+sinx1x⇒y=elogcosxx+elogsinx1x⇒y=exlogcosx+e1xlogsinx
Differentiating with respect to x,
dydx=ddxex logcosx+ddxe1xlog sinx =ex logcosx×ddxx logcosx+e1xlog sinxddx1xlogsinx =elogcosxx× xddxlogcosx+logcosx × ddxx+elogsinx1x×1xddxlogsinx+logsinxddx1x =cosxxx1cosxddxcosx+logcosx1+sin1x1x×1sinx×ddxsinx+logsinx-1×2 =cosxxx1cosx-sinx+logcosx+sinx1x1x×1sinxcosx-1x2logsinx =cosxxlogcosx-x tanx+sinx1xcotxx-1x2logsinx

ix Let y=xx2-3+x-3×2 Also, let u=xx2-3 and v=x-3×2∴ y=u+v
Differentiate both sides with respect to x,
dydx=dudx+dvdx …iNow, u=xx2-3∴log u=logxx2-3⇒ log u=x2-3 logx
Differentiating with respect to x,
1ududx=logxddxx2-3+x2-3ddxlogx⇒1ududx=logx2x+x2-31x⇒dudx=xx2-3×2-3x+2x logxAlso, v=x-3×2∴log v=logx-3×2⇒log v=x2logx-3
Differentiating both sides with respect to x,
1vdvdx=logx-3ddxx2+x2ddxlogx-3⇒1vdvdx=logx-3 2x+x21x-3ddxx-3⇒dvdx=v2x logx-3+x2x-3×1⇒dvdx=x-3x2x2x-3+2xlogx-3
Substituing the expressions ofdudxand dvdxin equation idydx=xx2-3×2-3x+2x logx+x-3x2x2x-3+2x logx-3

 

Page 11.84 Ex.11.5

Q19.

Answer :

We have, y=ex+10x+xx⇒ y=ex+10x+elogxx ⇒y=ex+10x+exlogx
Differentiating with respect to x,
dydx=ddxex+ddx10x+ddxexlogx =ex+10x log10+exlogxddxx logx =ex+10x log10+exlogxxddxlogx+logxddxx =ex+10x log10+elogxxx1x+logx =ex+10x log10+xx1+logx =ex+10x log10+xxloge+logx ∵logee=1 =ex+10x log10+xxlogex

Q20.

Answer :

We have, y=xn+nx+xx+nn⇒y=xn+nx+elogxx+nn ⇒y=xn+nx+exlogx+nn
Differentiate with respect to x,
dydx=ddxxn+ddxnx+ddxexlogx+ddxnn =nxn-1+nx logn+elogxxxddxlogx+logxddxx =nxn-1+nx logn+xxx1x+logx =nxn-1+nx logn+xx1+logx =nxn-1+nx logn+xxloge+logx ∵logee=1 and logA+logB=logAB =nxn-1+nx logn+xxlogex

Q21.

Answer :

We have, y=x2-132x-1x-34x-1 …i⇒y=x2-132x-1x-3124x-112
Taking log on both sides,
log y=logx2-132x-1x-3124x-112⇒logy=logx2-13+log2x-1-logx-312-log4x-112⇒logy=3 logx2-1+log2x-1-12logx-3-12log4x-1
Differentiating with respect to x using chain rule,
1ydydx=3ddxlogx2-1+ddxlog2x-1-12ddxlogx-3-12log4x-1⇒1ydydx=31×2-1ddxx2-1+12x-1ddx2x-1-121x-3ddxx-3-1214x-1ddx4x-1⇒1ydydx=31×2-12x+12x-12-121x-31-1214x-14⇒1ydydx=6xx2-1+22x-1-12x-3-24x-1⇒dydx=y6xx2-1+22x-1-12x-3-24x-1⇒dydx=x2-132x-1x-34x-16xx2-1+22x-1-12x-3-24x-1 using equation i

Q22.

Answer :

We have, y=eaxsecx logx1-2x …i⇒y=eaxsecx logx1-2×12
Taking log on both sides,
logy=logeax+logsecx+log logx-12log1-2x ⇒logy=ax+logsecx+loglogx-12log1-2x
Differentiating with respect to x using chain rule,
1ydydx=ddxax+ddxlog secx+ddxlog logx-12log1-2x⇒1ydydx=a+1secxddxsecx+1logxddxlogx-1211-2xddx1-2x⇒1ydydx=a+secx tanxsecx+1logx1x-1211-2x-2⇒dydx=ya+tanx+1x logx+11-2x⇒dydx=eaxsecx logx1-2xa+tanx+1x logx+11-2x Using equation i

Q23.

Answer :

We have, y=e3x× sin4x × 2x …i
Taking log on both sides,
logy=loge3x+logsin4x+log2x ⇒logy=3x loge+logsin4x+x log2 ⇒logy=3x+logsin4x+x log2
Differentiating with respect to x,
1ydydx=ddx3x+ddxlog sin4x+ddxx log2⇒1ydydx=3+1sin4xddxsin4x+log21⇒1ydydx=3+1sin4xcos4xddx4x+log2⇒1ydydx=3+cot4x4+log2⇒1ydydx=3+4cot4x+log2⇒dydx=y3+4cot4x+log2⇒dydx=e3xsin4x2x3+4cot4x+log2 Using equation i

Q24.

Answer :

We have, y=sinx sin2x sin3x sin4x …i
Taking log on both sides,
logy=logsinx sin2x sin3x sin4x⇒logy=logsinx+logsin2x+logsin3x+logsin4x
Differentiating with respect to x using chain rule,
1ydydx=ddxlogsinx+ddxlogsin2x+ddxlogsin3x+ddxlogsin4x⇒1ydydx=1sinxddxsinx+1sin2xddxsin2x+1sin3xddxsin3x+1sin4xddxsin4x⇒1ydydx=1sinxcosx+1sin2xcos2xddx2x+1sin3xcos3xddx3x+1sin4xcos4xddx4x⇒1ydydx=cotx+cot2x2+cot3x3+cot4x4⇒dydx=ycotx+2cot2x+3cot3x+4cot4x⇒dydx=sinx sin2x sin3x sin4xcotx+2cot2x+3cot3x+4cot4x Using equation i

Q25.

Answer :

Let y=xsinx+sinxxAlso, let u=xsinx and v=sinxx∴ y=u+v⇒dydx=dudx+dvdx …iNow, u=xsinxTaking log on both sides,⇒logu=logxsinx⇒logu=sinx logxDifferentiating both sides with respect to x,1ududx=logxddxsinx +sinxddxlogx ⇒dudx=ucosx logx+sinx1x⇒dudx=xsinxcosx logx+sinxx …iiAgain, v=sinxxTaking log on both sides,⇒logv=logsinxx⇒logv=x logsinxDifferentiating both sides with respect to x,1vdvdx=logsinxddxx+xddxlogsinx⇒dvdx=vlogsinx+x1sinxddxsinx⇒dvdx=sinxxlog sinx+xsinxcosx⇒dvdx=sinxxlog sinx+x cotx ..iiiFrom i,iiand iii, we obtaindydx=xsinxcosx logx+sinxx+sinxxlog sinx+x cotx

Q26.

Answer :

We have, y=sinxcosx+cosxsinx⇒y=elogsinxcosx+elogcosxsinx⇒y=ecosx logsinx+esinx logcosxDifferentiating with respect to x,dydx=ddxecosx logsinx+ddxesinx logcosx =ecosx logsinxddxcosx logsinx+esinx logcosxddxsinx logcosx =elogsinxcosxcosxddxlogsinx+logsinxddxcosx+elogcosxsinxsinxddxlogcosx+logcosxddxsinx =sinxcosxcosx1sinxddxsinx+logsinx×-sinx+cosxsinxsinx1cosxddxcosx+logcosx×cosx =sinxcosxcotx cosx-sinx logsinx+cosxsinxtanx-sinx+cosx logcosx =sinxcosxcotx cosx-sinx logsinx+cosxsinxcosx logcosx-sinx tanx

Q27.

Answer :

We have, y=tanxcotx+cotxtanx⇒ y=elogtanxcotx+elogcotxtanx⇒y=ecotx logtanx+etanx logcotx
Differentiating with respect to x using chain rule and product rule,
dydx=ddxecotx logtanx+ddxetanx logcotx =ecotx logtanxddxcotx logtanx+etanx logcotxddxtanx logcotx =elogtanxcotxcotxddxlog tanx+log tanxddxcotx+elogcotxtanxtanxddxlog cotx+logcotxddxtanx =tanxcotxcotx×1tanxddxtanx+log tanx-cosec2x+cotxtanxtanx×1cotxddxcotx+log cotxsec2x =tanxcotxcosec2xsec2xsec2x-cosec2x log tanx+cotxtanxsec2xcosec2x-cosec2x+sec2x log cotx =tanxcotxcosec2x-cosec2x log tanx+cotxtanxsec2x log cotx-sec2x =tanxcotxcosec2x1-log tanx+cotxtanxsec2x log cotx-1

Q28.

Answer :

We have, y=sinxx+sin-1x⇒ y=elogsinxx+sin-1x⇒y=exlog sinx+sin-1x
Differentiating with respect to x using chain rule,
dydx=ddxex log sinx+ddxsin-1x =ex log sinxddxx log sinx+11-x2ddxx =elogsinxxxddxlog sinx+log sinxddxx+11-x×12x =sinxxx1sinxddxsinx+log sinx+12x-x2 =sinxxxsinxcosx+log sinx+12x-x2 =sinxxxcotx+log sinx+12x-x2

Q29.

Answer :

i We have, y=xcosx+sinxtanx⇒y=elogxcosx+elogsinxtanx ⇒y=ecosx logx+etanx log sinx
Differentiating with respect to x using chain rule,
dydx=ddxecosx logx+ddxetanx log sinx =ecosx logxddxcosx logx+etanx log sinxddxtanx log sinx =elogxcosxcosxddxlogx+logxddxcosx+elogsinxtanxtanxddxlog sinx+log sinxddxtanx =xcosxcosx1x+logx-sinx+sinxtanxtanx1sinxddxsinx+log sinxsec2x =xcosxcosxx-sinx logx+sinxtanxtanx1sinxcosx+sec2x log sinx =xcosxcosxx-sinx logx+sinxtanx1+sec2x log sinx

ii We have, y=xx+sinxx⇒y=elogxx+elogsinxx⇒y=ex logx+ex log sinx
Differentiating with respect to x using chain rule and product rule,
dydx=ddxex logx+ddxex log sinx =ex logxddxx logx+ex log sinxddxx log sinx =exlogxxddxlogx+logxddxx+elogsinxxxddxlog sinx+log sinxddxx =xxx1x+logx1+sinxxx1sinxddxsinx+log sinx =xx1+ logx+sinxxx1sinxcosx+ log sinx =xx1+ logx+sinxxx cotx+ log sinx

iii We have, y=sinxx+sin-1x⇒y=elogsinxx+sin-1x⇒y=ex logsinx+sin-1x
Differentiating with respect to x using chain rule and product rule,
dydx=ddxex log sinx+ddxsin-1x =ex log sinxddxx log sinx+11-x2ddxx =elogsinxxxddxlog sinx+log sinxddxx+11-x×12x =sinxxx1sinxddxsinx+log sinx1+12x-x2 =sinxxxsinxcosx+ log sinx+12x-x2 =sinxxx cotx+ log sinx+12x-x2

Q30.

Answer :

We have, y=tanxlogx+cos2π4⇒ y=elogtanxlogx+cos2π4⇒y=elogx log tanx+cos2π4
Differentiating with respect to x using chain rule,
dydx=ddxelogx log tanx+ddxcos2π4 =elogx log tanxddxlogx log tanx+0 =elogtanxlogxlogxddxlog tanx+log tanxddxlogx =tanxlogxlogx1tanxddxtanx+log tanx1x =tanxlogxlogx1tanxsec2x+log tanxx =tanxlogxlogxsec2xtanx+log tanxx

Q31.

Answer :

We have, y=xx+x1x⇒y=elogxx+elogx1x⇒ y=ex logx+e1xlogx
Differentiating with respect to x using chain rule,
dydx=ddxex logx+ddxe1xlogx =ex logxddxx logx+e1xlogxddx1xlogx =elogxxxddxlogx+logxddxx+elogx1x1xddxlogx+logxddx1x =xxx1x+logx1+x1x1x1x+logx-1×2 =xx1+logx+x1x1x2-1x2logx =xx1+logx+x1x1-logxx2

Q32.

Answer :

Let y=xlogx+logxxAlso, let u=logxx and v=xlogx∴y=v+u⇒dydx=dvdx+dudx …iNow, u=logxx⇒logu=loglogxx⇒logu=xloglogx
Differentiating both sides with respect to x,
1ududx=loglogxddxx+xddxloglogx⇒dudx=uoglogx+x1logxddxlogx⇒dudx=logxxloglogx+xlogx×1x⇒dudx=logxxloglogx+1logx …iiAlso, v=xlogx⇒logv=logxlogx⇒logv=logx logx=logx2
Differentiating both sides with respect to x,
1vdvdx=ddxlogx2⇒ 1vdvdx=2logxddxlogx⇒dvdx=2vlogx1x⇒dvdx=2xlogxlogxx⇒dvdx=2xlogxlogxx …iiiFrom i,ii and iii, we obtaindydx=2xlogxlogxx+logxx loglogx+1logx

Q33.

Answer :

We have, x13y7=x+y20
Taking log on both sides,
logx13y7=logx+y20⇒13logx+7logy=20logx+y
Differentiating with respect to x using chain rule,
13ddxlogx+7ddxlogy=20ddxlogx+y⇒13x+7ydydx=20x+yddxx+y⇒13x+7ydydx=20x+y1+dydx⇒7ydydx-20x+ydydx=20x+y-13x⇒dydx7y-20x+y=20x+y-13x⇒dydx7x+y-20yyx+y=20x-13x+yxx+y⇒dydx=20x-13x-13yxx+yyx+y7x+7y-20y⇒dydx=yx7x-13y7x-13y⇒dydx=yx

Q34.

Answer :

We have, x16y9=x2+y17
Taking log on both sides,
logx16y9=logx2+y17⇒16logx+9logy=17logx2+y
Differentiating with respect to x using chain rule,
16ddxlogx+9ddxlogy=17ddxlogx2+y⇒16x+9ydydx=17×2+yddxx2+y⇒16x+9ydydx=17×2+y2x+dydx⇒9ydydx-17×2+ydydx=34xx2+y-16x⇒dydx9y-17×2+y=34xx2+y-16x⇒dydx9x2+y-17yyx2+y=34×2-16×2+yxx2+y⇒dydx9x2+9y-17yyx2+y=34×2-16×2-16yxx2+y⇒dydx9x2-8yyx2+y=18×2-16yxx2+y⇒dydx=yx29x2-8y9x2-8y⇒dydx=2yx⇒xdydx=2y

Q35.

Answer :

Let y=sinxx …iAlso, Let u=xx …iiTaking log on both sides,⇒logu=logxx⇒logu=xlogx
Differentiating both sides with respect to x,
1ududx=ddxx logx⇒ 1ududx=xddxlogx+logxddxx⇒ 1ududx=x1x+logx1⇒ 1ududx=1+logx⇒dudx=u1+logx⇒dudx=xx1+logx …iii using equation iiNow, using equation ii in equation i,y=sinuDifferentiating with respect to x,dydx=ddxsinu⇒dydx=cosududxUsing equation ii and iii,dydx=cosxx× xx1+logx

Q36.

Answer :

We have, xx+yx=1⇒elogxx+elogyx=1⇒ex logx+ex logy=1
Differentiating with respect to x using chain rule,
ddxexlogx+ddxex logy=ddx1⇒ex logxddxx logx+ex logyddxx logy=0⇒ex logxxddxlogx+logxddxx+elogyxxddxlogy+logyddxx=0⇒xxx1x+logx1+yxx1ydydx+logy1=0⇒xx1+logx+yxxydydx+logy=0⇒yx×xydydx=-xx1+logx+yxlogy⇒xyx-1dydx=-xx1+logx+yxlogy⇒dydx=-xx1+logx+yxlogyxyx-1

Q37.

