Main Menu
  • School
    • Close
    • CBSE English Medium
    • CBSE Hindi Medium
    • UP Board
    • Bihar Board
    • Maharashtra Board
    • MP Board
    • Close
  • English
    • Close
    • English Grammar for School
    • Basic English Grammar
    • Basic English Speaking
    • English Vocabulary
    • English Idioms & Phrases
    • Personality Enhancement
    • Interview Skills
    • Close
  • Sarkari Exam Prep
    • Close
    • All Govt Exams Preparation
    • MCQs for Competitive Exams
    • Notes For Competitive Exams
    • NCERT Syllabus for Competitive Exam
    • Close
  • Study Abroad
    • Close
    • Study in Australia
    • Study in Canada
    • Study in UK
    • Study in Germany
    • Study in USA
    • Close
Class 12th Mathematics || Menu
  • Videos Maths Class 12
  • MCQ Maths Class 12
  • Notes Maths Class 12
  • Book Maths Class 12
  • Important Formulas Maths Class 12
  • Previous Year Papers Maths Class 12
  • Chapter wise Practice Papers Maths Class 12
  • Important Questions Maths Class 12
  • Sample Papers Maths Class 12
  • Question Answer Maths Class 12
  • Syllabus Maths Class 12
  • Marking Scheme Maths Class 12
  • Relations and Functions
    • Introduction to Relations
    • Introduction to Functions
    • Problems on Functions
    • Composition of Functions
    • Problems on Composition
    • Binary Operations
    • R.D Sharma Solutions
    • Close
  • Inverse Trigonometric Functions
    • Introduction: Inverse Trigonometry
    • Properties of Inverse Trigonometry
    • R.D Sharma Solutions
    • Close
  • Matrices
    • Introduction to Matrices
    • Theorems
    • MCQs
    • Ex 3.1
    • Ex 3.2
    • Ex 3.3
    • Ex 3.4
    • Examples
    • Miscellaneous Exercises
    • R.D Sharma Solutions
    • Close
  • Determinants
    • Introduction to Determinants
    • Theorems
    • MCQs
    • Ex 4.1
    • Ex 4.2
    • Ex 4.3
    • Ex 4.4
    • Ex 4.5
    • Ex 4.6
    • Examples
    • Miscellaneous Exercises
    • R.D Sharma Solutions
    • Close
  • Continuity and Differentiability
    • Introduction Continuity and Differentiability
    • Miscellaneous Exercises
    • MCQs
    • Theorem
    • R.D Sharma Solutions
    • Ex 5.1
    • Ex 5.2
    • Ex 5.3
    • Ex 5.4
    • Ex 5.5
    • Ex 5.6
    • Ex 5.8
    • Close
  • Applications of Derivatives
    • Introduction
    • Ex 6.1
    • Ex 6.2
    • Ex 6.3
    • Ex 6.4
    • Ex 6.5
    • MCQs
    • Miscellaneous Exercises
    • R.D Sharma Solutions
    • Close
  • Integrals
    • Introduction to Integration
    • Problems on Definite Integrals
    • Properties of Definite Integrals
    • Evaluating Definite Integrals
    • Limit of A Sum
    • Integration by Parts
    • Integration by Partial Fractions
    • Integrals of Special Functions
    • Integrals of Trigonometric Identities
    • Integration by Substitution
    • More Problems on Integration
    • R.D Sharma Solutions
    • Close
  • Applications of Integrals
    • Area Between A Curve and A Line
    • Area Between Two Curves
    • R.D Sharma Solutions
    • Close
  • Differential Equations
    • Intro: Differential Equations
    • Variable Separable Form
    • Homogenous Differential Equations
    • Linear Differential Equations
    • R.D Sharma Solutions
    • Close
  • Vector Algebra
    • Introduction to Vector Algebra
    • Scalar Product of Two Vectors
    • Properties of Vectors
    • Cross Product
    • R.D Sharma Solutions
    • Close
  • Three Dimensional Geometry
    • Introduction to 3-D Geometry
    • Cartesian Equation of A Line
    • Skew Lines
    • Equation of Plane
    • Intercept Form and Family of Planes
    • Distance of A Point From A Plane
    • R.D Sharma Solutions
    • Close
  • Linear Programming
    • Introduction to Linear Programming
    • Optimal Solution
    • Solution of Linear Programming Problems
    • R.D Sharma Solutions
    • Close
  • Probability
    • Introduction to Conditional Probability
    • Independent Events
    • Bayes’ Theorem
    • Distribution of Random Variables
    • Binomial Distribution
    • Mean and Variance of A Random Variable
    • R.D Sharma Solutions
    • Close
  • Maths Class 12

Maths Class 12 Integrals, R.D Sharma Question Answer

Advertisement
INDEFINITE INTEGRALS

Page 19.4 Ex.19.1

Q1.

Answer :

(i)
∫x4dx=x4+14+1+C =x55+C

(ii)
∫x54dx=x54+154+1+C=49×94+C

(iii)
∫x-5dx=x-5+1-5+1+C=-14x-4+C=-14×4+C

(iv)
∫dxx3/2=∫x-3/2dx=x-32+1-32+1+C=x-12-12+C=-2x+C

(v)
∫3xdx=3xln 3+C

(vi)
∫dxx23=∫dxx2/3=∫x-2/3 dx=x-23+1-23+1+C=3×13+C

(vii)
∫32 log3xdx=∫3log3 x2dx=∫x2dx=x33+C

(viii)
∫logxx dx=∫1·dx=x+C

Q2.

Answer :

(i)
∫1+cos 2x2dx ∫2 cos2x2dx ∴1+cos2A=2cos2A=∫cosx dx=sin x+C

(ii)
∫1-cos 2x2dx =∫2sin2x2dx ∴1-cos 2x=2sin2x=∫sinx dx=-cos x+C

Q3.

Answer :

∫e6 log x-e5 logxe4 logx -e3 logxdx=∫elogx6-elog x5elogx4-elogx3dx=∫x6-x5x4-x3dx=∫x5x3dx=∫x2dx=x33+C

Q4.

Answer :

∫dxaxbx=∫a-x b-xdx=a-xb-x- loge ab+C

Q5.

Answer :

(i)
∫cos 2x+2 sin2xsin2xdx=∫1-2 sin2x+2 sin2xsin2xdx ∵cos 2x=1-2 sin2x=∫cosec2x dx=-cot x+C

(ii)
∫2 cos2x-cos 2xcos2xdx=∫2 cos2x- 2 cos2x-1cos2xdx ∵cos 2x=2 cos2x-1=∫sec2x dx=tanx+C

Q6.

Answer :

∫elogxxdx=∫xxdx=∫1x dx=∫x-12dx=x-12+1-12+1+C=2x+C

 

Page 19.14 Ex.19.2

Q1.

Answer :

∫3xx+4x+5dx=∫3×1·x12+4×12+5dx=3∫x32dx+4∫x12dx+5∫dx=3×32+132+1+4×12+112+1+5x+C=3×25×52+4×23×32+5x+C=65×52+83×32+5x+C.

Q2.

Answer :

∫2x+5x-1x13dx=∫2xdx+5 ∫dxx-∫dxx13=∫2xdx+5 ∫dxx-∫x-13dx=2xln 2+5 ln x-x-13+1-13+1+C=2xln 2+5 ln x-32×23+C

Q3.

Answer :

∫x ax2+bx+cdx=∫x12ax2+bx+cdx=∫ax2+12+bx12+1+c x12dx=a∫x52 dx+b∫x32dx+c∫x12dx=ax52+152+1+bx32+132+1+cx12+112+1+C=2a7x72+2b5x32+2c3x32+C

Q4.

Answer :

∫2-3x 3+2×1-2xdx=∫2-3x 3-6x+2x-4x2dx=∫2-3x -4×2-4x+3dx=∫-8×2-8x+6+12×3+12×2-9xdx=∫12×3+4×2-17x+6dx=12×44+4×33-17×22+6x+C=3×4+43×3-172×2+6x+C

Q5.

Answer :

∫mx+xm+mx+xm+mxdx=m∫1xdx+1m∫xdx+∫mxdx+∫xmdx+m∫xdx=mlnx+1mx1+11+1+mxln m+ xm+1m+1+mx1+11+1=m ln x+x22m+mxln m+ xm+1m+1+mx22+C

Q6.

Answer :

∫x-1x2dx=∫x+1x-2dx=∫xdx+∫dxx-2∫dx=x22+ln x-2x+C

Q7.

Answer :

∫1+x3xdx=∫1+x3+3 12x+31x2xdx=∫1+x3+3x+3x2x dx=∫1x+x3x+3xx+3x2xdx=∫x-12+x52+3×12+3x32dx=x-12+1-12+1+x52+152+1+3×12+112+1+3×32+132+1+C=2x+27×72+2×32+65×52+C

Q8.