Answer :

We have, xy×yx=1
Taking log on both sides,
logxy×yx=log1⇒ylogx+x logy=log1
Differentiating with respect to x ,
ddxy logx+ddxx logx=ddxlog1⇒yddxlogx+logxdydx+xddxlogy+logyddxx=0⇒y1x+logxdydx+x1ydydx+logy1=0⇒yx+logxdydx+xydydx+logy=0⇒dydxlogx+xy=-logy+yx⇒dydxy logx+xy=-x logy+yx⇒dydx=-yxx logy+yy logx+x

Q38.

Answer :

We have, xy+yx=x+yx+y⇒elogxy+elogyx=elogx+yx+y⇒ey logx+ex logy=ex+y logx+y

Differentiating with respect to x using chain rule and product rule,
⇒ddxey logx+ddxex logy=ddxex+ylogx+y⇒ey logxyddxlogx+logxdydx+ex logyxddxlogy+logyddxx=ex+ylogx+yddxx+ylogx+y⇒elogxyy1x+logxdydx+elogxxydydx+logy1=elogx+yx+yx+yddxlogx+y+logx+yddxx+y⇒xyyx+logxdydx+yxxydydx+logy=x+yx+yx+y1x+yddxx+y+logx+y1+dydx⇒xy×yx+xy logxdydx+yx×xydydx+yxlogy=x+yx+y1×1+dydx+logx+y1+dydx⇒xy-1× y+xylogxdydx+yx-1× xdydx+yxlogy=x+yx+y+x+yx+ydydx+x+yx+ylogx+y+x+yx+ylogx+ydydx⇒dydxxylogx+xyx-1-x+yx+y1+logx+y=x+yx+y1+logx+y-xy-1×y-yxlogy⇒dydx=x+yx+y1+logx+y-yxy-1-yxlogyxylogx+xyx-1-x+yx+y1+logx+y

Q39.

Answer :

We have, xmyn=1
Taking log on both side,
logxmyn=log1⇒m logx+n logy=log1
Differentiating with respect to x,
dydxm logx+ddxn logy=ddxlog1⇒mx+nydydx=0⇒dydx=-mx×yn⇒dydx=-mynx

Q40.

Answer :

We have, yx=ey-x
Taking log on both sides,
logyx=logey-x ⇒xlogy=y-xloge⇒xlogy=y-x …i

Differentiating with respect to x,
ddxx logy=ddxy-x⇒xddxlogy+logyddxx=dydx-1⇒x1ydydx+logy1=dydx-1⇒dydxxy-1=-1-logy⇒dydxy1+logyy-1=-1+logy Using i ⇒dydx1-1-logy1+logy=-1+logy⇒dydx=-1+logy2-logy⇒dydx=1+logy2logy

Q41.

Answer :

We have, sinxy=cosyx
Taking log on both sides,
logsinxy=logcosyx ⇒y logsinx=x logcosy
Differentiating with respect to x,
ddxy log sinx=ddxx logcosy⇒yddxlog sinx+log sinxdydx=xdydxlog cosy+log cosyddxx ⇒y1sinxddxsinx+log sinxdydx=xcosyddxcosy+logcosy1⇒ysinxcosx+log sinxdydx=xcosy-sinydydx+log cosy⇒y cotx+log sinxdydx=-x tanydydx+log cosy⇒dydxlog sinx+x tany=log cosy-y cotx⇒dydx=log cosy-y cotxlog sinx+x tany

Q42.

Answer :

We have, cos xy=tan yx
Taking log on both sides,
logcosxy=logtanyx⇒y log cosx=x log tany
Differentiating it with respect to x using chain,
ddxy log cosx=ddxx log tany⇒yddxlog cosx+log cosxdydx=xddxlog tany+log tanyddxx⇒y1cosxddxcosx+log cosxdydx=x1tanyddxtany+log tany⇒ycosx-sinx+log cosxdydx=xtanysec2ydydx+log tany⇒-ytanx+log cosxdydx=secy cosecy×xdydx+log tany⇒dydxlog cosx-x secy cosecy=log tany+y tanx⇒dydx=log tany+y tanxlog cosx-xsecy cosecy

Q43.

Answer :

We have, ex+ey=ex+y …(1)
Differentiating both sides using chain rule,
ddxex+ddxey=ddxex+y⇒ex+eydydx=ex+yddxx+y⇒ex+eydydx=ex+y1+dydx⇒eydydx-ex+ydydx=ex+y-ex⇒dydx=ex+y-exey-ex+y⇒dydx=ex+y-ex+y+eyex+y-ex-ex+y Using eqn.1⇒dydx=ey-ex⇒dydx=-ey-x⇒dydx+ey-x=0

 

Page 11.85 Ex.11.5

Q44.

Answer :

We have, ey=yx
Taking log on both sides,
logey=logyx⇒y loge=x logy ⇒y=x logy …i
Differentiating with respect to x,
dydx=ddxx logy⇒dydx=xdydxlogy+logyddxx ⇒dydx=xydydx+logy ⇒dydx1-xy=logy⇒dydxy-xy=logy⇒dydx=y logyy-x⇒dydx=y logyy-ylogy Using equation i⇒dydx=y logylogyy logy-y⇒dydx=y logy2ylogy-1⇒dydx=logy2logy-1

Q45.

Answer :

We have, ex+y-x=0⇒ex+y=x …1
Differentiating with respect to x using chain rule,
ddxex+y=ddxx⇒ex+yddxx+y=1⇒x1+dydx=1 Using equation i⇒1+dydx=1x⇒dydx=1x-1⇒dydx=1-xx

Q46.

Answer :

We have, y=x sina+y
Differentiating with respect to x using chain rule,
dydx=xddxsina+y+sina+yddxx ⇒dydx=x cosa+ydydx+sina+y⇒1-x cosa+ydydx=sina+y⇒dydx=sina+y1-x cosa+y⇒dydx=sina+y1-ysina+ycosa+y ∵ysina+y=x⇒dydx=sin2a+ysina+y-y cosa+y

Q47.

Answer :

We have, x sina+y+sina cosa+y=0
Differentiating with respect to x using chain rule,
ddxx sina+y+sina cosa+y=0⇒xddxsina+y+sina+yddxx+sinaddxcosa+y+cosa+yddxsin a=0⇒x cosa+y0+dydx+sina+y+sina-sina+ydydx+0=0⇒x cosa+y-sina sina+ydydx+sina+y=0⇒dydx=-sina+yx cosa+y-sina sina+y⇒dydx=-sina+y-sina cosa+ysina+ycosa+y-sina sina+y ∵ x=-sina cosa+ysina+y⇒dydx=sin2a+ysinacos2a+y+sinasin2a+y⇒dydx=sin2a+ysinacos2a+y+sin2a+y⇒dydx=sin2a+ysina ∵cos2a+y+sin2a+y=1

Q48.

Answer :

We have, sinxy=x+y
Taking log on both the sides,
logsinxy=logx+y⇒ylogsinx=logx+y
Differentiating with respect to x using chain rule,
ddxy logsinx=ddxlogx+y⇒yddxlog sinx+log sinxdydx=1x+yddxx+y⇒ysinxddxsinx+log sinxdydx=1x+y1+dydx⇒ycosxsinx+log sinxdydx=1x+y+1x+ydydx⇒dydxlog sinx-1x+y=1x+y-y cotx⇒dydxx+ylog sinx-1x+y=1-yx+y cotxx+y⇒dydx=1-yx+ycotxx+ylogsinx-1

Q49.

Answer :

We have, xy logx+y=1 …i
Differentiating with respect to x using chain rule,
dydxxy logx+y=ddx1⇒xyddxlogx+y+x logx+ydydx+y logx+yddxx=0⇒xyx+y1+dydx+xlogx+ydydx+y logx+y1=0⇒xyx+y1+dydx+xlogx+ydydx+y logx+y=0⇒xyx+ydydx+xyx+y+x1xydydx+y1xy=0 Using equation i⇒dydxxyx+y+1y=-1x+xyx+y⇒dydxxy2+x+yx+yy=-x+y+x2yxx+y⇒dydx=-yxx+y+x2yx+y+xy2

Q50.

Answer :

We have, y=x siny …i
Differentiating with respect to x,
dydx=ddxx siny⇒dydx=xddxsiny+sinyddxx ⇒dydx=x cosydydx+siny1⇒dydx-x cosydydx=siny⇒dydx1-x cosy=siny⇒dydx=siny1-x cosy⇒dydx=yx1-x cosy ∵siny=yx

Q51.

Answer :

We have, fx=1+x1+x21+x41+x8Taking log on both sides,log fx=log1+x+log1+x2+log1+x4+log1+x8⇒ddxlog fx=ddxlog1+x+log1+x2+log1+x4+log1+x8⇒1fxf’x=11+x+2×1+x2+4×31+x4+8×71+x8⇒f’x=1+x1+x21+x41+x811+x+2×1+x2+4×31+x4+8×71+x8⇒f’1=1+11+121+141+1811+1+211+12+4131+14+8171+18⇒f’1=2×2×2×212+22+42+82⇒f’1=2×2×2×2×121+2+4+8⇒f’1=8×15=120

Q52.

Answer :

We have, y=logx2+x+1×2-x+1+23tan-13×1-x2
Differentiating with respect to x using chain rule,
dydx=ddxlogx2+x+1×2-x+1+23ddxtan-13×1-x2⇒dydx=1×2+x+1×2-x+1ddxx2+x+1×2-x+1+2311+3×1-x22ddx3x1-x2⇒dydx=x2-x+1×2+x+1×2-x+1ddxx2+x+1-x2+x+1ddxx2-x+1×2-x+12+231-x221+x4-2×2+3×2 1-x2ddx3x-3xddx1-x21-x22⇒dydx=1×2+x+1×2-x+12x+1-x2+x+12x-1×2-x+1+231-x221+x2+x41-x23-3x-2×1-x22⇒dydx=2×3-2×2+2x+x2-x+1-2×3-2×2-2x+x2+x+1×4+2×2+1-x2+233-3×2+23×21+x2+x4⇒dydx=-2×2+2×4+x2+1+23×2+131+x2+x4⇒dydx=21-x2x4+x2+1+2×2+11+x2+x4⇒dydx=21-x2+x2+11+x2+x4⇒dydx=41+x2+x4

Q53.

Answer :

We have, y=sinx-cosxsinx-cosx …(i)
Taking log on both sides,
logy=logsinx-cosxsinx-cosx⇒logy=sinx-cosx logsinx-cosx

⇒1ydydx=logsinx-cosxddxsinx-cosx+sinx-cosxddxlogsinx-cosx using product rule⇒1ydydx=logsinx-cosxcosx+sinx+sinx-cosxsinx-cosxddxsinx-cosx⇒1ydydx=cosx+sinx logsinx-cosx+cosx+sinx⇒1ydydx=cosx+sinx1+logsinx-cosx⇒dydx=ycosx+sinx1+logsinx-cosx⇒dydx=sinx-cosxsinx-cosxcosx+sinx1+logsinx-cosx using equation i

Q54.

Answer :

We have, xy=ex-y
Taking log on both sides,
logxy=logex-y⇒logx+logy=x-yloge⇒logx+logy=x-y×1⇒logx+logy=x-y

⇒ddxlogx+ddxlogy=ddxx-dydx⇒1x+1ydydx=1-dydx⇒1+1ydydx=1-1x⇒y+1ydydx=x-1x⇒dydx=yx-1xy+1

Q55.

Answer :

Given that yx+xy+xx=abPutting u=yx, v=xy and w=xx , we get u+v+w=ab∴dudx+dvdx+dwdx=0 …iNow, u=yx
Taking log on both sides,
log u=x log y

⇒1ududx=xddxlog y+log yddxx using product rule⇒1ududx=x1ydydx+log y×1⇒dudx=uxydydx+log y⇒dudx=yxxydydx+log y …iiAlso, v=xy
Taking log on both sides,
log v=y log x

⇒1vdvdx=yddxlogx+logxdydx⇒1vdvdx=y1x+logxdydx⇒dvdx=vyx+logxdydx⇒dvdx=xyyx+logxdydx …iiiAgain, w=xx
Taking log on both sides,
log w=x log x

⇒1wdwdx=xddxlog x+log xddxx⇒1wdwdx=x1x+logx1⇒dwdx=w1+log x⇒dwdx=xx 1+log x …ivFrom i,ii,iiiand iv, we have yxxydydx+log y+xyyx+log xdydx+xx1+log x=0⇒x.yx-1+xy.log xdydx=-xx1+log x-y.xy-1-yxlog y∴ dydx=-yx log y+y.xy-1+xx 1+log xx.yx-1+xy log x

 

Page 11.89 Ex.11.6

Q1.

Answer :

We have, y=x+x+x+… to ∞⇒ y=x+ySquaring both sides, we get, y2=x+y⇒ 2y dydx=1+dydx⇒dydx2y-1=1⇒dydx=12y-1

Q2.

Answer :

We have, y=cosx+cosx+cosx+… to ∞⇒y=cosx+ySquaring both sides, we get, y2=cosx+y⇒ 2y dydx=-sinx+dydx⇒dydx2y-1=-sinx⇒dydx=-sinx2y-1⇒dydx=sinx1-2y

Q3.

Answer :

We have,y=logx+logx+logx+… to ∞⇒y=logx+ySquaring both sides,we get,y2=logx+y⇒2y dydx=1x+dydx⇒dydx2y-1=1x

Q4.

Answer :

We have, y=tanx+tanx+tanx+… to ∞⇒y=tanx+ySquaring both sides, we get, y2=tanx+y⇒2y dydx=sec2x+dydx⇒dydx2y-1=sec2x⇒dydx=sec2x2y-1

Q5.

Answer :

We have, y=sinxsinxsinx….∞⇒y=sinxy
Taking log on both sides,
log y=logsinxy⇒log y=y logsinx

⇒1ydydx=yddxlogsinx+log sinxdydx⇒1ydydx=y1sinxddxsinx+log sinxdydx⇒dydx1y-log sinx=ysinxcosx⇒dydx1-y log sinxy=y cotx⇒dydx=y2cotx1-y log sinx

 

Page 11.90 Ex.11.6

Q6.

Answer :

We have, y=tanxtanxtanx…∞⇒ y=tanxy
Taking log on both sides,
log y=logtanxy⇒log y=y log tanx

Differentiating with respect to x using chain rule ,
1ydydx=yddxlog tanx+log tandydx⇒1ydydx=ytanxddxtanx+log tandydx⇒dydx1y-log tanx=ytanxsec2x⇒dydx=ytanxsec2x×y1-ylog tanxNow, dydxx=π4=y sec2π4tanπ4×y1-y log tanπ4⇒dydxx=π4=y22211-y log tan 1⇒dydxx=π4=2121-0 ∵ yπ4=tanπ4tanπ4tanπ4…∞=1 ⇒dydxx=π4=2

Q7.

Answer :

We have, y=exex+xeex+exxe⇒y=u+v+w⇒dydx=dudx+dvdx+dwdx …iwhere u=exex, v=xeexand w=exxeNow,u=exex …ii
Taking log on both sides,
logu=logexex⇒logu=xexloge⇒logu=xex …iii
Taking log on both sides,
log logu=logxex⇒log logu=ex logx
Differentiating with respect to x,
⇒1loguddxlogu=exddxlogx+logxddxex⇒1logu1ududx=exx+ex logx⇒dudx=uloguexx+ex logx⇒dudx=exex×xexexx+ex logx …A Using equation ii and iiiNow, v=xeex …iv
Taking log on both sides,
log v=log xeex⇒log v=eexlogx

⇒1vdvdx=eexddxlogx+logxddxeex⇒1vdvdx=eex1x+logxeexddxex⇒dvdx=veex1x+logxeexex⇒dvdx=xeex×eex1x+exlogx …B Using equation 4Now, w=exxe …v
Taking log on both sides,
logw=logexxe⇒logw=xxeloge⇒logw=xxe …vi
Taking log on both sides,
log logw=logxxe⇒log logw=xelogx

⇒1logwddxlogw=xeddxlogx+logxddxxe⇒1logw1wdwdx=xe1x+logxexe-1⇒dwdx=w logwxe-1+e logxxe-1⇒dwdx=exxexxexe-11+e logx —-C using equation v,viUsing equation A,B and C in equation i, we getdydx=exexxexexx+exlogx+xeex×eex1x+ex logx+exxexxexe-11+e logx

Q8.

Answer :

We have, y=cosxcosxcosx….∞
⇒y=cosxy
Taking log on both sides,
log y=logcosxy⇒log y=y logcosx
Differentiating with respect to x using chain rule,
1ydydx=yddxlog cosx+log cosxdydx⇒1ydydx=y1cosxddxcosx+log cosxdydx⇒dydx1y-log cosx=ycosx-sinx⇒dydx1-y log cosxy=-y tanx⇒dydx=-y2tanx1-y log cosx

 

Page 11.93 Ex.11.7

Q1.

Answer :

We have, x=at2 and y=2at⇒dxdt=2at and dydt=2a∴ dydx=dydtdxdt=2a2at=1t

Q2.

Answer :

We have, x=aθ+sinθ and y=a1-cosθ

⇒dxdθ=a1+cosθ and dydθ=a sinθ

∴dydx=dydθdxdθ=a sinθa1+cosθ=2 sinθ2cosθ22cos2θ=tanθ2

Q3.

Answer :

We have, x=a cosθ and y=b sinθ⇒ dxdθ=-a sinθ and dydθ=b cosθ∴dydx=dydθdxdθ=b cosθ-a sinθ=-bacotθ

Q4.

Answer :

We have, x=aeθsinθ-cosθ and y=aeθsinθ+cosθ

⇒dxdθ=aeθddθsinθ-cosθ+sinθ-cosθddθeθ and dydθ=aeθddθsinθ+cosθ+sinθ+cosθddθeθ⇒dxdθ=aeθcosθ+sinθ+sinθ-cosθeθ and dydθ=aeθcosθ-sinθ+sinθ+cosθeθ⇒dxdθ=a2eθ sinθ and dydθ=a2eθ cosθ

∴dydθdxdθ=a2eθcosθa2eθsinθ=cotθ

Q5.

Answer :

We have, x=b sin2θ and y=a cos2θ∴dxdθ=ddθb sin2θ=2b sinθcosθand, dydθ=ddθa cos2θ=-2a cosθsinθ ∴ dydx=dydθdxdθ=-2a cosθsinθ 2b sinθcosθ=-ab

Q6.

Answer :

We have, x=a1-cosθ and y=aθ+sinθ∴ dxdθ=ddθa1-cosθ=asinθand dydθ=ddθaθ+sinθ=a1+cosθ ∴ dydxθ=π2=dydθdxdθθ=π2=a1+cosθasin θθ=π2=a1+0a=1

Q7.

Answer :

We have, x=et+e-t2 and y=et-e-t2

⇒dxdt=12ddtet+ddte-t and dydt=12ddtet-ddte-t⇒dxdt=12et+e-tddt-t and dydt=12et-e-tddte-t⇒dxdt=12et-e-t=y and dydt=12et+e-t=x ∴dydt=dydtdxdt=xy

Q8.

Answer :

We have, x=3at1+t2
Differentiating with respect to t,
dxdt=1+t2ddt3at-3atddt1+t21+t22 using quotient rule⇒dxdt=1+t23a-3at2t1+t22⇒dxdt=3a+3at2-6at21+t22⇒dxdt=3a-3at21-t22⇒dxdt=3a1-t21+t22 …iand, y=3at21+t2
Differentiating it with respect to t,

dxdt=1+t2ddt3at2-3at2ddt1+t21+t22 using quotient rule⇒dxdt=1+t26at-3at22t1+t22⇒dxdt=6at+6at3-6at31+t22⇒dxdt=6at1+t22 …iiDividing equation ii by i,dydtdxdt=6at1+t22×1+t223a1-t2=2t1-t2

Q9.

Answer :

We have, x=acosθ+θ sinθ and y=asinθ-θ cosθ⇒dxdθ =addθcosθ+ddθθ sinθ and dydθ=addθsinθ-ddθθ cosθ⇒dxdθ =a-sinθ+θddθsinθ+sinθddθθ and dydθ=acosθ-θddθcosθ+cosθddθθ⇒ dxdθ =a-sinθ+θ cosθ and dydθ=acosθ+θ sinθ-cosθ⇒dxdθ =aθ cosθ and dydθ=aθ sinθ∴ dydx=dydθdxdθ=aθ sinθaθ cosθ =tanθ

Q10.

Answer :

We have, x=eθθ+1θ
Differentiating it with respect to θ,
dxdθ=eθddθθ+1θ+θ+1θddθeθ using product rule⇒dxdθ=eθ1-1θ2+θ2+1θeθ⇒dxdθ=eθ1-1θ2+θ2+1θ⇒dxdθ=eθθ2-1+θ3+θθ2⇒dxdθ=eθθ3+θ2+θ-1θ2 …iand, y=eθθ-1θ
Differentiating it with respect to θ using chain rule,

dydθ=e-θddθθ-1θ+θ-1θddθe-θ using product rule⇒dydθ=e-θ1+1θ2+θ-1θeθddθ-θ⇒dydθ=e-θ1+1θ2+θ-1θe-θ-1⇒dydθ=e-θ1+1θ2-θ+1θ⇒dydθ=e-θθ2+1-θ3+θθ2⇒dydθ=e-θ-θ3+θ2+θ+1θ2 …iiDividing equation ii by i,dydθdxdθ=e-θθ2-θ3+θ+1θ2×θ2eθθ3+θ2+θ-1 =e-2θθ2-θ3+θ+1θ3+θ2+θ-1

Q11.

Answer :

We have, x=2t1+t2

⇒dxdt=1+t2ddt2t-2tddt1+t21+t22 using quotient rule⇒dxdt=1+t22-2t2t1+t22⇒dxdt=2+2t2-4t21+t22⇒dxdt=2-2t21+t22 …iand,y=1-t21+t2

⇒dydt=1+t2ddt1-t2-1-t2ddt1+t21+t22⇒dydt=1+t2-2t-1-t22t1+t22⇒dydt=-4t1+t22 …iiDividing equation ii by i, we get,dydtdxdt=-4t1+t22×1+t2221-t2⇒dydx=-2t1-t2⇒dydx=-xy ∵xy =2t1+t2×1+t21-t2=2t1-t2

Q12.

Answer :

We have, x=cos-111+t2

⇒dxdt=-11-11+t22ddt11+t2⇒dxdt=-11-11+t2-121+t232ddt1+t2⇒dxdt=1+t2121+t2-1×121+t2322t⇒dxdt=tt2×1+t2⇒dxdt=11+t2 …iNow, y=sin-111+t2

⇒dydt=11-11+t22ddt11+t2⇒dydt=11-11+t2-121+t232ddt1+t2⇒dxdt=1+t2121+t2-1×-121+t2322t⇒dxdt=-12t2×1+t22t⇒dxdt=-11+t2 …iiDividing equation ii by i,dydtdxdt=11+t2×1+t2-1⇒dydx=-1

Q13.

Answer :

We have, y=2t1+t2

⇒dydt=1+t2ddt2t-2tddt1+t21+t22 using quotient rule⇒dydt=1+t22-2t2t1+t22⇒dydt=2+2t2-4t21+t22⇒dydt=2-2t21+t22 …iand,x=1-t21+t2

⇒dxdt=1+t2ddt1-t2-1-t2ddt1+t21+t22⇒dxdt=1+t2-2t-1-t22t1+t22⇒dxdt=-4t1+t22 …iiDividing equation i by ii, we get,dydtdxdt=21-t21+t22×1+t22-4t⇒dydx=21-t2-4t⇒dydx=t2-12t

Q14.

Answer :

We have, x=2 cosθ- cos2θ

⇒dxdθ=2-sinθ–sin2θddθ2θ⇒dxdθ=-2sinθ+2 sin2θ⇒dxdθ=2sin2θ-sinθ …iand,y=2 sinθ-sin2θ

⇒dydθ=2 cosθ-cos2θddθ2θ⇒dydθ=2 cosθ-cos2θ2⇒dydθ=2 cosθ-2 cos2θ⇒dydθ=2cosθ-cos2θ …iiDividing equation ii by equation i,dydθdxdθ=2cosθ-cos2θ2sin2θ-sinθ⇒dydx=cosθ-cos2θsin2θ-sinθ⇒dydx=-2sinθ+2θ2sinθ-2θ22cos2θ+θ2sin2θ-θ2 ∵sinA-sinB=2 cosA+B2sinA-B2and cosA-cosB=-2sinA+B2sinA-B2⇒dydx=-sin3θ2sin-θ2cos3θ2sinθ2⇒dydx=-sin3θ2-sinθ2cos3θ2sinθ2⇒dydx=sin3θ2cos3θ2⇒dydx=tan3θ2

Q15.

Answer :

We have, x=ecos2t and y=esin2t

⇒dxdt=ddtecos2t and dydt=ddtesin2t⇒dxdt=ecos2tddtcos2t and dydt=esin2tddtsin2t⇒dxdt=ecos2t-sin2tddt2t and dydt=esin2tcos2tddt2t ⇒dxdt=-2sin 2tecos2t anddydt=2cos2tesin2t ∵dydtdxdt=2 cos2tesin2t-2sin2tecos2t⇒dydx=-y logxx logy ∵x=ecos2t⇒logx=cos2ty=esin2t⇒logy=sin 2t

Q16.

Answer :

We have, x=cost and y=sin t

⇒dxdt=ddtcos t and dydt=ddtsin t⇒dxdt=-sin t and dydt=cos t ∴dydtdxdt=cos t-sin t=-cot t Now, dydxt=2π3=-cot 2π3=13

 

Page 11.94 Ex.11.7

Q17.

Answer :

We have, x=at+1t and y=at-1t

⇒dxdt=addtt+1t and dydt=addtt-1t⇒dxdt=a1-1t2 and dydt=a1+1t2 ⇒dxdt=at2-1t2 and dydt=at2+1t2 ∴ dydx = dydtdxdt=at2+1t2×t2at2-1⇒dydx =at2+1t×tat2-1⇒dydx =at+1t×1at-1t⇒ dydx=xy

Q18.

Answer :

We have, x=sin-12t1+t2Put t=tanθ⇒-1<tanθ<1⇒-π4<θ<π4⇒-π2<2θ<π2∴x=sin-12 tanθ1+tan2θ⇒ x=sin-1sin2θ⇒x=2θ ∵-π2<2θ<π2⇒x=2tan-1t ∵t=sinθ

⇒dxdt=21+t2 …iNow, y=tan-12t1-t2put t=tanθ⇒ y=tan-12 tanθ1-tan2θ⇒ y=tan-1tan 2θ ⇒ y=2θ ∵-π2<2θ<π2⇒ y=2 tan-1t ∵ t=tanθ

⇒dydt=21+t2 …iiDividing equation ii by i,dydtdxdt=21+t2×1+t22⇒dydx=1

Q19.

Answer :

We have, x=sin3tcos2t and y=cos3tcos2t⇒dxdt=ddtsin3tcos2t ⇒dxdt=cos2tddtsin3t-sin3tddtcos2tcos2t Using quotient rule⇒dxdt=cos2t3sin2tddtsint-sin3t×12cos2tddtcos 2tcos2t ⇒ dxdt=3cos2tsin2t cost-sin3t2cos2t-2 sin2tcos 2t⇒ dxdt=3cos2t sin2t cost+sin3t sin2tcos2tcos2tNow, dydt=ddtcos3tcos2t ⇒ dydt=cos2tddtcos3t-cos3tddtcos2tcos2t Using quotient rule⇒ dydt=cos2t3cos2tddtcost-cos3t×12cos2tddtcos 2tcos2t ⇒ dydt=3cos2tcos2t -sint-cos3t2cos2t-2 sin2tcos 2t⇒ dydt=-3cos2t cos2t sint+cos3t sin2tcos2tcos2t∴dydx=dydtdxdt=-3cos2t cos2t sint+cos3t sin2tcos2tcos2t×cos2tcos2t3cos2t sin2t cost+sin3t sin2t⇒ dydx=-3cos2t cos2t sint+cos3t sin2t3cos2t sin2t cost+sin3t sin2t⇒ dydx=sint cost-3cos2t cost+2cos3tsint cost3cos2t sint+2sin3t⇒ dydx=-32cos2t-1cost+2cos3t31-2sin2tsint+2sin3t cos2t=2cos2t-1cos2t=1-2sin2t⇒ dydx=-4cos3t+3cost3sint-4sin3t⇒ dydx=-cos3tsin3t cos3t=4cos3t-3costsin3t=3sint-4sin3t∴dydx=-cot3t

Q20.

Answer :

We have, x=t+1ta

⇒dxdt=ddtt+1ta ⇒dxdt=at+1ta-1ddtt+1t⇒dxdt=at+1ta-11-1t2 …i and, y=at+1t

⇒dydt=ddtat+1t ⇒dydt=at+1t× logaddtt+tt⇒dydt=at+1t× loga1-1t2 …iiDividing equation ii by i,dydtdxdt=at+1t× loga1-1t2 at+1ta-11-1t2⇒dydx=at+1t× logaat+1ta-1

Q21.

Answer :

We have, x=a1+t21-t2

⇒dxdt=a1-t2ddt1+t2-1+t2ddt1-t21-t22 Using quotient rule⇒dxdt=a1-t22t-1+t2-2t1-t22⇒dxdt=a2t-2t3+2t+2t31-t22⇒dxdt=4at1-t22 …iand, y=2t1-t2

⇒dydt=21-t2ddtt-tddt1-t21-t22 Using quotient rule⇒dydt=21-t21-t-2t1-t22⇒dydt=21-t2+2t21-t22⇒dydt=21+t21-t22 …iiDividing equation ii by i,dydtdxdt=21+t21-t22 ×1-t224at⇒dydx=1+t22at

Q22.

Answer :

We have, x=10t-sint and y=121-cost⇒dxdt=ddt10t-sint anddydt=ddt121-cost⇒dxdt=10ddtt-sint and dydt=12ddt1-cost⇒dxdt=101-cost and dydt=120–sint=12 sint∴dydx=dydtdxdt=12 sint101-cost⇒dydx=12×2sint2cost210×2sin2t2⇒dydx=65cott2

Q23.

Answer :

We have, x=aθ-sinθ and y=a1+cosθ⇒ dxdθ=ddθaθ-sinθ and dydθ=ddθa1+cosθ⇒dxdθ=a1-cosθ and dydθ=a-sinθ∴ dydx=dydθdxdθ=-a sinθa1-cosθNow, dydxθ=π3=-sinπ31-cosπ3=-321-12=-3

 

Page 11.100 Ex.11.8

Q1.

Answer :

Let u=x2 and v=x3⇒dudx=2x and dvdx=3×2 ∴dudv=dudxdvdx=2x3x2=23x

Q2.

Answer :

Let u=log1+x2 and v=tan-1x ⇒dudx=11+x2ddx1+x2 =2×1+x2 and dvdx=11+x2 ∴dudv=dudxdvdx=2×1+x2×1+x21=2x

Q3.

Answer :

Let u=logxx
Taking log on both sides,
log u=loglogxx⇒log u=x loglogx

⇒1ududx=xddxloglogx+loglogxddxx⇒1ududx=x1logxddxlogx+loglogx1⇒dudx=uxlogx1x+log logx⇒dudx=logxx1logx+log logx ..iAgain, let v=logx⇒dvdx=1x …iiDividing equation i by ii,we getdudxdvdx=logxx1logx+log logx1x⇒dudv=logxx1+logxlog logxlogx1x⇒dudv=xlogxx-11+logx × log logx

Q4.

Answer :

i Let, u=sin-11-x2Put x=cosθ⇒ u=sin-11-cos2θ⇒ u=sin-1sinθ …iAnd, v=cos-1x …iiNow, x∈0,1⇒ cosθ∈0,1⇒ θ∈0,π2So, from equation i, u=θ Since, sin-1sinθ=θ if θ∈-π2,π2⇒u=cos-1x Since, cosθ=x

Differentiating it with respect to x,

dudx=-11-x2 …iiifrom equation ii,v=cos-1x

Differentiating it with respect to x,

dvdx=-11-x2 …ivDividing equation iii by iv,dudxdvdx=-11-x2×1-x2-1∴dudx=1
ii Let, u=sin-11-x2Put x=cosθ⇒ u=sin-11-cos2θ⇒ u=sin-1sinθ …iAnd, v=cos-1x …iiNow, x∈-1,0⇒ cosθ∈-1,0⇒ θ∈π2,πSo, from equation i, u=π-θ Since, sin-1sinθ=π-θ if θ∈π2,3π2⇒ u=π-cos-1x Since, x=cosθ

Differentiating it with respect to x,

dudx=0–11-x2 ⇒dudx= 11-x2 …iiifrom equation ii,v=cos-1x

Differentiating it with respect to x,

dvdx=-11-x2 …ivDividing equation iii by iv,dudxdvdx=11-x2×1-x2-1∴dudx=-1

Q5.