Answer :

∫x2+elog x+e2xdx=∫x2dx+∫xdx+∫e2xdx=x33+x22+e2xln e2+C

Q9.

Answer :

∫xe+ex+eedx=∫xedx+∫exdx+ee∫1dx=xe+1e+1+ex+x·ee+C

Q10.

Answer :

∫x x3-2xdx=∫x72-2xdx=∫x72-2x-12 dx=x72+172+1-2x-12+1-12+1+C=29×92-4×12+C=29×92-4x+C

Q11.

Answer :

∫1×1+1xdx=∫x-121+1xdx=∫x-12+1x32dx=∫x-12dx+∫x-32dx=x-12+1-12+1+x-32+1-32+1=2x-2x+C

Q12.

Answer :

∫ x6+1×2+1dx=∫ x23+13×2+1dx A3+B3=A+B A2-AB+B2=∫x2+1×4-x2+1×2+1dx=∫x4-x2+1dx=∫x4dx+∫x2dx+∫1dx=x4+14+1-x2+12+1+x+C=x55-x33+x+C

 

Page 19.15 Ex.19.2

Q13.

Answer :

∫ x-13+x+2x13dx=∫ x-13×13+x12x13+2x13dx=∫x-23+x16+2x-13dx=x-23+1-23+1+x16+116+1+2x-13+1-13+1=x1313+x7676+3×23+C=3×13+67×76+3×23+C

Q14.

Answer :

∫ 1+x2xdx=∫ 1x+xx+2xxdx=∫x-12+x12+2dx=x-12+1-12+1+x12+112+1+2x+C=2x+23×32+2x+C

Q15.

Answer :

∫x3-5xdx=∫ x123-5xdx=∫3×12-5x32dx=3×12+112+1-5×32+132+1+C=2×32-2×52+C

Q16.

Answer :

∫x+1x-2xdx=∫ x2-2x+x-2xdx=∫x2-x-2xdx=∫x32-x12-2x-12dx=x32+132+1-x12+112+1-2x-12+1-12+1+C=25×52-23×32-4×12+C

Q17.

Answer :

∫x5+x-2+2x2dx=∫ x5x2+x-2×2+2x2dx=∫x3+x-4+2x-2dx=x3+13+1+x-4+1-4+1+2x-2+1-2+1+C=x44-13×3-2x+C

Q18.

Answer :

∫3x+42dx=∫ 9×2+2×3x×4+16dx=9∫x2dx+24∫x dx+16∫dx=9×33+24×22+16x+C=3×3+12×2+16x+C

Q19.

Answer :

∫2×4+7×3+6x2x2+2xdx=∫ x22x2+7x+6xx+2dx=∫x2x2+4x+3x+6x+2dx=∫x2xx+2+3x+2x+2dx=∫x2x+3x+2x+2dx=∫2×2+3xdx=2∫x2dx+3∫x dx=2×33+3×22+C=23×3+32×2+C

Q20.

Answer :

∫5×4+12×3+7x2x2+xdx=∫ x25x2+12x+7xx+1dx=∫x5x2+5x+7x+7x+1dx=∫x5xx+1+7x+1x+1dx=∫x5x+7x+1x+1dx=∫5×2+7xdx=5×33+7×22+C

Q21.

Answer :

∫3 sin x-4 cos x+5cos2x-6sin2x+tan2x-cot2xdx=∫ 3 sin x-4 cos x+5 sec2x-6 cosec2x+sec2x-1-cosec2x-1 dx=∫3 sin x-4 cos x+6 sec2x-7 cosec2xdx=-3 cos x-4 sin x+6 tan x-7 -cot x +C=-3 cos x-4 sin x+6 tan x+7 cot x+C

Q22.

Answer :

∫sec2x+cosec2xdx=∫sec2x dx+∫cosec2x dx=tan x-cot x+C

Q23.

Answer :

∫sin3 x-cos3 xsin2 x · cos2 xdx=∫sin3xsin2 x · cos2xdx-∫cos3 xsin2 x · cos2 xdx=∫sin xcos2 xdx-∫cos xsin2 xdx=∫sin xcos x×1cos xdx-∫cos xsin x×1sin xdx=∫sec x tan x dx-∫cosec x cot x dx=sec x–cosec x+C=sec x+cosec x+C

Q24.

Answer :

∫5 cos3x+6 sin3x2 sin2x cos2xdx=∫5 cos3x2 sin2x cos2x+6 sin3x2sin2x cos2xdx=∫52 cos xsin2x+3sin xcos2xdx=52∫cos xsin x×1sin xdx+3∫sin xcos x×1cos xdx=52∫cosec x cot x dx+3∫sec x tan x dx=52-cosec x+3 sec x+C=-52cosec x+3 sec x+C

Q25.

Answer :

∫tan x+cot x2=∫tan2x+cot2x+2 tan x cot xdx=∫tan2x+cot2x+2dx=∫sec2x-1+cosec2x-1+2dx=∫sec2x+cosec2x dx=tan x -cot x+C

Q26.

Answer :

∫1-cos 2×1+cos 2xdx=∫2 sin2x2 cos2xdx ∵1-cos 2θ=2 sin2 θ & 1+cos 2θ=2 cos2θ=∫tan2x dx =∫sec2x-1 dx=∫sec2x dx-∫dx=tan x -x+C

Q27.

Answer :

∫cot xcosec x-cot xdx=∫cos xsin x1sin x-cos xsin xdx=∫cos x1-cos x×1+cos x1+cos xdx=∫cos x+cos2x1-cos2xdx=∫cos x+cos2xsin2x dx=∫cos xsin x×1sin x+cos2xsin2xdx=∫cot x cosec x+cot2xdx=∫cosec x cot x+cosec2x-1dx=-cosec x-cot x-x+C

Q28.

Answer :

∫ cos2x-sin2x1+cos 4xdx=∫cos 2×2 cos2 2xdx ∴1+cos A=2 cos2 A2 & cos2A-sin2A=cos2A=12∫cos 2xcos 2xdx=12x+C=x2+C

Q29.

Answer :

∫dx1-cos x=∫dx1-cos x×1+cosx1+cosx=∫1+cos x1-cos2xdx=∫1+cos xsin2xdx=∫1sin2x+cos xsin x×1sin xdx=∫cosec2x+cosec x cot xdx=-cot x-cosec x+C

Q30.

Answer :

∫dx1-sin x=∫1+sin x1-sin x×1+sin xdx=∫1+sin x1-sin2xdx=∫1+sin xcos2xdx=∫1cos2x+sin xcos x×1cos xdx=∫sec2x+sec x tan xdx=tan x+sec x+C

Q31.

Answer :

∫tan xsec x+tan xdx=∫tan xsec x+tan x×sec x-tan xsec x-tan xdx=∫tan x sec x-tan xsec2x-tan2xdx=∫sec x tan x-tan2x1dx=∫sec x tan x dx-∫sec2x-1dx=sec x-tan x+x+C

Q32.

Answer :

∫cosec xcosec x-cot xdx=∫cosec xcosec x+cot xcosec x-cot x cosec x+cot xdx=∫cosec x cosec x+cot xcosec2x-cot2xdx=∫cosec2x+cosec x cot xdx=-cot x-cosec x+C

Q33.

Answer :

∫dx1+cos 2x ∴1+cosθ=2cos2 θ2=∫dx2 cos2x=12∫sec2x dx=12tan x+C

Q34.

Answer :

∫dx1-cos 2x ∴1-cos A=2sin2 A2=∫dx2 sin2x=12∫cosec2x dx=12-cot x+C=-12cot x+C

Q35.

Answer :

∫tan-1sin 2×1+cos2xdx=∫tan-12 sin x cos x2 cos2xdx ∴sin 2x=2 sinx cosx & 1+cos2x=2 cos2x=∫tan-1 tan x=∫tan-1 tan x=∫x dx=x22+C

Q36.

Answer :

∫cos-1 sin xdx=∫cos-1cosπ2-xdx ∴sin x=cosπ2-x=∫π2-xdx=πx2-x22+C

Q37.

Answer :

∫cot-1 sin 2×1-cos 2xdx=∫cot-12 sin x cos x2 sin2xdx ∴sin 2x=2 sin x cos x & 1-cos 2x=2 sin2x=∫cot-1 cot xdx=∫x dx=x22+C

Q38.

Answer :

∫sin-1 2 tan x1+tan2xdx=∫sin-1 sin 2 xdx ∴sin 2x=2 tan x1+tan2x=2∫x dx=2 x22+C=x2+C

Q39.

Answer :

∫x3+8x-1×2-2x+4dx=∫x3+23 x-1×2-2x+4dx =∫x+2 x2-2x+4 x-1×2-2x+4 dx ∴ a3+b3=a+b a2-ab+b2=∫ x+2 x-1dx=∫x2-x+2x-2dx=∫x2+x-2dx=∫x2 dx+∫x dx-2 ∫1dx=x33+x22-2x+C

Q40.

Answer :

∫a tan x+b cot x2dx=∫a2 tan2x+b2 cot2x+2ab tan x cot xdx=a2∫tan2x dx +b2 ∫cot2x dx+2ab ∫dx=a2∫sec2x-1dx+b2∫cosec2x-1dx+2ab∫dx=a2tan x-x +b2 -cot x-x+2ab x+C=a2 tan x -b2cot x-a2+b2-2abx+C

Q41.

Answer :

∫x3-3×2+5x-7+x2ax2x2dx=∫x32x2-3x22x2+5x2x2-72×2+x2ax2x2dx=∫x2-32+52x-72x-2+ax2dx=12∫x dx-32∫dx+52∫dxx-72∫x-2 dx+12∫axdx=12×22-32x+52ln x-72 x-2+1-2+1+12axln a+C=x24-32x+52ln x+72x+ax2 ln a+C=12×22-3x+5 ln x+7x+ax ln a+C

Q42.

Answer :

∫cos x1+cos xdx=∫cos x1-cos x1+cos x1-cos xdx=∫cos x-cos2x1-cos2 xdx=∫cos x-cos2 xsin2 xdx=∫cos xsin2 x-cos2 xsin2 xdx=∫cot x cosec x – cot2 xdx=∫cot x cosec x-cosec2 x+1dx=∫cot x cosec x dx-∫cosec2 x dx+∫1dx=-cosec x+cot x+x+C

Q43.

Answer :

∫1-cos x1+cos xdx=∫1-cos x21-cos2 xdx=∫1+cos2 x-2cos xsin2 xdx=∫ 1sin2 x+cos2 xsin2 x-2cos xsin2 xdx=∫ cosec2 x+cot2 x-2cot x.cosec xdx=∫ cosec2 x+cosec2 x -1-2cot x.cosec xdx=∫ 2cosec2 x-1-2cot x.cosec xdx=∫2cosec2 x dx-∫1 dx-∫2cot x.cosec x dx=-2cot x-x+2cosec x+C=2cosec x-cot x-x+C

Q44.

Answer :

∫sin2x1+cos xdx=∫1-cos2x1+cos xdx=∫1-cos x 1+cos x1+ cos xdx=∫ 1-cos xdx=x-sin x+C

Q45.

Answer :

Let I=∫cos 2x+2 sin2xcos2xdx=∫1-2 sin2x+2 sin2xcos2x dx=∫sec2x dx=tan x+C

Q46.

Answer :

Let I=∫sin-1 cos x dx=∫sin-1 sin π2-x dx=∫π2-x dx=π2∫dx-∫x dx=π 2x-x22+C

Q47.

Answer :

f’x=x-1×2 f’x=x-x-2∫ f’xdx =∫x-x-2dx fx=x22-x-2+1-2+1+C =x22+1x+Cf1=12 Given⇒122+11+C=12⇒C=-1∴ fx=x22+1x-1

Q48.

Answer :

f’x=x+b, f1=5, f2=13 f’x=x+b∫f’xdx =∫x+bdxfx=x22+bx+C ….(i)f1=5, f2=13 GivenPuting x=1 in (i)f1=122+b1+C5=12+b+C … iiPuting x=2 in (i)f2=222+b2+C13=42+2b+C13=2+2b+C …(iii)Solving (ii) and (iii) we get,b=132 and C=-2Thus, fx=x22+132x-2

Q49.

Answer :

f’x=8×3-2x f2=8f’x=8×3-2x∫f’xdx =∫8×3-2xdx =8∫x3dx-2∫xdxfx=8 x44-2×x22+Cfx=2×4-x2+Cf2=8 Givenf2=2×24-22+C8=32-4+CC=-20∴fx=2×4-x2-20

Q50.

Answer :

f’x=a sinx+b cos xf’0=4, f0=3fπ2=5f’x=a sin x+b cos x∫f’xdx=∫a sin x+b cos xdxfx=-a cos x+b sin x +C …(i)Now puting x=0 in equation (i)f0=-a cos 0+b sin 0 +C3=-a×1+b×0 + C3=-a+C … iiNow puting x=π2 in equation (i)fπ2=-a cos π2+b sin π2 +C5=-a cosπ2+b sin π2+C5=-a×0+b×1+C5=b+C … iiiWe also have f’0=4f’x=a sin x+b cos xf’0=a sin 0+b cos 04=a×0+b×14=b … ivsolving ii, iii and iv we get,b=4C=1a =-2∴ fx=2cos x+4 sin x +1

Q51.

Answer :

fx=x+1x
Integrating both sides
∫fxdx=∫x+1xdx=∫x12+x-12dx=x12+112+1+x-12+1-12+1+C=23×32+2×12+C

 

Page 19.35 Ex.19.3

Q1.

Answer :

∫2x-35+3x+2dx=∫2x-35dx+∫3x+212dx=2x-35+125+1+3x+212+1312+1+C=2x-3612+293x+232+C

Q2.

Answer :

∫17x-53+15x-4dx=∫7x-5-3+5x-4-12dx=7x-5-3+17-3+1+5x-4-12+15-12+1+C=7x-5-2-14+255x-412+C

Q3.

Answer :

∫12-3x+13x-2dx=∫dx2-3x+∫3x-2-12dx=ln 2-3x-3+3x-2-12+13-12+1+C=ln 2-3x-3+233x-212+C=-13ln 2-3x+233x-2+C

Q4.

Answer :

∫x+3x+14dx=∫x+1+2x+14dx=∫x+1x+14+2x+14dx=∫dxx+13+2∫dxx+14=∫x+1-3 dx+2∫x+1-4dx=x+1-3+1-3+1+2x+1-4+1-4+1+C=-12x+1-2-23x+1-3+C=-12x+12-23x+13+C

Q5.

Answer :

∫x2+5x+2x+2dx=∫x2x+2dx+5∫x dxx+2+2∫dxx+2=∫x2-4+4x+2dx+5∫x+2-2x+2dx+2∫dxx+2=∫x-2x+2x+2dx+∫4x+2dx+5∫1-2x+2dx+2∫dxx+2=∫x-2 dx+4∫dxx+2+5∫dx-10∫dxx+2+2∫dxx+2=∫x-2dx-4∫dxx+2+5∫dx=x22-2x-4 ln x+2+5x+C=x22+3x-4 ln x+2+C

Q6.

Answer :

∫x3x-2dx=∫x3-8+8x-2dx=∫x3-23x-2+8x-2dx=∫x-2×2+2x+4x-2+8x-2dx=∫x2+2x+4dx+8∫dxx-2=x33+2×22+4x+8 ln x-2+C=x33+x2+4x+8 ln x-2+C

Q7.

Answer :

∫x2+x+53x+2dx=19∫9×2+9x+453x+2dx=19∫9×2-43x+2dx+∫9x+63x+2dx+∫433x+2dx=19∫3x-23x+23x+2dx+∫33x+23x+2dx+43∫dx3x+2=19∫3x-2 dx+3∫1dx+43∫dx3x+2=193×22-2x+3x+43 3ln 3x+2+C=1932×2+x-433 ln 3x+2+C=16×2+19x-4327 ln 3x+2+C

Q8.

Answer :

∫dxx+1+x

Rationalise the denominator

=∫x+1-xx+1+xx+1-xdx=∫x+1-xx+1-xdx=∫x+112dx-∫x12dx=x+112+112+1-x12+112+1=23x+132-23×32+C

Q9.

Answer :

∫dx2x+3+2x-3
Rationalise the denominator
=∫2x+3-2x-32x+3+2x-32x+3-2x-3dx=∫2x+3-2x-32x+3-2x-3dx=16∫2x+312dx-16∫2x-312dx=162x+312+1212+1-162x-312+1212+1+C=1182x+332-2x-332+C

Q10.

Answer :
∫x+12x+3dx=12∫2x+22x+3dx=12∫2x+3-12x+3dx=12∫2x+32x+3-12x+3dx=12∫2x+3-12x+3dx=12∫2x+312dx-∫2x+3-12dx=122x+312+1212+1-2x+3-12+12-12+1+C=12132x+332-2x+312+C=162x+332-122x+312+C

Q11.