Answer :

i Let, u=sin-14×1-4×2 put 2x=cosθ ⇒ u=sin-12×cosθ1-cos2θ ⇒ u=sin-12cosθ sinθ ⇒ u=sin-1sin 2θ …i Let, v=1-4×2 …iiHere, x∈-122, 122 ⇒ 2x∈-12, 12 ⇒θ∈π4,3π4So, from equation i, u=π-2θ Since, sin-1sinθ=π-θ ,if θ∈π2, π⇒ u=π-2 cos-12x Since, 2x=cosθ

Differentiating it with respect to x,

dudx=0-2-11-2x2ddx2x⇒dudx=21-4×22⇒dudx=41-4×2 …iiifrom equation iidvdx=-4×1-4x2but, x∈-12,-122dvdx=-4-x1-4-x2⇒dvdx=4×1-4×2 …ivDiferentiating equation ii with respect to x,dvdx=121-4x2ddx1-4×2⇒dvdx=121-4×2-8x⇒dvdx=-4×1-4×2 …vDividing equation iii by vdudxdvdx=41-4×2 ×1-4×2-4x∴dudv=-1x
ii Let, u=sin-14×1-4×2 put 2x=cosθ u=sin-12×cosθ1-cos2θ ⇒ u=sin-12cosθ sinθ ⇒ u=sin-1sin 2θ …i Let, v=1-4×2 …iiHere, x∈122,12 ⇒ 2x∈12,1 ⇒cosθ∈12,1 ⇒θ∈0,π4So, from equation i, u=2θ Since, sin-1sinθ=θ ,if θ∈-π2,π2⇒ u=2 cos-12x Since, 2x=cosθ

Differentiate it with respect to x,

dudx=2-11-2x2ddx2xdudx=-21-4x22dudx=-41-4×2 …iiiDiferentiating equation ii with respect to x,dvdx=121-4x2ddx1-4×2⇒dvdx=121-4×2-8x⇒dvdx=-4×1-4×2 …ivDividing equation iii by ivdudxdvdx=-41-4×2 ×1-4×2-4x∴dudv=1x
iii Let, u=sin-14×1-4×2 put, 2x=cosθ⇒ u=sin-12×cosθ1-cos2θ⇒ u=sin-12cosθ sinθ ⇒ u=sin-1sin 2θ …i Let, v=1-4×2 …iiHere, x∈-12,-122 ⇒ 2x∈-1,-12 ⇒θ∈3π4,πSo, from equation i, u=π-2θ Since, sin-1sinθ=π-θ ,if θ∈π2,3π2⇒ u=π-2 cos-12x Since, 2x=cosθ
Differentiate it with respect to x,

dudx=0-2-11-2x2ddx2x⇒dudx=21-4×22⇒dudx=41-4×2 …iiifrom equation ii,dvdx=-4×1-4x2but, x∈-12,-122∴dvdx=-4-x1-4-x2⇒dvdx=4×1-4×2 …ivDividing equation iii by ivdudxdvdx=41-4×2 ×1-4x24x∴dudv=1x

Q6.

Answer :

Let, u=tan-11+x2-1xput x=tanθ⇒ u=tan-11+tan2θ-1tanθ⇒ u=tan-1secθ-1tanθ ⇒ u=tan-11-cosθsinθ ⇒ u=tan-12sin2θ22sinθ2cosθ2 ⇒ u=tan-1 tanθ2 …iAnd, v=sin-12×1+x2⇒ v=sin-12tanθ1+tan2θ ⇒ v=sin-1sin2θ …iiHere, -1<x<1⇒ -1<tanθ<1 ⇒-π4<θ<π4 …A So, from equation i,u=θ2 Since, tan-1tanθ=θ, if θ∈-π2,π2 ⇒u=12tan-1x since, x=tanθ

Differentiating it with respect to x,

dudx=1211+x2⇒dudx=121+x2 …iNow, from equation ii and A,v=2θ Since, sin-1sinθ=θ, if θ∈-π2,π2⇒v=2tan-1x Since, x=tanθ

Differentiating it with respect to x,

dvdx=211+x2 …ivdividing equation iii by iv,dudxdvdx=121+x2×1+x22∴dudv=14

Q7.

Answer :

i Let, u=sin-12×1-x2 Put x=sinθ ⇒ u=sin-12sinθ1-sin2θ ⇒ u=sin-12 sinθ cosθ ⇒ u=sin-1sin2θ …iAnd, Let v=sec-111-x2⇒ v=sec-111-sin2θ ⇒ v=sec-11cosθ ⇒ v=sec-1secθ ⇒ v=cos-111cosθ Since, sec-1x=cos-11x⇒ v=cos-1cosθ …iiHere, x∈0,12⇒ sinθ∈0,12⇒ θ∈0,π4So, from equation i, u=2θ Since, sin-1sinθ=θ, if θ∈-π2,π2 Let, u=2sin-1x Since, x=sinθ

Differentiating it with respect to x,

dudx=211-x2⇒dudx=21-x2 …iiiAnd, from equation ii,v=θ Since, cos-1cosθ=θ, if θ∈0,π⇒v=sin-1x Since, x=sinθ

Differentiating it with respect to x,

dvdx=11-x2 …ivdividing equation iii by iv,dudxdvdx=21-x2×1-x21∴dudv=2

Q8.

Answer :

Let, u=cosxsinx

Taking log on both sides,

log u=logcosxsinx⇒log u=sinx logcosx

Differentiating it with respect to x using chain rule,

1ududx=sinxddxlog cosx+log cosxddxsinx using product rule⇒1ududx=sinx1cosxddxcosx+log cosxcosx⇒dudx=utanx×-sinx+log logxcosx⇒dudx=cosxsinxcosx logcosx-sinx tanx …iLet, v=sinxcosx

Taking log on both sides,

log v=logsinxcosx⇒log v=cosx logsinx

Differentiating it with respect to x using chain rule,

1vdvdx=cosxddxlogsinx+logsinxddxcosx using product rule⇒1vdvdx=cosx1sinxddxsinx+logsinx-sinx⇒dvdx=vcotxcosx-sinx logsinx⇒dvdx=sinxcosxcotxcosx-sinx logsinxdividing equationi by ii,∴dudv=cosxsinxcosx logcosx-sinx tanxsinxcosxcotxcosx-sinx logsinx

Q9.

Answer :

Let, u=sin-12×1+x2Put x=tanθ⇒ u=sin-12tanθ1+tan2θ⇒ u=sin-1sin2θ …iLet v=cos-11-x21+x2⇒ v=cos-11-tan2θ1+tan2θ⇒ v=cos-1cos2θ …iiHere, 0<x<1⇒ 0<tanθ<1⇒ 0<θ<π4So, from equation i,u=2θ Since, sin-1sinθ=θ , if θ∈-π2,π2⇒u=2tan-1x Since , x=tanθ

Differentiating it with respect to x,

dudx=21+x2 …iiifrom equation ii,v=2θ Since, cos-1cosθ=θ, if θ∈0,π⇒v=2tan-1x Since, x=tanθ

Differentiating it with respect to x,

dvdx=21+x2 …ivDividing equation iii by iv,dudxdvdx=21+x2×1+x22∴dudv=1

Q10.

Answer :

Let, u=tan-11+ax1-axPut ax=tanθ⇒ u=tan-11+tanθ1-tanθ⇒ u=tan-1tanπ4+tanθ1-tanπ4tanθ⇒ u=tan-1tanπ4+θ⇒ u=π4+θ⇒ u=π4+tan-1ax Since, tanθ=ax

Differentiating it with respect to x,

dudx=0+11+ax2ddxax ⇒dudx=a1+a2x2 …i Now,Let, v=1+a2x2

Differentiating it with respect to x,

dvdx=121+a2x2ddx1+a2x2⇒dvdx=121+a2x22a2x⇒dvdx=a2x1+a2x2 …ii Dividing equation i by ii,dudxdvdx=a1+a2x2×1+a2x2a2xdudv=1ax1+a2x2

Q11.

Answer :

Let, u=sin-12×1-x2Put x=sinθ⇒ u=sin-12sinθ1-sin2θ⇒ u=sin-12 sinθcosθ ⇒ u=sin-1sin2θ …iLet v=tan-1×1-x2⇒ v=tan-1sinθ1-sin2θ ⇒ v=tan-1sinθcosθ⇒ v=tan-1tanθ …iiHere, -12<x<12⇒ -12<sinθ<12⇒ -π4<θ<π4So, from equation i,u=2θ Since, sin-1sinθ=θ, if θ∈-π2,π2⇒u=2sin-1x Since, x=sinθ

Differentiating it with respect to x,

dudx=21-x2 …iiifrom equation ii,v=θ Since, tan-1tanθ=θ, if θ∈-π2,π2⇒v=sin-1x Since, x=sinθ

Differentiating it with respect to x,

dvdx=11-x2 …ivDividing equation iii by iv,dudxdvdx=21-x2×1-x21∴dudv=2

Q12.

Answer :

Let, u=tan-12×1-x2Put x=tanθ⇒ u=tan-12tanθ1-tan2θ⇒ u=tan-1tan2θ …ilet, v=cos-11-x21+x2⇒ v=cos-11-tan2θ1+tan2θ ⇒ v=cos-1cos2θ … iiHere, 0<x<1⇒ 0<tanθ<1⇒ 0<θ<π4So, from equation i,u=2θ Since, tan-1tanθ=θ, if θ∈-π2,π2⇒u=2tan-1x Since, x=tanθ
differentiating it with respect to x,

dudx=21+x2 …iiiFrom equation ii,v=θ Since, cos-1cosθ=θ, if θ∈0,π⇒v=2tan-1x Since, x=tanθ
Differentiating it with respect to x,
dvdx=21+x2 …ivDividing equation iii by iv,dudxdvdx=21+x2×1+x22∴dudv=1

Q13.

Answer :

Let, u=tan-1x-1x+1Put x=tanθ⇒ u=tan-1tanθ-1tanθ+1⇒ u=tan-1tanθ-tanπ41+tanθ tanπ4 ⇒ u=tan-1tanθ-π4 …i Here, -12<x<12⇒ -12<tanθ<12⇒ -tan-112<θ<tan-112So, from equation i,u=θ-π4 Since, tan-1tanθ=θ, if θ∈-π2,π2⇒u=tan-1x -π4 Since, x=tanθ

differentiating it with respect to x,

dudx=11+x2-0 ⇒dudx=11+x2 …ii And,Let, v=sin-13x-4x3Put x=sinθ ⇒ v=sin-13sinθ-4sin3θ ⇒ v=sin-1sin3θ …iiiNow, -12<x<12⇒ -12<sinθ<12⇒ -16<θ<π6So, from equation iii,v=3θ Since, sin-1sinθ=θ, if θ∈-π2,π2⇒v=3sin-1x Since, x=sinθ

Differentiating it with respect to x,

dvdx=31-x2 …ivDividing equation iii by iv,dudxdvdx=11+x2×1-x23∴dudv=1-x231+x2

Q14.

Answer :

Let, u=tan-1cosx1+sinx⇒ u=tan-1tanπ4-x2⇒ u=π4-x2

Differentiating it with respect to x,

dudx=0-12dudx=-12 …iLet, v=sec-1x

Differentiating it with respect to x,

dvdx=1xx2-1 …iiDividing equation i by ii,dudxdvdx=-12×xx2-11dudv=-xx2-12

Q15.

Answer :

Let, u=sin-12×1+x2Put x=tanθ ⇒θ=tan-1x,⇒ u=sin-12tanθ1+tan2θ⇒ u=sin-1sin2θ …iLet, v=tan-12×1-x2⇒ v=tan-12tanθ1-tan2θ⇒ v=tan-1tan2θ …iiHere, -1<x<1⇒ -1<tanθ<1⇒ -π4<tanθ<π4So, from equation i,u=2θ Since, sin-1sinθ=θ, if θ∈-π2,π2⇒u=2tan-1x
Differentiating it with respect to x,

dudx=21+x2 …iiifrom equation ii,v=2θ Since, tan-1tanθ=θ , if θ∈-π2,π2⇒v=2tan-1x

Differentiating it with respect to x,

dvdx=21+x2 …ivDividing equation iii by iv,dudxdvdx=21+x2 ×1+x22∴dudv=1

 

Page 11.101 Ex.11.8

Q16.

Answer :

Let, u=cos-14×3-3xPut, x=cosθ⇒ θ=cos-1xNow, u=cos-14cos3θ-3cosθ⇒ u=cos-1cos3θ …i Let, v=tan-11-x2x ⇒ v=tan-11-cos2θcosθ ⇒ v=tan-1sinθcosθ ⇒ v=tan-1tanθ …iiHere, 12<x<1⇒ 12<cosθ<1⇒ 0<θ<π3So, from equation i,u=3θ Since, cos-1cosθ=θ, if θ∈0,π⇒u=3cos-1x

Differentiating it with respect to x,

dudx=-31-x2 …iiiFrom equation ii,v=θ Since, tan-1tanθ=θ, if θ∈-π2,π2⇒v=cos-1x

Differentiating it with respect to x,

dvdx=-11-x2 …ivDividing equation iii by iv,dudxdvdx=-31-x2-1-x21∴dudv=3

Q17.

Answer :

Let, u=tan-1×1-x2Put x=sinθ⇒ θ=sin-1x ⇒ u=tan-1sinθ1-sin2θ ⇒ u=tan-1sinθcosθ ⇒ u=tan-1tanθ …iAndLet, v=sin-12×1-x2 v=sin-12sinθ1-sin2θ v=sin-12 sinθcosθ v=sin-1sin2θ …iiHere, -12<x<12⇒ -12<sinθ<12⇒ -π4<θ<π4So, from equation i,u=θ Since, tan-1tanθ=θ, if θ∈-π2,π2⇒u=sin-1x

Differentiating it with respect to x,

dudx=11-x2 …iiifrom equation ii,v=2θ Since, sin-1sinθ=θ, if θ∈-π2,π2⇒ v=2sin-1x

Differentiating it with respect to x,

dvdx=21-x2 …ivDividing equation iii by iv,dudxdvdx=11-x21-x22∴dudv=12

Q18.

Answer :

Let, u=sin-11-x2Put x=cosθ⇒ θ=cos-1xWe get, u=sin-1sinθ …i Let, v=cot-1×1-x2 ⇒ v=cot-1cosθ1-cos2θ ⇒ v=cot-1cosθsinθ ⇒ v=cot-1cotθ …iiHere, 0<x<1⇒ 0<cosθ<1⇒ 0<θ<π2So, from equation i,u=θ Since, sin-1sinθ=θ, ifθ∈-π2,π2⇒u=cos-1x

Differentiating it with respect to x,

dudx=-11-x2 …iiiFrom equation ii,v=θ Since, cot-1cotθ=θ, if θ∈0,π⇒v=cos-1x

Differentiating it with respect to x,

dvdx=-11-x2 …ivDividing equation iii by iv,dudxdvdx=-11-x21-x2-1∴dudv=1

Q19.

Answer :

Let, u=sin-12ax1-a2x2Put ax=sinθ ⇒ θ=sin-1ax∴ u=sin-12sinθ1-sin2θ⇒ u=sin-12 sinθcosθ⇒ u=sin-1sin2θ …iAndLet, v=1-a2x2Differentiating it with respect to x,dvdx=121-a2x2 ×ddx1-a2x2 ⇒dvdx=0-2a2x21-a2x2 ⇒dvdx=-a2x1-a2x2 …iiHere, -12<ax<12⇒ -12<sinθ<12⇒ -π4<θ<π4So, from equation i,u=2θ Since, sin-1sinθ=θ, if θ∈-π2,π2⇒u=2sin-1x

Differentiating it with respect to x,

dudx=2×11-ax2ddxax ⇒dudx=21-a2x2a ⇒dudx=2a1-a2x2 …iii

Dividing equation iii by ii,dudxdvdx=2a1-a2x21-a2x2-a2x∴dudv=-2ax

Q20.