Answer :

∫2x2x+12dx=∫2x+1-12x+12dx=∫2x+12x+12-12x+12dx=∫dx2x+1-∫2x+1-2dx=log2x+12-2x+1-2+12-2+1+C=log 2x+12+2x+1-12+C=log 2x+12+122x+1+C

Q12.

Answer :

Let I=∫xx+2dx
Putting x + 2 = t
Then, x = t – 2
Difference both sides
dx = dt
Now, integral becomes
I=∫t-2tdt=∫t32-2t12dt=t32+132+1-2t12+112+1+C=25t52-43t32+C=25x+252-43x+223+C

Q13.

Answer :

Let I=∫x-1x+4dx

Putting x + 4 = t
Then, x = t – 4
Difference both sides
dx = dt
Now integral becomes,
I= ∫t-4-1tdt=∫tt-5tdt=∫t12-5t-12dt=t12+112+1-5t-12+1-12+1+C=23t32-10t+C=23x+432-10x+412+C

Q14.

Answer :

∫dxx+a+x+b=∫x+a-x-bx+a+x+bx+a-x+bdx=∫x+a-x+bx+a-x+bdx=1a-b∫x+a12-1a-b∫x+b12dx=1a-bx+a12+112+1-1a-bx+b12+112+1+C=23a-bx+a32-x+b32+C

Q15.

Answer :

∫x4+3×2+1dx=∫x4-1+1+3×2+1dx=∫x4-1×2+1dx+4∫dxx2+1=∫x2-1×2+1×2+1dx+4∫dxx2+1=∫x2-1dx+4∫dxx2+1=x33-x+4 tan-1x+C

Q16.

Answer :

∫2x+3x-12dx=∫2x-2+2+3x-12dx=∫2x-1+5x-12dx=2∫dxx-1+5∫x-1-2 dx=2 ln x-1+5x-1-2+1-2+1+C=2 ln x-1-5x-1+C

Q17.

Answer :

∫sin2 2x+5dx=∫1-cos 4x+102dx ∴sin2A=1-cos2A2=12∫1-cos 4x+10dx=12x-sin 4x+104+C=12x-sin 4x+108+C

Q18.

Answer :

∫sin3 2x+1dx=14∫3 sin 2x+1-sin 32x+1dx ∴sin 3θ=3 sinθ-4sin3θ⇒sin3θ=143sin θ-sin 3θ =34∫sin 2x+1dx-14∫sin 6x+3dx=34-cos 2x+12-14-cos 6x+36+C=-3 8cos 2x+1+124 cos 6x+3+C

Q19.

Answer :

∫cos4 2x dx=∫cos2 2x2dx=∫1+cos 4x22dx ∴cos2 x=1+cos 2×2=14∫1+cos 4×2 dx=14∫1+cos2 4x+2 cos 4xdx=14∫1+1+cos 8×2+2 cos 4xdx=14∫32+cos 8×2+2 cos 4xdx=143×2+sin 8×16+2 sin 4×4+C=3×8+sin 8×64+sin 4×8+C

Q20.

Answer :

∫sin2 bx dx=∫1-cos 2bx2dx ∴sin2 x=1-cos 2×2=12∫1-cos 2bxdx=12x-sin 2bx2b +C=x2-sin 2bx4b+C

Q21.

Answer :

∫sin2 x2 dx=∫1-cos x2dx ∴sin2 x2=1-cos x2=12∫1-cos xdx=12x-sin x +C

Q22.

Answer :

∫cos2 x2 dx=∫1+cos x2dx ∴cos2 x2=1+cos x2=12∫1+cos xdx=12x+sin x +C

Q23.

Answer :

∫sin 4x cos 7x dx=12∫2 cos 7x sin 4x dx=12∫sin 7x+4x-sin 7x-4xdx ∴2 cos A sin B = sin A+B- sin A-B=12∫sin 11x-sin 3x dx=12-cos 11×11+cos 3×3+C=-cos 11×22+cos 3×6

Q24.

Answer :

∫cos 4x cos 3x dx=12∫2 cos 4x cos 3x dx=12∫cos 4x+3x+cos 4x-3xdx ∴2 cos A cos B=cos A+B+cos A-B=12∫cos 7x+cos x dx=12sin 7×7+sin x+C=114sin 7x+12sin x+C

Q25.

Answer :

∫cos2nx dx=∫1+cos 2nx2 dx ∴cos2x=1+cos 2×2=12∫1+cos 2nxdx=12x+sin 2nx2n+C=x2+sin 2nx4n+C

Q26.

Answer :

∫cos mx cos nx dx=12∫2 cos mx cos nxdx=12∫cos mx+nx+cos mx-nxdx ∴2 cos A cos B=cos A+B+cos A-B=12sin m+nxm+n+sin m-nxm-n+C

Q27.

Answer :

∫cos x·cos 2x·cos 3x dx=12∫2 cos 3x·cos 2x cos x dx=12∫cos 3x+2x+cos 3x-2x cos x dx ∴2 cos A cos B=cos A+B+cos A-B=12∫cos 5x+cos x cos x dx=12∫cos 5x·cos x+cos2xdx=14∫2 cos 5x·cos x dx+12∫cos2x dx=14∫cos 6x+cos 4xdx+12∫1+cos 2x2dx=14∫cos 6xdx+14∫cos 4xdx+14∫1+cos 2xdx=14sin 6×6+14sin 4×4+14x+sin 2×2+C=124sin 6x+116sin 4x+14x+18sin 2x+C

Q28.

Answer :

∫sin x·1-cos 2x dx=∫sin x .2 sin2x dx ∴1-cos 2A=2sin2A=2∫sin2x dx=2∫1-cos 2x2dx=12∫1-cos 2xdx=12x-sin 2×2+C

Q29.

Answer :

∫sin x 1+cos 2x dx=∫sin x.2 cos2x dx ∴1+cos 2x=2 cos2x=2∫sin x cos x dx=22∫2 sin x cos x dx=12∫sin 2xdx=12-cos 2×2+C=-122cos 2x+C

Q30.

Answer :

∫1+cos x1-cos x dx=∫2 cos2x22 sin2x2 dx ∴1+cos x=2 cos2x2 & 1-cos x=2 sin2x2 =∫cot2x2 dx=∫cosec2 x2-1 dx=-cot x212-x+C=-2 cot x2-x+C

Q31.

Answer :

∫1-cos x1+cos x dx=∫2 sin2x22 cos2x2 dx 1-cos x=2 sin2x2 & 1+cos x=2 cos2x2=∫tan2x2 dx=∫sec2 x2-1 dx=tan x212-x+C=2 tan x2-x+C

Q32.

Answer :

∫sin mx·cos nx dx=12∫2 sin mx·cos nxdx=12∫sin mx+nx+sin mx-nxdx ∴2 sin A·cos B=sin A+B+sin A-B=12-cos m+nxm+n-cos m-nxm-n+C

Q33.

Answer :

∫ dx1-sinx2=∫1+sin x21-sin x2 1+sin x2 dx=∫1+sin x21-sin2 x2dx=∫1+sinx2cos2x2 dx=∫sec2 x2+sec x2 tan x2dx=tan x212+sec x212+C=2 tan x2+sec x2+C

Q34.

Answer :

∫dx1+cos 3x=∫1-cos 3×1+cos 3x 1-cos 3xdx=∫1-cos 3×1-cos2 3x dx=∫1-cos 3xsin2 3x dx=∫cosec2 3x dx-∫cosec 3x cot 3xdx=-cot 3×3+cosec 3×3+C=13cosec 3x-cot 3x+C=131sin 3x-cos 3xsin 3x+C=13 1-cos 3xsin 3x+C

Q35.

Answer:

∫dx1+sec ax=∫dx1+1cos ax=∫cos ax1+cos ax dx=∫1+cos ax-11+cos ax dx=∫1+cos ax1+cos ax-11+cos axdx=∫dx-∫dx1+cos ax=∫dx-∫1-cos ax1+cos ax1-cos axdx=∫dx-∫1-cos ax1-cos2 axdx=∫dx-∫1-cos axsin2 axdx=∫dx-∫1sin2 ax-cos axsin2 axdx=∫dx-∫1sin2 axdx+∫cos axsin2 axdx=∫dx-∫cosec2 axdx+∫cot ax cosec axdx=x+cot axa -cosec axa+C=x+1acot ax -cosec ax+C=∫dx-∫dx1+cos ax=∫dx-∫dx2 cos2 ax2 ∴1+cos x=2 cos2 x2=∫dx-12∫sec2ax2dx=x-12tan ax2a2=x-tan ax2a+C

Q36.

Answer :

∫ex+12ex dx=∫e2x+2ex+1ex dx=∫e3x+2e2x+ex dx= e3x3+2e2x2+ex+C

Q37.