Answer :

Let, u=tan-11-x1+xPut x=tanθ⇒ θ=tan-1x⇒ u=tan-11-tanθ1+tanθ⇒ u=tan-1tanπ4-θ …iHere, -1<x<1⇒ -1<tanθ<1⇒ -π4<θ<π4⇒ π4>-θ>π4⇒ -π4<-θ<π4⇒ 0<π4-θ<π2So, from equation i,u=π4-θ Since, tan-1tanθ=θ, if θ∈-π2,π2⇒u=π4-tan-1x

Differentiating it with respect to x,

dudx=0-11+x2⇒dudx=-11+x2 …iiAnd let, v=1-x2

Differentiating it with respect to x,

dvdx=121-x2×ddx1-x2⇒dvdx=121-x2-2x⇒dvdx=-x1-x2 …iiiDividing equation ii by iii,dudxdvdx=-11+x2×1-x2-x∴dudv=1-x2x1+x2

 

Page 11.104 (Very Short Answers)

Q1.

Answer :

We have, fx=loge logex
Differentiating with respect to x,
f’x=1logexddxlogex ⇒f’x=1logex1x⇒f’e=1logee1e ∵x=e⇒f’e=1e ∵loge e=1

Q2.

Answer :

We have, fx=x+1 Now, fofx=ffx ⇒fofx=fx+1⇒fofx=x+1+1⇒fof=x+2

⇒ddxfofx=ddxx+ddx2⇒ddxfofx=1+0⇒ddxfofx=1

Q3.

Answer :

We have, f’1=2 and y=flogex
Differentiate it with respect to x,
dydx=f’logex×ddxlogex⇒dydx=f’logex1x⇒dydx=f’logee1e ∵ x=e⇒dydx=f’11e ∵ logee=1⇒dydx=2e ∵ f’1=2

Q4.

Answer :

We have, f1=4 and f’1=2Let y=logfex

⇒dydx=ddxlogfex⇒dydx=1fex×ddxfex⇒dydx=1fex×f’ex×ddxex⇒dydx=exf’exfexPutting x=0, we get,dydx=e0f’e0fe0⇒dydx=1f’1f1⇒dydx=24 ∵f’1=2 and f1=4⇒dydx=12

 

Page 11.105 (Very Short Answers)

Q5.

Answer :

We have, f’x=2×2-1and y=fx2

⇒dydx=ddxfx2⇒dydx=f’x2ddxx2⇒dydx=f’x2× 2x⇒dydx=2xf’x2Putting x=1, we get,dydx=21f’12⇒dydx=2 ×f’1⇒dydx=2 ×1 ∵f’1=212-1=2-1=1⇒dydx=2

Q6.

Answer :

We have, f3=9 ,f’3=9and gx=f-1x⇒gofx=x⇒gfx=x

⇒ddxgfx=1⇒g’fxddxfx=1⇒g’fx × f’x=1Puting x=3, we get,g’f3 × f’3=1⇒g’9 × 9=1 ∵ f3=9 , f’3=9⇒g’9=19

Q7.

Answer :

We have, y=sin-1sinx⇒y=x ∵sin-1sinx=x , if x∈-π2,π2

⇒dydx=ddxx⇒dydx=1

Q8.

Answer :

We have, y=sin-1sinx ⇒ y=π-x ∵sin-1sinx=π-x , if x∈π2,3π2

⇒dydx=ddxπ-x⇒dydx=0-1⇒dydx=-1

Q9.

Answer :

We have, y=cos-1cosx ⇒ y=2π-x ∵cos-1cosx=2π-x , if x∈π,2π

⇒dydx=ddx2π-x⇒dydx=0-1⇒dydx=-1

Q10.

Answer :

We have, y=sin-12×1+x2Putting x=tanθ⇒1<tanθ<∞⇒π4<θ<π2 ⇒π2<2θ<π∴y=sin-1sin2θ ⇒y=sin-1sinπ-2θ ⇒y=π-2θ ⇒y=π-2tan-1x⇒dydx=0-21+x2 ⇒dydx=-21+x2

Q11.

Answer :

We have, f0=f1=0 , f’1=2and,y=fexefx

⇒dydx=ddxfex × efx⇒dydx=fexddxefx+efxddxfex Using product rule⇒dydx=fex × efxddxfx+efx×f’exddxex⇒dydx=fex × efx×f’x+efx×f’ex×exPutting x=0, we get,dydx=fe0 × ef0×f’0+ef0×f’e0×e0⇒dydx=f1ef0×f’0+ef0×f’1×1⇒dydx=0×e0×f’0+e0×2×1 ∵fx=f1=0 and f’1=2⇒dydx=0+1×2×1⇒dydx=2

Q12.

Answer :

We have, y=xx⇒y=x-x ∵x<0⇒y=-x2

⇒dydx=ddx-x2⇒dydx=-2x

Q13.

Answer :

We have, y=sin-1x+cos-1x⇒ y=π2 ∵sin-1x+cos-1x=π2

⇒dydx=0

Q14.

Answer :

We have, x=aθ+sinθ and y=a1+cosθ⇒dxdθ=addθθ+ddθsinθ and dydθ=a0-sinθ⇒dxdθ=a1+cosθ and dydθ=-asinθ ∴dydx=dydθdxdθ=-asinθa1+cosθ=-2sinθ2cosθ22 cos2θ2=-tanθ2

Q15.

Answer :

We have, y=tan-11-cos2x1+cos2x⇒y=tan-12 sin2x2 cos2x⇒y=tan-1tan2x⇒y=tan-1tanx ∵ tan-1tanx=-x , if x∈-π2,0⇒y=-x

⇒dydx=-1

Q16.

Answer :

We have, y=xx …i
Taking log on both sides,
log y=log xx⇒log y=x logx

⇒1ydydx=xddxlogx+logxddxx⇒1ydydx=x1x+logx 1⇒1ydydx=1+logx⇒dydx=y1+logx⇒dydx=xx1+logx using equation iPuting x=e, we get,dydx=ee1+logee⇒dydx=ee1+1 ∵logee=1⇒dydx=2ee

Q17.

Answer :

We have, y=tan-11-x1+x

⇒dydx=11+1-x1+x2ddx1-x1+x⇒dydx=1+x21+x2+2x+1+x2-2×1+xddx1-x-1-xddx1+x1+x2 using quotient rule⇒dydx=1+x22x2+21+x-1-1-x11+x⇒dydx=1+x22x2+1-x-1-1+x1+x2⇒dydx=1+x22x2+1×-21+x2⇒dydx=-1×2+1

Q18.

Answer :

We have, y=logax⇒y=logxloga ∵logab=logbloga

⇒dydx=1logaddxlogx⇒dydx=1loga1x⇒dydx=1x loga

Q19.

Answer :

We have, y=logtanx⇒y=logtanx12⇒y=12log tanx ∵logab=bloga

⇒dydx=12×1tanxddxtanx⇒dydx=12×1tanxsec2x⇒dydx=12sinxcosx×cos2x⇒dydx=12 sinx cosx⇒dydx=1sin2x⇒dydx=cosec2x

Q20.

Answer :

We have, y=sin-1 1-x21+x2+cos-1 1-x21+x2⇒y=π2 ∵sin-1x+cos-1x=π2

⇒dydx=0

Q21.

Answer :

We have, y=sec-1x+1x-1+sin-1x-1x+1 ⇒ y=cos-1x-1x+1+sin-1x-1x+1 ∵sec-1x=cos-11x⇒y=π2 ∵sin-1x+cos-1x=π2

⇒dydx=0

Q22.

Answer :

We have, y=1+x+x2+….to ∞⇒ y=11-x ∵It is a G.P with first term 1and common ratio x

⇒dydx=ddx11-x⇒dydx=-11-x2ddx1-x⇒dydx=-11-x2-1⇒dydx=11-x2

Q23.

Answer :

We have, u=sin-12×1+x2 and v=tan-12×1-x2⇒dudx=21+x2 and dvdx=21+x2 ∴dudv=dudxdvdx=21+x2×1+x22=1

Q24.

Answer :

We have, fx=loguxvxand, u1=v1 , u’1=v’1=2 …i

⇒f’x=ddxloguxvx⇒f’x=1uxvx×ddxuxvx⇒f’x=vxux×vxddxux-uxddxvxvx2 ⇒f’x=vxux×vx×u’x-ux×v’xvx2Putting x=1, we get,f’1=v1u1×v1×u’1-u1×v’1v12⇒f’1=1×u1×2-u1×2u12 Using eqn 1⇒f’1=0u12 ⇒f’1=0

Q25.

Answer :

We have, y=log3x
⇒dydx=ddxlog3x⇒dydx=13xddx3x⇒dydx=13×3⇒dydx=1x

Q26.

Answer :

We have, fx is an even function.⇒f-x=fx

⇒ddxf-x=ddxfx⇒f’-xddx-x=f’x⇒f’-x×-1=f’x⇒-f’-x=f’x⇒f’-x=-f’xThus, f’x is an odd function.

Q27.

Answer :

We have, fx is an odd function.⇒f-x=-fx

⇒ddxf-x=-ddxfx⇒f’-xddx-x=-f’x⇒f’-x×-1=-f’x⇒-f’-x=-f’x⇒f’-x=f’xThus, f’x is an even function.

Page 11.106 (Multiple Choice Questions)

Q1.

Answer :

(d) 1/2 e

We have, fx=logx2logx⇒fx=loglogxlogx2 ⇒fx=loglogx2 logx⇒f’x=12×ddxloglogx logx⇒f’x=12×1logx×1x×logx-loglogxx logx2⇒f’x=12×1x-loglogxx logx2⇒f’e=12×1e-loglogee loge2 Putting x=e⇒f’e=12×1e1⇒f’e=12e

Q2.

Answer :

(c) x log x-1

We have,
fx=log x⇒flogx=loglogx⇒f’logx=1logxddxlogx⇒f’logx=1x logx⇒f’logx=x logx-1

Q3.

Answer :

(a) (2/3)1/2
We have, y=cot-1cos 2x

⇒dydx=-11+cos 2xddxcos 2x⇒dydx=-12 cos2x×12cos 2xddxcos 2x⇒dydx=-12 cos2x×12cos 2x×-2sin 2x⇒dydx=sin2xcos2x × 2cos2x⇒dydx=2 sinx cosxcos2x × 2cos2x⇒dydx=tanxcos2xSo, at x=π6, we getdydxx=π6=tanπ6cos2π6=1312=2312

Q4.

Answer :

(d) x1+x2

We have, y=sectan-1x⇒dydx=sectan-1x tantan-1x×ddxtan-1x⇒dydx=sectan-1x tantan-1x×11+x2⇒dydx=yx1+x2⇒dydx=x1+x2 y
This is the equation of differential equation which have coefficient x1+x2.

Q5.

Answer :

(d) 1/2

Let y=tan-11+sinx1-sinx⇒ y=tan-11-cosπ2+x1+cosπ2+x⇒ y=tan-12 sin2π4+x22 cos2π4+x2 ⇒ y=tan-1tanπ4+x2=π4+x2∴dydx=12

Q6.

Answer :

(a) 1+1xx 1+1x-1x+1

Let y=1+1xxTaking log on both sides,log y=x log1+1x⇒1ydydx=xddxlog1+1x+log1+1xddxx ⇒1ydydx=x11+1xddx1+1x+log1+1x⇒1ydydx=x × xx+1-1×2+log1+1x⇒1ydydx=x2x+1×-1×2+log1+1x⇒1ydydx=-1x+1+log1+1x⇒dydx=y-1x+1+log1+1x⇒dydx=1+1xxlog1+1x-1x+1

Q7.

Answer :

(d) log x1+log x2

We have, xy=ex-yTaking log on both sides we get, ⇒y logx=x-yloge e⇒y logx=x-y⇒y logx+y=x⇒y1+logx=x⇒y=x1+logx
⇒dydx=1+logx × 1-x ×0+1×1+logx2⇒dydx=1+logx -11+logx2⇒dydx=logx1+logx2

Q8.

Answer :

c f-12=f-12We have, fx=4×8⇒f’x=32x7Now, f12=4128=41256=164 f-12=4-128=41256=164f’12=32127=321128=14f’-12=32-127=-321128=-14

Page 11.107 (Multiple Choice Questions)

Q9.

Answer :

(d) sec θ

We have, x=a cos3θ⇒dxdθ=addθcos3θ⇒dxdθ=3acos2θddθcosθ⇒dxdθ=-3acos2θsinθ …1and, y=a sin3θ⇒dydθ=addθsin3θ⇒dydθ=3a sin2θddθsinθ⇒dydθ=3a sin2θ cosθ …2Dividing 2 by 1, we get, dydθdxdθ=3a sin2θ cosθ -3acos2θsinθ⇒dydx=sinθ-cosθ⇒dydx=-tanθNow, 1+dydx2=1+tan2θ=sec2θ=secθ

Q10.

Answer :

(a) -21+x2

Let y=sin-11-x21+x2Differentiating with respect to x using chain rule, we get,dydx=11-1-x21+x22ddx1-x21+x2⇒dydx=1+x21+x22-1-x221+x2ddx1-x2-1-x2ddx1+x21+x22 using quotient rule⇒dydx=1+x21+x22-1-x221+x2-2x-1-x22x1+x22⇒dydx=1+x22x-2x-2×3-2x+2×31+x22⇒dydx=-4x2x1+x2⇒dydx=-21+x2

Q11.

Answer :

(a) does not exist

We know that sec-1α is not defined for α∈-1, 1Here for x=-13, 12×2+1=911∈-1, 1∴ sec-112×2+1 is not defined at x=-13∴ Derivative of sec-112×2+1 does not exist at x=-13

Q12.

Answer :

(c) −1

We have, x+y=1Differentiating with respect to x, we get,12x+12ydydx=0⇒12ydydx=-12x⇒dydx=-12x×2y1⇒dydx=-yxNow, dydx14,14=-1414=-1

Q13.

Answer :

(d) − 1

We have, sinx+y=logx+y⇒cosx+y1+dydx=1x+y1+dydx⇒cosx+y+cosx+ydydx=1x+y+1x+ydydx⇒cosx+ydydx-1x+ydydx=1x+y-cosx+y⇒cosx+y-1x+ydydx=1x+y-cosx+y⇒-1x+y-cosx+ydydx=1x+y-cosx+y⇒dydx=-1

Q14.

Answer :

(d) 1
We have, u=sin-12×1+x2 and v=tan-12×1-x2⇒dudx=21+x2 and dvdx=21+x2

∴dudv=dudxdvdx=21+x2×1+x22=1

Q15.

Answer :

(b) − 1/2

Let u=tan-1cosx1+sinx ⇒ u=tan-1cos2x2-sin2x2cos2x2+sin2x2+2sinx2cosx2 ⇒ u=tan-1cosx2-sinx2cosx2+sinx2cosx2+sinx22 ⇒ u=tan-1cosx2-sinx2cosx2+sinx2⇒ u=tan-11-tanx21+tanx2⇒ u=tan-1tanπ4-tanx21+tanπ4×tanx2⇒ u=tan-1tanπ4-x2⇒ u=π4-x2

⇒dudx=0-12⇒dudx= -12

Q16.

Answer :

(a) x2-1×2-4

Let y=ddxlogexx-2x+234⇒ y=ddxxloge+34logx-2x+2⇒ y=ddxx+34logx-2x+2⇒dydx=1+34x-2x+2×x+2×1-x-2×1x+22⇒dydx=1+3x+24x-2×x+2-x+2x+22⇒dydx=1+3x+24x-2×4x+2⇒dydx=1+3×2-4⇒dydx=x2-4+3×2-4⇒dydx=x2-1×2-4

Q17.

Answer :

(d) cos x2 y-1

We have, y=sinx+ySquaring both sides, we get,y2=sinx+y⇒y2-y=sinx⇒2ydydx-dydx=cosx⇒dydx2y-1=cosx⇒dydx=cosx2y-1

Q18.

Answer :

(a) -yx

We have, 3 sinxy+4 cosxy=5 ⇒ 3 cosxyxdydx+y-4 sinxyxdydx+y=0⇒ xdydx+y3 cosxy-4 sinxy =0⇒ xdydx+y=0⇒ xdydx=-y∴ dydx=-yx

Q19.

Answer :

(b) sin2 a+ysin a

We have, sin y=x sina+y

⇒ddxsin y=ddxx sina+y⇒cos ydydx=sina+yddxx+xddxsina+y⇒cos ydydx=sina+y×1+x cosa+ydydx ⇒cos ydydx=sina+y+x cosa+ydydx⇒cos ydydx-x cosa+ydydx=sina+y⇒cos y-x cos a+ydydx=sina+y⇒cos y-sin ysina+y×cosa+ydydx=sina+y ∵ sin y=2 sinx cosx∴x=sin ysina+y⇒sina+y cos y-sin y cosa+ysina+ydydx=sina+y⇒sina+y-ysina+y×dydx=sina+y ⇒dydx=sin2a+ysina

Page 11.108 (Multiple Choice Questions)

Q20.