Answer :

∫ex+1ex2 dx=∫e2x+1e2x+2ex×1ex dx=∫e2x+e-2x+2dx=e2x2+e-2x-2+2x+C=e2x2-e-2×2+2x+C

Q38.

Answer :

∫ex+12 dx=∫e2x+2ex+1 dx=∫e2x dx+2∫exdx+∫dx=e2x2+2ex+x+C

Q39.

Answer :

∫1+cos 4xcot x-tan x dx=∫1+cos 4xcos xsin x-sin xcos x dx=∫2 cos2 2x×sin x cos xcos2x-sin2xdx=∫cos2 2x×2 sin x cos xcos 2xdx=∫cos 2x sin 2xdx=12∫2 sin 2x cos 2xdx=12∫sin 4xdx=12-cos 4×4+C=-18cos 4x+C

Q40.

Answer :

∫dxx+3-x+2
Rationalising the denominator
=∫x+3+x+2x+3-x+2 x+3+x+2 dx=∫x+312+x+212x+3-x+2dx=∫x+312+x+212dx=x+312+112+1+x+212+112+1+C=23x+332+23x+232+C=23x+332+x+232+C

Q41.

Answer :

Let I=∫x+2 3x+5 dxPutting 3x+5=t⇒x=t-53

⇒3dx=dt⇒dx=dt3

∴ I=∫t-53+2tdt3 =13∫t-5+63t dt =19∫t+1 t dt =19∫t32+t12 dt =19t32+132+1+t12+112+1+C =1925t52+23t32+C =19253x+552+233x+532+C ∵t=3x+5 =293x+5323x+55+13+C =293x+5329x+15+515+C =293x+5329x+2015+C =21353x+5329x+20+C

Q42.

Answer :

∫2x+13x+2dx=13∫6x+33x+2dx=13∫6x+4-13x+2dx=13∫23x+23x+2-13x+2dx=13∫23x+2-13x+2dx=13∫23x+2 12dx-∫3x+2 -12dx=1323x+212+13 12+1-3x+2-12+1-12+1×3+C=13493x+232-233x+212+C=4273x+232-293x+212+C=3x+24273x+2-29+C=3x+243x+2-627+C=3x+212x+8-627+C=2276x+13x+2+C

Q43.

Answer :

Let I=∫3x+57x+9dxPutting 7x+9=t⇒x=t-97

& 7dx=dt⇒dx=dt7

∴ I=∫3t-97+5tdt =∫37tt-277t+5tdt7 =37×7∫t12dt-277×7∫t-12dt+57∫t-12dt =37×7t12+112+1-277×7t-12+1-12+1+57t-12+1-12+1+C =27×7t32-277×7×2 t12+10t7+C =27×77x+932-547×77x+912+1077x+9+C ∵ t=7x+9 =27×77x+932+10-547 7x+97+C =277x+932+70-547 7x+97+C =27×77x+932+167×77x+9+C =27×77x+9127x+9+8+C =2497x+9127x+17+C

 

Page 19.36 Ex.19.3

Q44.

Answer :

Let I=∫ x2+3x-1x+12dx
Putting x + 1 = t
⇒ x = t – 1
& dx = dt

∴ I=∫t-12+3 t-1-1t2dt =∫ t2-2t+1+3t-3-1t2dt =∫t2+t-3t2dt =∫1+1t-3t-2dt =t+log t-3t-2+1-2+1+C =t+log t+3t+C =x+1+log x+1+3x+1+C ∵t=x+1
Let C + 1 = C′
=x+log x+1+3x+1+C′

Q45.

Answer :

∫xx+4dx=∫x+4-4x+4dx=∫x+4-4x+4dx=∫x+412dx-4∫x+4-12dx=x+412+112+1-4x+4-12+1-12+1+C=23x+432-8 x+412+C=x+41223x+4-8+C=x+4122x+8-243+C=x+4122x-163+C=23x-8x+4+C

Q46.

Answer :

Let I=∫2-3×1+3xdx
Putting 1 + 3x = t
⇒ 3x = t – 1

& 3dx=dt⇒dx=dt3

∴ I=∫2-t-1tdt =∫3-ttdt =∫3t-12-t12dt =3∫t-12dt-∫t12dt =3t-12+1-12+1-t12+112+1+C =6t-23t32+C =2t 3-t3+C =2t9-t3+C ∵t=1+3x =231+3x 9-1+3×3+C =23×31+3x 8-3x+C =298-3x 1+3x+C

Q47.

Answer :

Let I=∫5x+3 2x-1dxPutting 2x-1=t⇒2x=t+1⇒x=t+12

& 2dx=dt⇒dx=dt2

∴I=∫5t+12+3·t·dt2 =∫5 t2+52+3×t dt2 =14∫5t+11 t12 dt =14∫5t32+11t12dt =145t32+132+1+11t12+112+1+C =14×25×5 t52+14×11×23 t32+C =12t52+116t32 +C =t322t+113+C =t3223t+113 +C =2x-132232x-1+113+C ∵t=2x-1 =2x-13226x-3+113+C =2x-12322 3x+43+C =2x-1323x+43+C

Q48.

Answer :

∫2x-1x-12dx=∫2x-2+2-1x-12dx=∫2 x-1x-12+1x-12dx=2∫dxx-1+∫x-1-2 dx=2 ln x-1+x-1-2+1-2+1+C=2 ln x-1-1x-1+C

Q49.

Answer :

∫tan2 2x-3dx=∫sec2 2x-3-1dx=∫sec2 2x-3dx-∫1dx=tan 2x-32-x+C

Q50.

Answer :

Let I= ∫1cos2x 1-tan x2dx=∫sec2x1-tan x2dx=∫sec2x dx1-tan x2

Let 1 – tan x = t
-sec2x dx=dt⇒sec2x dx=-dt

∴ I=∫-dtt2 =-∫t-2 dt =-t-2+1-2+1+C =1t+C =11-tan x+C

 

Page 19.46 Ex.19.4

Q1.

Answer :

∫11-cos 2xdx= ∫12sin2xdx ∵1-cos 2x=2sin2x= 12∫cosec x dx= 12ln cosec x-cotx+C= 12 ln 1sinx-cosxsinx+C= 12 ln 2sin2x2sinx+C ∵1-cos x=2sin2x2= 12 ln 2sin2x22sinx2 cosx2+ C ∵ sin x=2sinx2 cosx2= 12 ln tanx2+C

Q2.

Answer :

∫11+cosxdx= ∫12cos2x2dx= 12∫secx2 dx= 12×2 ln tanx2+secx2+C= 2 ln 1+sinx2cosx2+C= 2 ln sinx4+cosx42cos2x4-sin2x4+C ∵ 1+sinθ=sin2θ2+cos2θ2+2sinθ2cosθ2=sinθ2+cosθ22& cosθ=cos2θ2-sin2θ2= 2 ln sinx4+cosx42cosx4-sinx4cosx4+sinx4+C= 2 ln sinx4+cosx4cosx4-sinx4+C= 2 ln 1+tanx41-tanx4+C= 2 ln tanπ4+x4+C

Q3.

Answer :

∫1+cos2x1-cos2xdx= ∫2cos2x2sin2xdx= ∫cotx dx= ln sinx+C

Q4.

Answer :

∫1-cosx1+cosxdx= ∫2sin2x22cos2x2dx ∵1-cos x=2sin2x2 & 1+cosx=2cos2x2= ∫tanx2 dx= -2 ln cosx2+C

Q5.

Answer :

We know that, tan 5x=tan 2x+3x⇒ tan 5x=tan 2x+tan 3×1-tan 2x tan 3x⇒ tan 5x-tan 2x tan 3x tan 5x=tan 2x+tan 3x⇒tan 2x tan 3x tan 5x = tan 5x -tan 2x-tan 3x ∴∫tan 2x tan 3x tan 5x=∫tan 5x-tan 2x-tan 3xdx = 15 ln sec 5x-12 ln sec 2x-13 ln sec 3x+C

Q6.

Answer :

Let I=∫1+tan x tan x+θdx = ∫1+tanxtan x+tan θ1-tan x tan θdx = ∫1+tan2 x1-tan x tan θdx = ∫sec2x dx1-tan x tan θPutting tanx=t⇒ sec2x=dtdx ⇒dx=dtsec2x∴ I= ∫11-t tanθdt = -1tan θ ln 1-t tan θ+C ∵ ∫1ax+bdx=1aln ax+b+C = -cot θ ln 1-tanx tan θ+C = cot θ ln 11-tan x tan θ+C = cot θ ln cosx cosθcos x cos θ-sin x sin θ+C = cot θ ln cos xcos x+θ+C’ Let C’=C+cot θ ln cosθ

Q7.

Answer :

Let I=∫sinx-asinx-bdxPutting x-b=t ⇒ x=b+t& dx=dt∴ I= ∫sinb+t-asintdt =∫sinb-a+tsintdt = ∫sinb-acos tsint+∫cosb-a sin tsin tdt = ∫sinb-acot t dt+∫cosb-adt = sinb-a ln sin t+t cosb-a+C = sinb-a ln sinx-b+x-bcosb-a+C ∵t=x-b

Q8.

Answer :

Let I=∫sinx-αsinx+αdxPutting x+α=t ⇒x=t-α& dx=dt∴I=∫sin t-2αsin tdt = ∫sin t cos 2αsin t-cos t sin 2αsin tdt = cos 2α∫dt-sin 2α∫cot t dt = tcos 2α-sin 2α ln sin t+C = x+αcos 2α-sin 2α ln sin x+α+C ∵ t=x+α = xcos 2α-sin 2α ln sin x+α+C

Q9.

Answer :

Let I=∫sin 2xsinx-π6 sinx+π6dx = ∫sin 2xsin2x-sin2π6 dx ∵sin A+B sinA-B=sin2A-sin2B = ∫sin 2xsin2x-14dxPutting sin2x-14=t⇒ 2sin x cos x dx=dt⇒ sin 2x dx=dt∴ I= ∫1tdt = ln t +C = ln sin2x-14+C ∵t=sin2x-14

Q10.

Answer :

Let I=∫cosxcosx-adxPutting x-a=t ⇒ x=a+t ⇒ dx=dt∴ I= ∫cosa+tdtcost = ∫cos a cos tcos t-sin a sin tcos tdt = ∫cos a-sin a tan tdt = tcos a-sin a ln sec t+C = x-acos a-sin a ln secx-a+C ∵t=x-a

Q11.

Answer :

∫1-sin 2×1+sin 2xdx=∫cos2x+sin2x-2 sin x cos xcos2x+sin2x+2 sin x cos x dx= cos x-sin x2cos x+sin x2dx= ∫cos x-sin xcos x+sin xdx= ∫1-tan x1+tan xdx= ∫tan π4-xdx=1-1ln sec π4-x ∵∫tan ax+bdx=1aln sec ax+b+C= -ln cos π4-x-1+C= ln cos π4-x+C

Q12.

Answer :

Let I=∫e3xe3x+1dxPutting e3x+1=t ⇒3e3x=dtdx⇒dx=dt3e3x∴ I= ∫e3x3te3xdt = 13∫1tdt = ln t3+C = ln e3x+13+C

Q13.

Answer :

Let I=∫secx tanx3 sec x+5dxPutting sec x=t ⇒dtdx=sec x tan x⇒dt=sec x tan x dx∴I= ∫dt3t+5 = 13 ln 3t+5+C = 13 ln 3 sec x+5+C ∵t=sec x

Q14.

Answer :

Let I=∫1-cotx1+cotxdx = ∫1-cosxsinx1+cosxsinxdx = ∫sinx-cosxsinx+cosxdxPutting sinx+cosx=t⇒ cosx-sinxdx=dt⇒ sinx-cosxdx=-dt∴ I= ∫-dtt = -ln t +C = -ln sinx+cosx+C

Q15.

Answer :

Note: Here , we are considering log x as loge x.Let I=∫secx cosecxlog tanxdxPutting log tan x=t⇒ sec2xtanx=dtdx⇒secx cosecx dx=dt∴ I= ∫1tdt =log t+C = log log tanx+C

Q16.

Answer :

Here, we are considering log x as logex .Let I=∫1×3+logxdxPutting log x=t⇒ 1x=dtdx⇒dxx=dt∴ I= ∫dt3+t = log 3+t+C = log 3+log x+C ∵t= log x

Q17.

Answer :

Let I=∫ex+1ex+xdxPutting ex+x=t⇒ex+1=dtdx⇒ex+1dx=dt∴ I=∫1tdt = ln t +C = ln ex+x+C ∵ t=ex+x

Q18.

Answer :

Here, we are considering log x as loge x .Let I=∫1x log xdxPutting logx=t⇒1x=dtdx⇒1xdx=dt∴ I= ∫1tdt = log logx+C

Q19.

Answer :

Let I=∫sin 2xacos2x+bsin2xdx = ∫sin 2xa1-sin2x+bsin2x dx = ∫sin 2xb-asin2x+a dxPutting sin2x=t ⇒2sin x.cos x= dtdx⇒ sin 2x=dtdx⇒sin 2x dx=dt∴I= ∫1b-at+adt = 1b-a ln b-at+a+C ∵∫1ax+bdx=1alnax+b+C = 1b-a ln b-asin2x+a+C ∵t= sin2x = 1b-a ln bsin2x+a1-sin2x+C = 1b-a ln bsin2x+acos2x+C

Q20.

Answer :

Let I=∫ cos x2+3sin xdxPutting sinx=t ⇒cosx=dtdx⇒cosx dx=dt∴ I= ∫dt2+3t = 13ln 2+3t+C ∵∫1ax+bdx=1aln ax+b+C = 13 ln 2+3 sinx+C ∵ t=sin x

Q21.

Answer :

Let I=∫1-sinxx+cosxdxPutting x+cosx=t⇒1-sinx=dtdx⇒1-sinxdx=dt∴ I= ∫1tdt =ln t+C = ln x+cosx+C ∵ t= x+ cos x

Q22.

Answer :

Let I=∫ab+cexdxDividing numerator and denominator by ex⇒ I=∫ae-xbe-x+cdxPutting e-x=t⇒-e-x=dtdx⇒e-xdx=-dt∴ I=∫-a bt+cdt = -ab ln bt+c+C ∵ ∫1ax+bdx=1aln ax+b+C = -ab ln be-x+c+C ∵ t=e-x+C

Q23.

Answer :

Let I=∫1ex+1dx =∫e-x1+e-xdxPutting e-x=t⇒-e-x=dtdx⇒e-xdx=-dt∴ I= ∫-11+tdt = -ln 1+t+C = – ln 1+e-x+C

Q24.

Answer :

Note:Here we are considering log x as loge xLet I=∫cot xlog sin xdxPutting log sin x=t⇒ cot x=dtdx⇒cot x dx=dt∴I= ∫1tdt =log t+C = log log sinx+C ∵t=log sin x

 

Page 19.47 Ex.19.4

Q25.

Answer :

Let I=∫e2xe2x-2dxPutting e2x=t⇒2e2x=dtdx⇒e2xdx=dt2∴ I= 12∫1t-2dt = 12 ln t-2+C = 12 ln e2x-2+C ∵ t= e2x

Q26.

Answer :

∫2cosx-3sinx6cosx+4sinxdx⇒∫2cosx-3sinx23cosx+2sinxdtLet, 3cosx+2sinx=t ⇒2cosx-3sinx=dtdx ⇒2cosx-3sinxdx=dtNow, ∫2cosx-3sinx23cosx+2sinxdt= ∫dt2t=12logt+C= 12 log 3cosx+2sinx+C

Q27.

Answer :

Let I=∫cos2x+x+1×2+sin2x+2xdxPutting x2+sin2x+2x=t⇒ 2x+2cos 2x+2=dtdx⇒x+cos 2x+1dx=dt2∴ I= 12∫1tdt =12lnt+C = 12 ln x2+sin2x+2x+C ∵t=x2+sin 2x+2x

Q28.

Answer :

∫1cosx+acosx+bdx= 1sina-b∫sina-bcosx+acosx+bdx= 1sina-b∫sinx+a-x+bcosx+a cosx+bdx= 1sina-b∫sinx+acosx+bcosx+acosx+b-cosx+asinx+bcosx+acosx+bdx= 1sina-b∫tanx+a-tan x+bdx= 1sina-b∫tanx+adx-∫tan x+bdx= 1sina-b-ln cosx+a+ln cosx+b+C= 1sina-b ln cosx+bcosx+a+C

Q29.

Answer :

Let I=∫-sinx+2cosx2sinx+cosxdxPutting 2sinx+cosx=t⇒2cosx-sinx=dtdx⇒-sinx+2cosxdx=dt∴ I=∫1tdt =lnt+C = ln 2sinx+cosx+C ∵t=2sin x+cos x

Q30.

Answer :

∫cos4x-cos2xsin4x-sin2xdx= ∫-2sin4x+2x2sin4x-2x22cos4x+2x2sin4x-2x2dx ∵cos A-cos B=-2sin A+B2sin A-B2 & sin A-sin B=2cos A+B2sin A-B2= -∫sin 3xcos 3xdx= -∫tan 3x dx= -ln sec 3×3+C= 13 ln sec 3x-1+C= 13 ln cos 3x+C

Q31.