Answer :

(a) 2

Let u=cos-12×2-1Put x=cosθ⇒θ=cos-1xdθdx=-11-x2Now, u=cos-1cos2θ⇒u=2θ

⇒dudx=2dθdx⇒dudx=-21-x2 …iand, v=cos-1x⇒v=cos-1cosθ⇒v=θ

dvdx=dθdx⇒dvdx=-11-x2 …iiDividing i by ii, we get,dudxdvdx=-21-x2×1-x2-1⇒dudv=2

Q21.

Answer :

b-1 for x<-3 We have, fx=x2+6x+9 = x+32 =x+3 fx=x+3, x≥-3 -x-3, x<-3 ⇒f’x=1, x≥-3 -1, x<-3 ∴f’x=-1 for x<-3

Q22.

Answer :

c-2x+9 for 4<x<5 We have, fx=x2-9x+20 fx=x2-9x+20, -∞<x≤4-x2-9x+20, 4<x<5×2-9x+20, 5≤x<∞⇒fx=2x-9, -∞<x≤4-2x+9, 4<x<52x-9, 5≤x<∞∴f’x=-2x+9 for 4<x<5

Q23.

Answer :

(d) none of these

We have, fx=x2-10x+25=x-52=x-5 =x-5 for x>5 -x-5 for x<5LHD=limx→5- fx-fax-a =limx→5-x2-10x+25-52-105+25x-5 =limx→5-x-5x-5 =limx→5–x-5x-5 =-1RHD=limx→5+ fx-fax-a =limx→5+x2-10x+25-52-105+25x-5 =limx→5+x-5x-5 =limx→5+x-5x-5 =1Here, LHD≠RHDThus, the functionis not differentiable at x=5

Q24.

Answer :

(c) 0

For, x>10fx=x-3=x-3gx=fof x=x-3-3 =x-3-3 =x-6∴g’x =1

Q25.

Answer :

(b) 0
We have, fx=xlxml+m xmxnm+n xnxln+1

⇒fx=xl-ml+m × xm-nm+n × xn-ln+l⇒fx=xl2-m2 × xm2-n2 × xn2-l2⇒fx=xl2-m2+m2-n2+n2-l2⇒fx=x0⇒fx=1⇒f’x=0

Q26.

Answer :

(c) 0
We have,y=11+xa-b+xc-b+11+xb-c+xa-c+11+xb-a+xc-a=11+xaxb+xcxb+11+xbxc+xaxc+11+xbxa+xcxa=xbxb+xa+xc+xcxc+xb+xa+xaxa+xb+xc=xbxa+xb+xc+xcxa+xb+xc+xaxa+xb+xc=xb+xc+xaxa+xb+xc=xa+xb+xcxa+xb+xc=1∴dydx=ddx1=0

Q27.

Answer :

(a) x2y2 1-y61-x6

We have, 1-x6+1-y6=ax3-y3Putting x3=sinA and y3=sinB⇒1-sin2A+1-sin2B=asinA-sinB⇒ cosA+cosB=asinA-sinB⇒2cosA+B2cosA-B2=2a sinA-B2cosA+B2⇒cotA-B2=a⇒A-B2=cot-1a⇒ A-B=2 cot-1a⇒sin-1×3-sin-1y3=2 cot-1a

⇒11-x6×ddxx3-11-y6×ddxy3=0⇒11-x6×3×2-11-y6×3y2×dydx=0⇒dydx=x2y21-y61-x6

Q28.

Answer :

(b) 1

We have, y=logtanx⇒dydx=1tanx×ddxtanx⇒dydx=1tanx×12tanx×ddxtanx⇒dydx=sec2x2 tanxNow, dydxx=π4=secπ422 tanπ4=22×1=1

Q29.

Answer :

(b) yx
We have, sin-1×2-y2x2+y2=loga⇒ x2-y2x2+y2=sin loga

⇒x2+y22x-2ydydx-x2-y22x+2ydydxx2+y22=0⇒2×3-2x2ydydx+2xy2-2y3dydx-2×3-2x2ydydx+2xy2+2y3dydxx2+y22=0⇒-4x2ydydx+4xy2=0⇒-4x2ydydx=-4xy2⇒dydx=4xy24x2y∴dydx=yx

Q30.

Answer :

(a) cos2 a+ycos a

We have, sin y=x cosa+y

⇒ddxsin y=ddxx cosa+y⇒cos ydydx=1×cosa+y-x sina+yddxa+y⇒cos ydydx=cosa+y-x sina+ydydx⇒cos ydydx+x sina+ydydx=cosa+y⇒cos y+x sina+ydydx=cosa+y⇒cos y+sin ycosa+y×sina+ydydx=cosa+y ∵ sin y=x cosa+y∵x=sin ycosa+y⇒cosa+y cos y+sin y sina+ycosa+ydydx=cosa+y⇒cosa+y-ycosa+y×dydx=cosa+y⇒dydx=cos2a+ycos a

Page 11.109 (Multiple Choice Questions)

Q31.

Answer :

(b) -4×1-x4
We have, y=log1-x21+x2⇒dydx=11-x21+x2ddx1-x21+x2⇒dydx=1+x21-x21+x2-2x-1-x22x1+x22⇒dydx=11-x2-2x-2×3-2x+2×31+x2⇒dydx=-4×1-x4

Q32.

Answer :

(a) cos x2y-1

We have, y=sinx+ySquaring both sides, we get,y2=sinx+y⇒y2-y=sinx⇒2ydydx-dydx=cosx⇒dydx2y-1=cosx⇒dydx=cosx2y-1

Q33.

Answer :

(c) 1

We have, y=tan-1sinx+cosxcosx-sinx⇒dydx=11+sinx+cosxcosx-sinx2ddxsinx+cosxcosx-sinx⇒dydx=cosx-sinx2cosx-sinx2+sinx+cosx2cosx-sinxddxsinx+cosx-sinx+cosxddxcosx-sinxcosx-sinx2⇒dydx=cosx-sinx2cosx-sinx2+sinx+cosx2cosx-sinxcosx-sinx-sinx+cosx-sinx-cosxcosx-sinx2⇒dydx=cosx-sinx2cosx-sinx2+sinx+cosx2cosx-sinxcosx-sinx+sinx+cosxsinx+cosxcosx-sinx2⇒dydx=cosx-sinx2cosx-sinx2+sinx+cosx2×cosx-sinx2+sinx+cosx2cosx-sinx2⇒dydx=1

 

HIGER ORDER DERIVATIVES
Page 12.11 Ex.12.1

Q1.

Answer :

(i) We have,

y=x3+tanxDifferentiating w.r.t. x, we getdydx=3×2+sec2xDifferentiating again w.r.t. x, we getd2ydx2=6x+2sec2x tanx

(ii) We have,

y= sinlogxDifferentiating w.r.t. x, we getdydx=coslogx×1xDifferentiating again w.r.t. x, we getd2ydx2=-sinlogx1x×1x+coslogx×-1×2 =-sinlogx+coslogxx2

(iii) We have,

y= logsinxDifferentiating w.r.t. x, we getdydx=1sinx×cosx =cotxDifferentiating again w.r.t. x, we getd2ydx2=-cosec2x

(iv) We have,

y =exsin5xDifferentiating w.r.t. x, we getdydx=ex sin 5x +ex cos 5x×5Differentiating again w.r.t. x, we getd2ydx2=ex sin 5x +ex cos 5x×5+5ex(-sin5x×5)+5ex cos 5x =-24ex sin 5x +10ex cos 5x =2ex5 cos 5x-12 sin 5x

(v) We have,
y= e6x cos 3xDifferentiating w.r.t. x, we getdydx=e6x×6× cos 3x+e6x(-sin 3x×3) =6e6x cos3x-3e6xsin 3xDifferentiating again w.r.t. x, we getd2ydx2=6e6x cos3x × 6 -6e6x sin3x×3- 3×6 e6x sin3x-3e6x×3 cos 3x =27e6x cos3x-36e6x sin3x =9e6x3 cos3x-4 sin3x

(vi) We have,
y = x3 logxDifferentiating w.r.t. x, we getdydx=3×2 logx+x3×1x =3×2 logx+x2Differentiating again w.r.t. x, we getd2ydx2=6x logx+3×2×1x+2x =6x logx +5x

(vii) We have,
y= tan-1xDifferentiating w.r.t. x, we getdydx=11+x2Differentiating again w.r.t. x, we getd2ydx2=-2x×11+x22=-2×1+x22
(viii) We have,
y= x cosxDifferentiating w.r.t. x, we getdydx=cosx -xsinxDifferentiating again w.r.t. x, we getd2ydx2=-sinx-sinx-xcosx =-2sinx+xcosx

(ix) We have,

y= loglogxDifferentiating w.r.t. x, we getdydx=1logx×1x =1xlogxDifferentiating again w.r.t. x, we getd2ydx2=0-logx+1xlogx2=-1+logxxlogx2

Q2.

Answer :

Here,

y=e-x cos xDifferentiating w.r.t. x, we getdydx=-e-x sinx -e-x cos x =-e-x sinx +e-x cos xDifferentiating again w.r.t. x, we getd2ydx2=-e-x cosx -e-x sinx -e-x sinx -e-x cosx =2e-x sinx

Hence proved.

Q3.

Answer :

Here,

y= x+ tanxDifferentiating w.r.t. x, we getdydx=1+sec2xDifferentiating again w.r.t. x, we getd2ydx2=2sec2xtanxDividing both sides by sec2x, we getcos2x d2ydx2=2tanx⇒cos2x d2ydx2=2(y-x) ∵y=x +tanx⇒tanx =y-x⇒cos2x d2ydx2-2y+2x=0

Hence proved.

Q4.

Answer :

Here,
y=x3logxDifferentiating w.r.t. x, we getdydx=3×2 logx +x3×1x =3×2 logx+x2Differentiating again w.r.t. x, we getd2ydx2=6x logx+3×2×1x+2x =6x logx+5xDifferentiating again w.r.t. x, we getd3ydx3=6logx+6x×1x+5 =6 logx+11Differentiating again w.r.t. x, we getd4ydx4=6x

Hence proved.

Q5.

Answer :

Here,
y=logsinxDifferentiating w.r.t. x, we getdydx=1sinx×cosx=cotxDifferentiating again w.r.t. x, we getd2ydx2=-cosec2xDifferentiating again w.r.t. x, we getd3ydx3=-2cosecx ×-cosecx cotx = 2cotx cosec2x = 2cosx cosec3x

Hence proved.

Q6.

Answer :

Here,

y=logxxDifferentiating w.r.t. x, we getdydx=1-logxx2Differentiating again w.r.t. x, we getd2ydx2=-x-2×1-logxx4 =-x-2x+2xlogxx4 =-3+2logxx3 =2logx-3×3

Hence proved.

Q7.

Answer :

Here,

y=logxxDifferentiating w.r.t. x, we getdydx=1-logxx2Differentiating again w.r.t. x, we getd2ydx2=-x-2×1-logxx4 =-x-2x+2xlogxx4 =-3+2logxx3 =2logx-3×3

Hence proved.

 

Page 12.12 Ex.12.1

Q8.

Answer :

Here,
x=a secθ and y=b tanθDifferentiating w.r.t. θ, we getdxdθ=asecθ tanθ and dydθ=b sec2θ∴dydx=dydθ×dθdx=b sec2θa secθ tanθ=b cosecθaDifferentiating w.r.t. x, we getd2ydx2=b a×-cosecθ cotθ×dθdx =-b a×cosecθ cotθ×1asecθ tanθ =-b a2×cotθ ×1tan2θ =-b a2×1tan3θ =-b4a2y3 ∵y=b tanθ

Hence proved.

Q9.

Answer :

Here,
x= acosθ+θsinθ and y=asinθ-θcosθDifferentiating w.r.t. θ, we getdxdθ=a-sinθ+θcosθ+sinθ=aθcosθ and dydθ=acosθ+θsinθ-cosθ=aθsinθ∴dydx=dydθ×dθdx =aθsinθaθcosθ=tanθ∴ d2ydx2=sec2θ ×dθdx =sec2θ×1aθcosθ ∵dxdθ=aθcosθ =sec3θaθ

Hence proved.

Q10.

Answer :

Here,
y=ex cosx Differentiating w.r.t. x, we getdydx=ex cosx-ex sin x=excosx-sinxDifferentiating again w.r.t. x, we getd2ydx2=ex cosx-sinx+ex -sinx-cosx =excosx-exsinx-exsinx-excosx =-2exsinx =2ex cosx+π2

Hence proved.

Q11.

Answer :

Here,

x=a cosθ and y = b sinθDifferentiating w.r.t. θ, we getdxdθ= -a sinθ and dydθ= b cosθ∴dydx=b cosθ-a sinθ=-bacotθDifferentiating w.r.t. x, we getd2ydx2=-ba×-cosec2θ dθdx =ba×cosec2θ×1-a sinθ =-ba2×1 sin3θ =-ba2×b3y3 ∵y = b sinθ =-b4a2y3

Hence proved.

Q12.

Answer :

Here,

x=a1-cos3θ, y =a sin3θDifferentiating w.r.t. θ, we getdxdθ=3a cos2θ sinθ anddydθ=3a sin2θ cosθ⇒ dydx=3a sin2θ cosθ3a cos2θ sinθ=tanθDifferentiating w.r.t. x, we getd2ydx2=sec2θ dθdx =sec2θ3a cos2θ sinθ =sec4θ3a sinθ∴ d2ydx2 at θ=π6⇒d2ydx2= secπ6 43a sinπ6=3227a

Q13.

Answer :

(i) Here,
x=aθ+sinθ and y=a1+cosθDifferentiating w.r.t. θ, we getdxdθ=a+acosθ and dydθ=-a sinθ∴dydx=-a sinθa+a cosθ=- sinθ1+cosθDifferentiating w.r.t. x, we getd2ydx2=-1+cosθcosθ+ sin2θ1+cosθ2dθdx =-cosθ-cos2θ- sin2θ1+cosθ2×1a+acosθ =-1+cosθa1+cosθ3 =-1a1+cosθ2 =-ay2 ∵ y=a1+cosθ

Hence proved.

(ii) Here,

x=aθ-sinθ and y=a1+cosθDifferentiating w.r.t. θ, we getdxdθ=a-acosθ, dydθ=-a sinθ⇒dydx=-a sinθa-a cosθ=- sinθ1-cosθDifferentiating w.r.t. x, we getd2ydx2=-cosθ+cos2θ+ sin2θ1-cosθ2×dθdx =-cosθ+cos2θ+ sin2θ1-cosθ2×1a-acosθ =1-cosθa1-cosθ3 =1a1-cosθ2

Q14.

Answer :

Here,
x= a1-cosθ and y=aθ+ sinθDifferentiating w.r.t. x, we getdxdθ=a sinθ and dydθ=a+a cosθ∴dydx=a+acosθasinθ=1+cosθsinθDifferentiating w.r.t. x, we getd2ydx2=-sin2θ-1+cosθcosθsin2θdθdx =-1-1+cosθcosθsin2θ1a sinθ∴ d2ydx2 at θ=π2 ⇒d2ydx2θ=π2=1a-1-01=-1a

Hence proved.

Q15.

Answer :

Here,

x=a1+cosθ and y =aθ+sinθDifferentiating w.r.t. θ, we getdxdθ=-asinθ and dydθ=a+a cosθ∴dydx=a+acosθ-asinθ=1+cosθ-sinθDifferentiating w.r.t. x, we getd2ydx2=ddθdydxdθdxd2ydx2=–sin2θ-cosθ-cos2θsin2θdθdx =1+cosθsin2θ×-1a sinθ =-1+cosθasin3θAt θ=π2: d2ydx2=-1+cosπ2a sinπ23=-1a

Q16.

Answer :

Here,
x=a sint -b cost and y=a cost+b sintDifferentiating w.r.t. t, we getdxdt=a cost+b sint and dydt=-a sint+b cost∴dydx=-a sint+b costa cost+b sintDifferentiating w.r.t. x, we getd2ydx2=-a cost+b sint2-a sint-b cost2a cost+b sint2dtdx =-a cost+b sint2-a sint-b cost2a cost+b sint21a cost+b sint =-y2+x2y3

Q17.

Answer :

Here,
x= cosθ and y = sin3θDifferentiating w.r.t. θ, we getdxdθ=-sinθ and dydθ=3sin2θ cosθ∴dydx=3sin2θ cosθ-sinθ=-3sinθ cosθDifferentiating w.r.t. x, we getd2ydx2=-3cos2θ+3 sin2θdθdx=-3cos2θ+3 sin2θ-sinθNow,LHS=yd2ydx2+dydx2 = sin3θ×-3cos2θ+3 sin2θ-sinθ+-3sinθ cosθ2 =3sin2θ cos2θ-3 sin4θ+9sin2θ cos2θ =12sin2θ cos2θ-3 sin4θ =3sin2θ4cos2θ-sin2θ =3sin2θ5cos2θ-1 [∵ cos2+ sin2θ=1] =RHS

Hence proved.

Q18.

Answer :

Here,
y=A sin3x+B cos3xDifferentiating w.r.t. x, we getdydx=3A cos3x-3B sin3xDifferentiating again w.r.t. x, we getd2ydx2=-9A sin3x-9B cos3xNow,d2ydx2+4dydx+3y= 10 cos3x⇒-9A sin3x-9B cos3x+43A cos3x-3B sin3x+3A sin3x+B cos3x=10 cos3x⇒-9A sin3x-9B cos3x+12A cos3x-12B sin3x+3A sin3x+3B cos3x=10 cos3x⇒-6Asin3x-6B cos3x+12A cos3x-12B sin3x=10 cos3x⇒cos3x-6B+12A +sin3x-6A-12B=10 cos3x⇒-6B+12A=10 and -6A-12B=0⇒A=23 and B=-13

Q19.

Answer :

Here,
y= sinsinxDifferentiating w.r.t. x, we getdydx=cossinx cosxDifferentiating again w.r.t. x, we getd2ydx2=-sinsinx cos2x-cossinx sinx⇒d2ydx2=-sinsinx cos2x-cossinx cosxtanx⇒d2ydx2=-y cos2x-tanxdydx⇒d2ydx2+tanxdydx+y cos2x=0

Hence proved.

Q20.

Answer :

Here,
x= sint and y =sinptDifferentiating w.r.t. t, we getdxdt=cost and dydt=p cospt⇒dydx=pcosptcostDifferentiating w.r.t. x, we getd2ydx2=-p2sinpt cost+pcosptsintcos2t×dtdx⇒d2ydx2=-p2sinpt cost+pcosptsintcos3t⇒d2ydx2=-p2sinpt costcos3t+pcosptsintcos3t⇒d2ydx2=-p2ycos2t+xdydxcos2t⇒cos2td2ydx2=-p2y+xdydx⇒1-sin2td2ydx2=-p2y+xdydx⇒1-x2d2ydx2-xdydx+p2y=0.

Hence proved.

Q21.

Answer :

Here,

y=sin-1x2Now,y1=2 sin-1x 11-x2⇒y2=21-x2+2x sin-1×1-x23/2⇒y2=21-x2+2x sin-1×1-x21-x2⇒y2=21-x2+xy11-x2⇒y21-x2=2+xy1⇒y21-x2-xy1-2=0

Hence proved.

Q22.

Answer :

Here,
y= etan-1xDifferentiating w.r.t. x, we getdydx= etan-1x ×11+x2Differentiating again w.r.t. x, we getd2ydx2=etan-1×11+x22+etan-1x-2×1+x22⇒1+x2d2ydx2=etan-1×1+x2-2xetan-1×1+x2⇒1+x2d2ydx2=dydx-2xdydx⇒1+x2d2ydx2+2x-1dydx=0

Hence proved.

Q23.

Answer :

Here,
y=3 coslogx+4 sinlogxDifferentiating w.r.t. x, we gety1=-3sinlogx×1x+4 coslogx×1x =-3sinlogx+4coslogxxDifferentiating again w.r.t. x, we gety2=-3coslogxx-4sinlogxx×x–3sinlogx+4coslogxx2⇒y2=-3coslogx-4sinlogx–3sinlogx+4coslogxx2⇒y2=-3coslogx-4sinlogx–3sinlogx+4coslogxx2⇒y2=-3coslogx-4sinlogxx2–3sinlogx+4coslogxx2⇒y2=-3coslogx+4sinlogxx2–3sinlogx+4coslogxx2⇒y2=-yx2-y1x⇒x2y2=-y-xy1⇒x2y2+y+xy1=0

Hence proved.

Q24.

Answer :

Here,
y=e2xax+bDifferentiating w.r.t. x, we gety1=2e2x ax+b+a e2x⇒y1=2y+a e2x ∵y=e2xax+bDifferentiating again w.r.t. x, we gety2=2y1+2a e2x⇒y2=2y1+2y1-2y ∵y1=2y+a e2x⇒y2=2y1+2y1-4y⇒y2=4y1-4y⇒y2-4y1+4y=0

Hence proved.

Q25.

Answer :

Here,
y= Ae-kt cospt+cDifferentiating w.r.t. t, we getdydt=-kAe-kt cospt+c-pAe-kt sinpt+c⇒dydt=-ky-pAe-kt sinpt+c …1Differentiating again w.r.t. t, we getd2ydt2= -kdydx+pkAe-kt sinpt+c-p2Ae-kt cospt+c⇒d2ydt2=-kdydx+pkAe-kt sinpt+c-p2y⇒d2ydt2=-kdydx+k-ky-dydx-p2y From 1⇒d2ydt2=-kdydx-k2y-kdydx-p2y⇒d2ydt2=-2kdydx-k2+p2y⇒d2ydt2+2kdydx+k2+p2y=0⇒d2ydt2+2kdydx+n2y=0 where n2=k2+p2

Hence proved.

Q26.

Answer :

Here,
y=ax+bcx+dDifferentiating w.r.t. x, we gety1=acx+ad-acx-bccx+d2 =ad-bccx+d2Differentiating again w.r.t. x, we gety2=-2(ad-bc)ccx+d3Differentiating again w.r.t. x, we gety3=6(ad-bc)c2cx+d4⇒y3=6(ad-bc)c2cx+d4×cx+d2cx+d2ad-bcad-bc⇒y3=3-2ad-bcccx+d32×12y1⇒2y1y3=3y22

Hence proved.

 

Page 12.13 Ex.12.1

Q27.

Answer :

Here,
x= sin1alogy⇒1alogy=sin-1x⇒y=ea sin-1xDifferentiating w.r.t. x, we gety1=ea sin-1x×a1-x2⇒y1=ay1-x2Differentiating again w.r.t. x, we gety2=ay11-x2+xay1-x21-x2⇒y2=ay11-x2+xay1-x21-x2⇒y2=ay11-x2+xay1-x21-x2⇒y2=a2y1-x2+xy11-x2⇒1-x2y2-xy1-a2y=0

Q28.

Answer :

Here,
logy= tan-1xDifferentiating w.r.t. x, we get1y×y1=11+x2⇒1+x2y1=y⇒1+x2y2+2xy1=y1⇒1+x2y2+2xy1-y1=0⇒1+x2y2+2x-1y1=0

Hence proved.

Q29.

Answer :

Here,
y= tan-1xDifferentiating w.r.t. x, we getdydx=11+x2Differentiating again w.r.t. x, we getd2ydx2=-2×1+x22⇒d2ydx2=-2×1+x2×11+x2⇒d2ydx2=-2xdydx1+x2⇒1+x2d2ydx2=-2xdydx⇒1+x2d2ydx2+2xdydx=0

Hence proved.

Q30.

Answer :

Here,
y=logx+x2+12Differentiating w.r.t. x, we getdydx=2logx+x2+1x+x2+1×1+2x2x2+1⇒dydx=2logx+x2+1x+x2+1×x2+1+xx2+1⇒dydx=2logx+x2+1×2+1Differentiating again w.r.t. x, we getd2ydx2=2-2xlogx+x2+1×2+1×2+1⇒d2ydx2=2-xdydxx2+1⇒x2+1d2ydx2=2-xdydx⇒x2+1d2ydx2+xdydx=2

Q31.

Answer :

Here,
y=tan-1x2Differentiating w.r.t. x, we gety1= 2 tan-1×1+x2Differentiating again w.r.t. x, we gety2=2-4x tan-1×1+x22⇒y2=21+x22-2 tan-1x ×2×1+x22⇒y2=21+x22-2xy11+x2⇒1+x22y2=2-2×1+x2y1⇒1+x22y2+2×1+x2y1=2

Hence proved.

Q32.

Answer :

Here,
y= cotxDifferentiating w.r.t. x, we getdydx=-cosec2xDifferentiating again w.r.t. x, we getd2ydx2=-2 cosecx ×- cosec x cotx⇒d2ydx2=2 cosec2x cotx⇒d2ydx2=-2ydydx⇒d2ydx2+2ydydx=0

Hence proved.

Q33.

Answer :

Here,
y=logx2e2Differentiating w.r.t. x, we getdydx=1x2e2×2xe2=2xDifferentiating again w.r.t. x, we getd2ydx2=-2×2

Q34.

Answer :

Here,
y= a e2x+b e-xDifferentiating w.r.t. x, we getdydx=2a e2x-b e-xDifferentiating again w.r.t. x, we getd2ydx2=4a e2x+b e-x⇒d2ydx2=2a e2x-b e-x+2a e2x+b e-x⇒d2ydx2=dydx+2y ⇒d2ydx2-dydx-2y=0

Hence proved.

Q35.

Answer :

Here,
y= exsinx+cosxDifferentiating w.r.t. x, we getdydx=exsinx+cosx+excosx-sinx =2 ex cosxDifferentiating w.r.t. x, we getd2ydx2=2ex cosx-2ex sinxNow, LHS=d2ydx2-2dydx+2y=2ex cosx-2ex sinx-4ex cosx+2 exsinx+cosx=0 = RHS

Hence proved.

Q36.

Answer :

Here,
y= cos-1x Differentiating w.r.t. x, we getdydx=-11-x2Differentiating again w.r.t. x, we getd2ydx2=-2×21-x23/2=-x1-x23/2Now,y = cos-1x⇒x= cosy⇒d2ydx2=-cosy1-cos2y3/2=-cosysin2y3/2= -coty cosec2y

Q37.

Answer :

Here,
y= ea cos-1xDifferentiating w.r.t. x, we getdydx= -ea cos-1x×a1-x2Differentiating again w.r.t. x, we getd2ydx2= ea cos-1x×a21-x2+2xa ea cos-1×21-x232⇒d2ydx2=ea cos-1x×a21-x2+xa ea cos-1×1-x21-x2⇒d2ydx2=y×a21-x2-xdydx1-x2⇒1-x2d2ydx2=a2y-xdydx⇒1-x2d2ydx2+xdydx-a2y=0

Hence proved.

Q38.

Answer :

Here,

y= 500 e7x+600 e-7xDifferentiating w.r.t. x, we getdydx=3500 e7x-4200 e-7x Differentiating again w.r.t. x, we getd2ydx2=24500 e7x+29400 e-7x =49500 e7x+600 e-7x = 49y

Q39.

Answer :

Here,
x= 2 cost -cos2t and y = 2 sint – sin2tDifferentiating w.r.t. t, we getdxdt=-2 sint+2 sin2t and dydt=2 cost-2 cos2t∴ dydx=2 cost-2 cos2t-2 sint+2 sin2t=cost- cos2t- sint+ sin2tDifferentiating w.r.t. x, we getd2ydx2=-sint+2 sin2t- sint+ sin2t- cost- cos2t- cost+2 cos2t- sint+ sin2t2dtdx =-sint+2 sin2t- sint+ sin2t- cost- cos2t- cost+2 cos2t- sint+ sin2t2-2 sint+2 sin2tAt t =π2:d2ydx2=-1+0- 1+0- 0+1- 0-2- 1+ 02-2 +0=1+2-2=-32

Q40.

Answer :

Here,
x= 4z2+5 and y= 6z2+7z+3Differentiating w.r.t. z, we getdxdz=8z and dydz=12z+7∴ dydx=12z+78zDifferentiating w.r.t. x, we getd2ydx2=12×8z-812z+764z2×dzdx =96z-96z-56512z3=-764z3

Q41.

Answer :

Here,

y=log1+cosxDifferentiating w.r.t. x, we getdydx=-sinx1+cosxDifferentiating again w.r.t. x, we getd2ydx2=-cosx-cos2x-sin2x1+cosx2=-cosx+11+cosx=-11+cosxDifferentiating again w.r.t. x, we getd3ydx3=-sinx1+cosx2⇒d3ydx3+sinx1+cosx2=0⇒d3ydx3+-11+cosx-sinx1+cosx=0⇒d3ydx3+d2ydx2×dydx=0

Q42.

Answer :

Here,
y = sinlogxDifferentiating w.r.t. x, we getdydx=coslogxxDifferentiating again w.r.t. x, we getd2ydx2=-sinlogx-coslogxx2⇒d2ydx2=-sinlogxx2-coslogxx2⇒d2ydx2=-yx2-1x×dydx⇒x2d2ydx2+xdydx+y=0

Q43.

Answer :

Here,
y=3e2x+2 e3xDifferentiating w.r.t. x, we getdydx=6 e2x+6 e3xDifferentiating again w.r.t. x, we getd2ydx2=12 e2x+18 e3x⇒d2ydx2=56 e2x+6 e3x-63e2x+2 e3x⇒d2ydx2=5dydx-6y⇒d2ydx2-5dydx+6y=0

Q44.

Answer :

Here,
y= cot-1x2Differentiating w.r.t. x, we gety1=2cot-1x×-11+x2=-2cot-1×1+x2Differentiating again w.r.t. x, we gety2=2+4xcot-1×1+x22⇒y2=21+x22+2x×2cot-1×1+x21+x2⇒y2=21+x22-2xy11+x2⇒1+x22y2=2-2xy11+x2⇒1+x22y2+2xy11+x2=2

Hence proved.

Q45.

Answer :

Here,
y= cosec-1 xDifferentiating w.r.t. x, we getdydx=-1xx2-1Differentiating again w.r.t. x, we getd2ydx2=x2-1+x2x2-1x2x2-1⇒d2ydx2=x2-1+x2x2x2-1×2-1⇒d2ydx2=2×2-1x2x2-1×2-1⇒d2ydx2=2×2-1×2-1-1x2x2-1×2-1⇒x2-1d2ydx2=2×2-1-1x2x2-1⇒x2-1d2ydx2=-2xdydx+1xdydx⇒xx2-1d2ydx2=-2×2-1dydx⇒xx2-1d2ydx2+2×2-1dydx=0

Hence proved.

 

Page 12.14  (Very Short Answers)

Q1.

Answer :

Here,
y= axn+1+ b x-n and x2d2ydx2=λ yNow,dydx=an+1 xn-bn x-n-1and d2ydx2=ann+1xn-1-bn-n-1 x-n-2Now, x2d2ydx2=λy Given⇒x2ann+1xn-1+bnn+1 x-n-2=λaxn+1+ b x-n⇒ann+1 xn+1+ bnn+1x-n=λaxn+1+ b x-n⇒nn+1axn+1+ b x-n=λaxn+1+ b x-n⇒λ=nn+1

Q2.

Answer :

Here,

x=a cos nt-b sin ntNow,dxdt=- an sin nt-bn cos nt d2xdt2=-an2 cos nt+bn2 sin ntAlso,d2xdt2 =λx Given⇒ -an2 cos nt+bn2 sin nt=λa cos nt-b sin nt⇒ -n2 a cos nt-b sin nt=λa cos nt-b sin nt⇒λ= -n2

Q3.

Answer :

Here,
x=t2 and y = t3⇒dxdt=2t and dydt=3t2∴ dydx=3t2⇒d2ydx2=32dtdx=34t

Q4.

Answer :

Here,
x= 2at and y =at2Differentiating w.r.t. t, we getdxdt=2a and dydt=2at∴dydx=2at2a=tDifferentiating again w.r.t. t, we getd2ydx2=1×dtdx=12aNow, d2ydx2x=12=12a

Q5.

Answer :

Here.
x = f(t) and y = g(t)
⇒dxdt=f’t and dydt=g’t∴dydx=g’tf’t
⇒d2ydx2=ddtg’tf’t×dtdx =f’tg”t-g’tf”tf’t2×1f’t =f’tg”t-g’tf”tf’t3

Q6.