Answer :

Note: Here, we are considering log x as logexLet I=∫secxlog secx+tanxdxPutting log secx+tanx=t⇒ secx tanx+sec2xsecx+tanx=dtdx⇒ secxsecx+tanxsecx+tanx=dtdx⇒secx dx=dt∴ I= ∫dtt =logt+C =log log secx+tanx+C

Q32.

Answer :

Note : Here, we are considering log x as logexLet I=∫cosec xlog tanx2dxPutting log tan x2=t⇒12sec2x2tanx2=dtdx⇒12 sinx2.cosx2=dtdx⇒1sinx=dtdx⇒cosec x dx=dt∴ I= ∫dtt =logt+C = log log tanx2+C

Q33.

Answer :

Note: Here, we are considering log x as loge x .Let I=∫1x logx loglogxdxPutting loglogx=t⇒1xlogx=dtdx⇒1xlogxdx=dt∴I=∫dtt =logt+C = logloglogx+C ∵t=loglogx

Q34.

Answer :

Let I=∫cosec2x1+cot xdxPutting cotx=t⇒-cosec2x=dtdx⇒cosec2x dx=-dt∴ I= ∫-dt1+t =- ln 1+t+C =- ln 1+cot x+C ∵ t=cot x

Q35.

Answer :

Let I=∫10×9+10x loge1010x+x10dxPutting 10x+x10=t⇒10x loge10+10×9=dtdx⇒10x loge10+10x9dx=dt∴ I= ∫1tdt =ln t+C = ln 10x+x10+C ∵t=10x+x10

Q36.

Answer :

Let I=∫ex-1+xe-1ex+xedxPutting ex+xe=t⇒ ex+exe-1=dtdx⇒ eex-1+xe-1=dtdx⇒ex-1+xe-1dx=dte∴ I= 1e∫1tdt =1e ln t+C = 1e ln ex+xe+C ∵ t=ex+xe

Q37.

Answer :

Note: Here, we are considering log x as loge xLet I=∫1+tanxx+log secxdxPutting x+log secx=t⇒1+secx tanxsecx=dtdx⇒1+tanxdx=dt∴ I= ∫1tdt = log t+C = log x+log secx+C ∵t=x+log sec x

Q38.

Answer :

Let I=∫sin 2xa2+b2sin2xdxPutting sin2x=t⇒2sinx.cosx=dtdx⇒sin 2x=dtdx⇒sin 2x dx=dt∴ I= ∫1a2+b2tdt = 1b2 ln a2+b2t+C = 1b2 ln a2+b2 sin2x+C ∵ t= sin2x

Q39.

Answer :

Note: Here, we are considering log x as loge xLet I=∫x+1xx+logxdxPutting x+logx=t⇒1+1x=dtdx⇒x+1xdx=dt∴ I= ∫1tdt = log t+C = log x+logx+C

Q40.

Answer :

Let I=∫11-x22+3 sin-1xdxPutting sin-1x=t⇒11-x2=dtdx⇒11-x2dx=dt∴ I= ∫12+3tdt = 13 ln 2+3t+C = 13 ln 2+3sin-1x+C ∵ t=sin-1x

Q41.

Answer :

Let I=∫sec2xtanx+2dxPutting tan x=t⇒sec2x=dtdx⇒sec2x dx=dt∴ I= ∫1t+2dt = ln t+2+C = ln tanx+2+C ∵ t= tan x

Q42.

Answer :

Let I=∫2 cos 2x+sec2xsin 2x+tan x-5dxPutting sin 2x+tan x-5=t⇒2cos 2x+sec2x=dtdx⇒2cos 2x+sec2xdx=dt∴ I= ∫1tdt = ln t+C = ln sin 2x+tan x-5+C ∵ t=sin 2x+tan x-

Q43.

Answer :

∫sin 2xsin 5x sin 3xdx= ∫sin 5x-3xsin 5x sin 3xdx=∫sin 5x cos 3x-cos 5x sin 3xsin 5x sin 3xdx=∫ sin 5x cos 3xsin 5x sin 3x-cos 5x sin 3xsin 5x sin 3xdx= ∫cot 3x-cot 5x dx=∫cot 3x dx-∫cot 5x dx= 13 ln sin 3x-15 ln sin 5x+C

Q44.

Answer :

Note: Here, we are considering log x as loge xLet I=∫1+cot xx+log sin xdxPutting x+log sinx=t⇒1+cotx=dtdx⇒1+cot xdx=dt∴ I=∫1tdt = log t+C = log x+log sinx+C ∵t= x+log sin x

Q45.

Answer :

Let I=∫1-sin2xx+cos2xdxPutting x+cos2x=t⇒ 1-2cosx.sinx=dtdx⇒1-sin 2xdx=dt∴ I=∫1tdt = ln t+C = ln x+cos2x+C ∵t= x+cos2x

Q46.

Answer :

Let I=∫1+tanx1-tanxdx = ∫1+sinxcosx1-sinxcosxdx = ∫cosx+sinxcosx-sinxdxPutting cosx-sinx=t⇒ -sinx-cosxdx=dt⇒ sinx+cosxdx=-dt∴ I= -∫1tdt = – ln t +C = – ln cosx-sinx+C ∵ t=cos x-sin x

Q47.

Answer :

Let I=∫cos 2xcosx+sinx2dx = ∫cos2x-sin2xcosx+sinx2dx = ∫cos x-sin xcos x+sin xdxPutting cos x+sin x=t ⇒-sinx+cosx=dtdx⇒cosx-sinxdx=dt∴ I=∫1tdt = ln t+C = ln cos x+sin x+C ∵ t=cos x+sin x

Q48.

Answer :

We have,I=∫cos x-sin x1+sin 2x dx=∫cos x-sin xsin2x+cos2x+2sin x cos x dx=∫cos x-sin xsin x+cos x2 dxPutting sin x+cos x=t⇒cos x-sin xdx=dt∴I=∫1t2 dt=-1t+C=-1sin x+cos x+C

Q49.

Answer :

Let I=∫1xx+1dxPutting x+1=t⇒12x=dtdx⇒1xdx=2dt∴ I=2∫1tdt = 2 ln t+C = 2 ln x+1+C ∵ t=x+1

Q50.

Answer :

∫sec xsec 2xdx= ∫cos 2xcos xdx= ∫2cos2x-1cos xdx= ∫2cosx-sec x dx= 2 sin x-ln sec x+tan x+C

Q51.

Answer :

∫1cos 3x-cos xdx= ∫14cos3x-4cosxdx ∵cos 3x=4 cos 3x-3 cos x= ∫14cos xcos2x-1dx= -14∫1cos x sin2xdx= -14∫sin2x+cos2xcos x sin2x dx= -14∫sec x dx+∫cot x cosec x dx= -14ln secx+tanx-cosec x+C= 14cosec x-lnsec x+tan x+C

Q52.

Answer :

∫1sin x cos2xdx=∫sin2x+cos2xsin x cos2xdx=∫tan x sec x+cosec x dx= sec x+ln cosec x-cot x+C= sec x+ln tanx2+C ∵cosecx-cotx=1-cosxsin x=tanx2

Q53.

Answer :

∫1cosx+acosx+bdx=1sina-b∫sinx+acosx+b-cosx+asinx+bcosx+a cos x+bdx=1sina-b∫tanx+adx-∫tanx+bdx=1sina-bln secx+a-lnsecx+b =1sina-blncos x+bcos x+a+C

 

Page 19.56 Ex.19.5

Q1.

Answer :

∫log xxdxLet, log x=t⇒1x=dtdxNow, ∫log xxdx=∫t·dt=t22+C=log x22+C

Q2.

Answer :

∫log 1+1xx1+xdxLet, log 1+1x=t⇒11+1x×-1×2=dtdx⇒xx+1×-1×2=dtdx⇒-dxxx+1=dt⇒dxxx+1=-dtNow, ∫log 1+1xx1+xdx=∫t ·-dt=-t22+C=-12log1+1×2+C

Q3.

Answer :

∫1+x2xdxLet, 1+x=t⇒12x=dtdx⇒dxx=2dtNow, ∫1+x2xdx =2∫t2dt=23t3+C=231+x3+C

Q4.

Answer :

∫1+ex·exdxLet 1+ex=t⇒ex=dtdx⇒exdx=dtNow, ∫1+ex·exdx=∫t·dt=t12+112+1+C=23t32+C=231+ex32+C

Q5.

Answer :

∫cos2 x13 sin x dxLet, cos x=t⇒-sin x=dtdx⇒sinx dx=-dtNow, ∫cos2 x13 sin x dx=-∫t23dt=-t23+123+1+C=-35 t53+C=-35cos53x+C

Q6.