Answer :

Here,
y=1-x+x22! -x33!+x44!+…∞Thus,⇒dydx=-1+2×2!-3×23!+4×34!…∞ =-1+x-x22!+x33!-…∞⇒d2ydx2=1-2×2!+3×23!-4×34!+ … ∞ =1-x+x22! -x33!+…∞ =y

Q7.

Answer :

Here,
y= x+ ex⇒dydx=1+ex⇒dxdy=11+ex⇒d2xdy2=-ex1+ex2dxdy=-ex1+ex3

Q8.

Answer :

Here,
y=x-x2 =x-x2 if 0<x<1-x+x2 if x>1,x<0⇒dydx=1-2x if 0<x<1-1+2x if x>1,x<0⇒d2ydx2=-2 if 0<x<12 if x>1,x<0

Q9.

Answer :

Here,

y=logex =-logex if 0<x<1 logex if x>1Differentiating w.r.t. x, we getdydx=-1x if 0<x<11x if x>1Differentiating again w.r.t. x, we getd2ydx2=1×2 if 0<x<1-1×2 if x>1

 

Page 12.14  (Multiple Choice Questions)

Q1.

Answer :

(b) −n2x

Here,
x=a cosnt-b sinntDifferentiating w.r.t. t, we getdxdt=-an sinnt-bn cosntDifferentiating again w.r.t. t, we getd2xdt2=-an2 cosnt+bn2 sinnt =-n2acosnt-b sinnt =-n2x

Q2.

Answer :

(d) -12at3

Here,
x=at2 and y=2atDifferentiating w.r.t. t, we getdxdt=2at and dydt=2a∴ dydx=2a2at=1tDifferentiating again w.r.t. t, we getd2ydx2=-1t2dtdx=-12at3

Q3.

Answer :

(b) n(n+1)y

Here,
y=axn+1+bx-n⇒dydx=an+1xn-bn x-n-1⇒d2ydx2=ann+1xn-1+bnn+1x-n-2∴ x2d2ydx2=x2ann+1xn-1+bnn+1x-n-2 =nn+1axn+1+b x-n =nn+1y

Q4.

Answer :

(b) 220(cos2x + 220cos4x)

Here,
y= 2cosx cos3x=cos3x-x+cos3x+x =cos2x+ cos4x⇒dydx=-2 sin2x-4 sin4x=-2sin2x+2 sin4x⇒d2ydx2=-4 cos2x -16 cos4x=-22cos2x+ 22cos4x⇒d3ydx3=23sin2x+23sin4x⇒d4ydx4=232cos2x+4×23cos4x=24cos2x+ 24cos4x∴ d20cos2x+ cos4xdx20=220cos2x+ 220cos4x

 

Page 12.15  (Multiple Choice Questions)

Q5.

Answer :

(b) 3/4t

Here,
x=t2 and y = t3⇒dxdt=2t and dydt=3t2∴ dydx=3t2⇒d2ydx2=32dtdx=34t

Q6.

Answer :

(b) xd2ydx2=y1

Here,
y= a+bx2⇒y1=2bx⇒y2=2bMultiplying by x on both sides we get, xy2=2bx=y1⇒xd2ydx2=y1

Q7.

Answer :

(c) -nn+122

Here,
fx=cosx+i sinxcos2x+i sin2x … cosnx+i sinnx⇒fx=cosx+i sinxcosx+i sinx2… cosx+i sinxn⇒fx=cosx+i sinx1+2+3………..n⇒fx=cosx+i sinxnn+12⇒fx=cosx+i sinxa where a=nn+12⇒fx=cosax+i sinax …1⇒f1=cosa+i sina⇒1=cosa+i sina …2 ∵f1=1Differentiating eqn.1, we get,f’x=a-sinax+i cosax⇒f”x=a2-cosax-i sinax⇒f”x=-a2cosax+i sinax⇒f”x=-nn+122cosax+i sinax⇒f”1=-nn+122cosa+i sina⇒f”1=-nn+122 Using 2

Q8.

Answer :

(a) −m2y

Here,

y= a sinmx+b cos mx⇒dydx=am cosmx-bm sinmx⇒d2ydx2=-am2 sinmx-bm2 cosmx =-m2a sinmx+b cos mx =-m2y

Q9.

Answer :

(a) 1

Here,
fx=sin-1x 1-x2⇒ 1-x2 fx=sin-1xDiffferentiating w.r.t. x, we get 1-x2f’x-x fx 1-x2=1 1-x2⇒1-x2f’x – xfx=1

DISCLAIMER : In the question instead of (1 − x)2 f ” (x) − xf(x)
it should be (1 − x)2 f ‘ (x) − xf(x)

Q10.

Answer :

(c) 0

y=tan-1 loge e/x2loge ex2+tan-1 3+2 loge x1-6 loge x⇒y=tan-1 1-2logex1+2logex+tan-1 3+2 loge x1-6 loge x⇒y=tan-1 1-2logex1+2logex+3+2 loge x1-6 loge x1-1-2logex1+2logex3+2 loge x1-6 loge x⇒y=tan-1 1-2logex1-6 loge x+3+2 loge x1+2logex1+2logex1-6 loge x-1-2logex3+2 loge x⇒y=tan-1 1-8logex+12logex2+3+8logex+4logex21-4logex-12logex2-3+4logex+4logex2⇒y=tan-1 1-8logex+12logex2+3+8logex+4logex21-4logex-12logex2-3+4logex+4logex2⇒y=tan-1 4+16logex2-2-8logex2⇒y=tan-1 41+4logex2-21+4logex2⇒y=tan-1 -2⇒dydx=0⇒d2ydx2=0

Q11.

Answer :

(a) f”(ex)e2x + f'(ex)ex

Since f(x) is a polynomial,

∴f’ex=f’ex ex⇒f”ex=f”ex (ex)2+f’ex ex =f”ex e2x+f’ex ex

Q12.

Answer :

(c) −y

Here,
y= a coslogex+b sinlogex⇒y1=-asinlogex1x+b coslogex1x⇒y2=-asinlogex+b coslogexx⇒y2=-acoslogex-b sinlogex–asinlogex+b coslogexx2⇒x2y2=-acoslogex+b sinlogex–asinlogex+b coslogex ⇒x2y2=-y-xy1 ⇒x2y2+xy1=-y

Q13.

Answer :

(a) 1/2a

Here,
x= 2at and y =at2Differentiating w.r.t. t, we getdxdt=2a and dydt=2at∴dydx=2at2a=tDifferentiating w.r.t. x, we getd2ydx2=1×dtdx=12aNow, d2ydx2x=12=12a

Q14.

Answer :

(a) f’ g”-g’f”f’3

Here,
x = f(t) and y = g(t)
⇒dxdt=f’t and dydt=g’t∴dydx=g’tf’t
⇒d2ydx2=ddtg’tf’t×dtdx =f’tg”t-g’tf”tf’t2×1f’t =f’tg”t-g’tf”tf’t3

Q15.

Answer :

(c)−m2y

Here,
y= sinmsin-1x⇒y1= cosmsin-1xm1-x2⇒y2=- sinmsin-1xm21-x2+mxcosmsin-1×1-x23/2⇒y2=- sinmsin-1xm21-x2+xmcosmsin-1×1-x2×1-x2⇒y2=- sinmsin-1xm21-x2+xy11-x2⇒1-x2y2=- ym2+xy1⇒1-x2y2-xy1=- m2y

Q16.

Answer :

(a) xy1 + 2

Here,

y=sin-1x2Now,y1=2 sin-1x 11-x2⇒y2=21-x2+2x sin-1×1-x23/2⇒y2=21-x2+2x sin-1×1-x21-x2⇒y2=21-x2+xy11-x2⇒y21-x2=2+xy1

 

Page 12.16  (Multiple Choice Questions)

Q17.

Answer :

(c) (1 + sin 2x)y1
Here,
y=etanx⇒y1=etanx sec2x⇒y2=etanx sec4x+ etanx ×2secx secx tanx⇒y2=sec2x etanxsec2x+ etanx ×2 tanx⇒cos2xy2=y1+ etanx ×y1sec2x2 tanx⇒cos2xy2=y1+y1×2 sinx cosx⇒cos2xy2=y11+sin2x

Q18.

Answer :

Disclaimer: The question given in the book is wrong.

Q19.

Answer :

(a) 3(xy2 + y1)y2

Here,

y=ax+bx2+c⇒x2+cy=ax+bDiffferentiating w.r.t. x, we get2xy+x2+cdydx=aDiffferentiating w.r.t. x, we get2y+2xy1+2xy1+x2+cy2=0⇒2y+4xy1+x2+cy2=0Diffferentiating again w.r.t. x, we get2y1+4y1+4xy2+x2+cy3+2xy2=0⇒6y1+6xy2+x2+cy3=0⇒6y1+6xy2+-2y-4xy1y2y3=0 ∵2y+4xy1+x2+cy2=0⇒6y1y2+6xy22-2y-4xy1y3=0⇒3y1y2+3xy22-y-2xy1y3=0⇒y1+xy23y2=2xy1+yy3

Q20.

Answer :

(a) (xy1 − y)2

Here,
y=logexa+bxx⇒y=x logexa+bx ⇒y1=logexa+bx+x×a+bxx1a+bx-bxa+bx2⇒y1=logexa+bx+aa+bx …1⇒y1=yx+aa+bx ∵y=x logexa+bx⇒xy1-yx=aa+bx …2Differentiating 1 we get,y2=a+bxxa+bx-bxa+bx2-baa+bx2⇒y2=axa+bx-baa+bx2⇒y2=aa+bx-abxx a+bx2⇒y2=a2x a+bx2⇒y2=xy1-y2x3 Using 2⇒x3 y2=xy1-y2

Q21.

Answer :

(c){f(t) + f”(t)}2

Here,
x= ftcost-f’t sint and y=ft sint+f’tcost⇒dxdt=f’tcost-ftsint-f”tsint-f’tcost and dydt=f’t sint+ftcost+f”tcost-f’t sint⇒dxdt=-ftsint-f”tsint and dydt=ftcost+f”tcostThus,dxdt2+dydt2=-ftsint-f”tsint2+ftcost+f”tcost2 =ftsint+f”tsint2+ftcost+f”tcost2 =sin2tft+f”t2+cos2tft+f”t2 =ft+f”t2sin2t+cos2t =ft+f”t2

Q22.

Answer :

c n2yy1n+y-1n=2xDifferentiating the above equation with respect to x1ny1n-1-1ny-1n-1y1=21nyy1n-y-1ny1=2y1n-y-1ny1=2ny …..1y1n-y-1ny2+y11ny1n-1+1ny-1n-1y1=2ny1nyy1n-y-1ny2+y12y1n+y-1n=2n2yy1Dividing the above equation by y1nyy1y1n-y-1ny2+y1y1n+y-1n=2n2yPutting y1 from equation 1y1n-y-1n22y2+y1y1n+y-1n=2n2y …..2Now,y1n-y-1n2=y1n+y-1n2-4y1n-y-1n2=4×2-4 …..3Putting the value of 3 in 24×2-1y22+2xy1=2n2yx2-1y2+xy1=n2y

Q23.

Answer :

(c) n!n-r!

According to the given equation,
ddxxn-a1 xn-1+a2 xn-2+…+-1n anex=xn ex⇒ddxxn-a1 xn-1+a2 xn-2+…+-1n anex=ddxxn-nxn-1+nn-1xn-2+…+-1n anexComparing the coefficients of the above equation we get,a1=na2=nn-1Similarly,ar=nn-1n-2n-3…n-r+1⇒ar=n!n-r!

Q24.

Answer :

(a) −(n − 1)2 y

Here,

y=xn-1 logx⇒y1=n-1xn-2 logx+xn-1x⇒y1=n-1xn-1 logx+xn-1x⇒xy1=n-1y+xn-1⇒xy2+y1=n-1y1+n-1xn-2⇒xy2+y1=n-1y1+n-1xn-1x⇒x2y2+xy1=xn-1y1+n-1xn-1⇒x2y2+xy1=xn-1y1+n-1xy1-n-1y⇒x2y2+xy1=xn-1y1+n-1xy1-n-12y⇒x2y2+xy1=2xn-1y1-n-12y⇒x2y2+xy1-2xn-1y1=-n-12y⇒x2y2+xy11-2n+2=-n-12y⇒x2y2+3-2nxy1=-n-12y

Q25.

Answer :

(c) 3

Here,

xy-logey=1⇒xy1+y-y1y=0⇒xyy1+y2-y1=0⇒yy1+xy1y1+xyy2+2yy1-y2=0⇒xy12+yy2-y2+3yy1=0∴ λ=3

Q26.

Answer :

(a) a constant

Here,

y2=ax2+bx+cNow,2ydydx=2ax+b⇒2yd2ydx2+2dydx2=2a ⇒yd2ydx2+dydx2=a ⇒yd2ydx2+2ax+b2y2=a ∵2ydydx=2ax+b⇒4y3d2ydx2+2ax+b2=4ay2⇒y3d2ydx2=4ay2-2ax+b24⇒y3d2ydx2=4aax2+bx+c-2ax+b24 ∵y2=ax2+bx+c⇒y3d2ydx2=4a2x2+4abx+4ac-4a2x2-b2-4axb4⇒y3d2ydx2=4ac-b24=a constant

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Advertisement

CBSE Delhi Question Answer of Chapters in PDF

Free Sample Papers and Previous Years' Question Papers for CBSE Exams from the Official CBSE Academic Website (CBSE.nic.in) in Delhi, Rajasthan, Uttar Pradesh and Bihar

Download CBSE / NCERT Book, Notes & MCQ Online Test / Mock Test

Online Quiz with Answers for Objective Questions in Hindi and English

Advertisement

Maharashtra Board Marathi & English Medium

Just Launched! Access Maharashtra Board Exam MCQs, Previous Year Papers, Textbooks, Solutions, Notes, Important Questions, and Summaries—available in both Marathi and English mediums—all in one place Maharashtra Board

Android APP

सरकारी Exam Preparation

Sarkari Exam Preparation Youtube

CBSE – दिल्ली, उत्तर प्रदेश, मध्य प्रदेश, बिहार, राजस्थान & हरियाणा Board हिंदी माध्यम

कक्षा 6 to 8 हिंदी माध्यम
कक्षा 9 & 10 हिंदी माध्यम
कक्षा 11 हिंदी माध्यम

State Board

यूपी बोर्ड 6,7 & 8
बिहार बोर्ड हिंदी माध्यम

CBSE Board

Mathematics Class 6
Science Class 6
Social Science Class 6
हिन्दी Class 6
सामाजिक विज्ञान कक्षा 6
विज्ञान कक्षा 6

Mathematics Class 7
Science Class 7
SST Class 7
सामाजिक विज्ञान कक्षा 7
हिन्दी Class 7

Mathematics Class 8
Science Class 8
Social Science Class 8
हिन्दी Class 8

Mathematics Class 9
Science Class 9
English Class 9

Mathematics Class 10
SST Class 10
English Class 10

Mathematics Class XI
Chemistry Class XI
Accountancy Class 11

Accountancy Class 12
Mathematics Class 12

Learn English
English Through हिन्दी
Job Interview Skills
English Grammar
हिंदी व्याकरण - Vyakaran
Microsoft Word
Microsoft PowerPoint
Adobe PhotoShop
Adobe Illustrator
Learn German
Learn French
IIT JEE

Study Abroad

Study in Australia: Australia is known for its vibrant student life and world-class education in fields like engineering, business, health sciences, and arts. Major student hubs include Sydney, Melbourne, and Brisbane. Top universities: University of Sydney, University of Melbourne, ANU, UNSW.

Study in Canada: Canada offers affordable education, a multicultural environment, and work opportunities for international students. Top universities: University of Toronto, UBC, McGill, University of Alberta.

Study in the UK: The UK boasts prestigious universities and a wide range of courses. Students benefit from rich cultural experiences and a strong alumni network. Top universities: Oxford, Cambridge, Imperial College, LSE.

Study in Germany: Germany offers high-quality education, especially in engineering and technology, with many low-cost or tuition-free programs. Top universities: LMU Munich, TUM, University of Heidelberg.

Study in the USA: The USA has a diverse educational system with many research opportunities and career advancement options. Top universities: Harvard, MIT, Stanford, UC Berkeley.

Privacy Policies, Terms and Conditions, About Us, Contact Us
Copyright © 2025 eVidyarthi and its licensors. All Rights Reserved.