Answer :

∫ex dx1+ex2Let 1+ex=t⇒ex =dtdx⇒ex dx=dtNow, ∫ex dx1+ex2=∫dtt2=∫t-2 dt=t-2+1-2+1+C=-1t+C=-11+ex+C

Q7.

Answer :

∫cot3x cosec2x dxLet, cot x=t⇒-cosec2x =dtdx⇒cosec2x dx=-dtNow, ∫cot3x cosec2x dx=∫t3-dt=-t44+C=-cot4x4+C

Q8.

Answer :

∫esin-1 x21-x2 dxLet esin-1 x=t Differentiating both sides w.r.t. x,esin-1 x ×11-x2 dx=dtNow, ∫esin-1 x21-x2 dx=∫esin-1 x·esin-1 x1-x2dx =∫t ·dt=t22+C=esin-1 x22+C

Q9.

Answer :

∫1+sin xx-cos xdxLet, x-cos x=t⇒1+sin x=dtdx⇒1+sin x dx=dtNow, ∫1+sin xx-cos xdx=∫dtt=∫t-12dt=t-12+1-12+1+C=2t+C=2x-cos x+C

Q10.

Answer :

∫dx1-x2sin-1 x2Let, sin-1 x=t⇒11-x2=dtdx⇒11-x2 dx=dtNow,∫dx1-x2sin-1 x2=∫dtt2=∫t-2dt=t-2+1-2+1+C=-1t+C=-1sin-1 x+C

Q11.

Answer :

∫cot xsin xdx=∫cos xsin x sin x dx=∫cos xsin x32dxLet sin x=t⇒cos x=dtdx⇒cos x dx=dtNow, ∫cos xsin x32dx=∫dtt32=∫t-32dt=t-32+1-32+1+C=-2t+C=-2sin x+C

Q12.

Answer :

∫tan xcos xdx⇒∫sin xcos x cos x dx⇒∫sin xcos 32xdxLet cos x=t⇒-sin x dx=dt⇒sin x =-dtdxNow, ∫sin xcos 32xdx=∫-1t32dt=-∫t-32dt=-t-32+1-32+1+C=2t+C=2cos x+C

Q13.

Answer :

∫cos3 xsin xdx=∫cos2x·cos xsin x dx=∫1-sin2x cos xsin xdxLet sin x=t⇒cos x=dtdx⇒cos x dx=dtNow, ∫1-sin2x cos xsin xdx=∫1-t2t·dt=∫1t-t32dt=∫t-12-t32dt=t-12+1-12+1-t32+132+1+C=2t-25t52+C=2sinx-25sin52 x+C

Q14.

Answer :

∫sin3 xcos xdx=∫sin2x·sin xcos x dx=∫1-cos2x sin xcos xdxLet cos x=t⇒-sin x=dtdx⇒sin x dx=-dtNow,∫1-cos2xsin xcos xdx=-∫1-t2tdt=∫t2-1tdt=∫t32-t-12dt=t32+132+1-t-12+1-12+1+C=25t52-2t+C=25 cos52x -2 cos x+C

Q15.

Answer :

∫dxtan-1x 1+x2Let tan-1x=t⇒11+x2=dtdx⇒11+x2dx=dt

Now, ∫dxtan-1x 1+x2=∫ dtt=∫t-12dt=t-12+1-12+1+C=2 t+C=2 tan-1 x+C

Q16.

Answer :

∫tan xsin x cos xdx=∫tan xsin xcos x×cos2xdx=∫tan xtan x×sec2 x dx=∫1tan x×sec2 x dx=∫tan x-12sec2 x dxLet tan x=t⇒sec2x=dtdx⇒sec2x dx=dtNow, ∫tan x-12sec2 x dx=∫ t-12dt=t-12+1-12+1+C=2 t+C=2 tan x+C

 

Page 19.57 Ex.19.5

Q17.

Answer :

∫1x log x2 dxLet log x=t⇒1x dx=dtNow, ∫1x log x2 dx=∫t2dt=t33+C=log x33+C

Q18.

Answer :

∫sin5 x cos x dxLet sin x=t⇒cos x=dtdx⇒cos x dx=dtNow, ∫sin5 x cos x dx=∫t5dt=t66+C=16 sin6 x+C

Q19.

Answer :

∫tan32x·sec2x dxLet tan x=t⇒sec2x=dtdx⇒sec2x dx=dtNow, ∫tan32x·sec2x dx =∫ t32 dt=t32+132+1+C=25 t52+C=25 tan52 x+C

Q20.

Answer :

∫x3x2+13 dx=∫x2.xx2+13dxLet x2+1=t⇒x2=t-1⇒2x dx=dt⇒x dx=dt2Now, ∫x2.xx2+13dx=12∫t-1t3dt=12∫1t2-1t3 dt=12∫t-2-t-3dt=12t-2+1-2+1-t-3+1-3+1+C=12-1t+12t2+C=12-1×2+1+12×2+12+C=12-2 x2+1+12 x2+12=14-2×2-2+1×2+12=-141+2x2x2+12+C

Q21.

Answer :

∫4x+2 x2+x+1 dx=2∫2x+1 x2+x+1 dxLet x2+x+1=t⇒2x+1=dtdx⇒2x+1 dx=dtNow, 2∫2x+1 x2+x+1 dx=2∫t dt=2∫t12dt=2 t12+112+1+C=2×23t32+C=43 t32+C=43×2+x+132+C

Q22.

Answer :

∫4x+32×2+3x+1dxLet 2×2+3x+1=t⇒4x+3=dtdx⇒4x+3 dx=dtNow, ∫4x+32×2+3x+1dx=∫dtt=∫t-12dt=t-12+1-12+1+C=2 t+C=2 2×2+3x+1+C

Q23.

Answer :

∫ dx1+x=∫x dxx 1+xLet 1+x=t⇒x=t-1⇒12x=dtdx⇒dxx =2dt

Now, ∫xx1+xdx=2∫t-1tdt=2∫1-1tdt=2 t-log t+C=2 1+x-2 log 1+x+CLet C + 2 =C’=2x-2 log 1+x+C’

Q24.

Answer :

We have,I=∫x+x+1x+2 dxLet, x+1=t2Differentiating both sides we getdx=2tdtNow, integration becomesI=∫t2-1+tt2+12t dt=2∫t3+t2-tt2+1 dt=2∫t3+t-t+t2+1-1-tt2+1 dt=2∫t3+t+t2+1-t-t-1t2+1 dt=2∫t3+tt2+1 dt++2∫t2+1t2+1 dt+2∫-2t-1t2+1 dt=2∫tdt+2∫dt-2∫2tt2+1 dt-2∫1t2+1 dt=t2+2t-2log t2+1-2tan-1t+C=x+1+2x+1-2log x+2-2tan-1x+1+C

Q25.

Answer :

∫1+cos xx+sin x3dxLet x+sin x=t⇒1+cos x=dtdx⇒1+cos x dx=dtNow, ∫1+cos xx+sin x3dx=∫dtt3=∫t-3dt=t-3+1-3+1+C=-12 t2+C=-12 x+sin x2+C

Q26.

Answer :

∫cos x-sin x1+sin 2xdx⇒∫cos x-sin xcos2 x+sin2 x+2 sin x.cos x dx⇒∫cos x-sin xcos x+sin x2dxLet cos x+sin x=t⇒-sin x+cos x=dtdx⇒-sin x+cos x dx=dtNow, ∫cos x-sin xcos x+sin x2dx=∫dtt2=∫t-2dt=t-2+1-2+1+C=-1t+C=-1sin x +cos x+C

Q27.

Answer :

∫sin 2xa+b cos 2x2dxLet a+b cos2x=t⇒-b sin 2x dx × 2=dt⇒sin 2x dx=-dt2bNow, ∫sin 2xa+b cos 2x2dx=-12b∫dtt2=-12b∫t-2dt=-12bt-2+1-2+1+C=12b×1t+C=12b a+b cos 2x+C

Q28.

Answer :

∫log x2 dxx=∫2 log xx dx=2∫log xxdxLet log x=t⇒1x=dtdx⇒1x dx=dtNow, 2∫log xxdx=2∫t dt=2t22+C=t2+C=log x2+C

Q29.

 Answer :

∫sin x1+cos x2dxLet 1+cos x=t⇒-sin x=dtdx⇒sin x dx=-dtNow, ∫sin x1+cos x2dx=∫-dtt2=-∫t-2 dt=-t-2+1-2+1+C=1t+C=11+cos x+C

Q30.

Answer :

∫cot x·log sin x dxLet log sin x=t⇒1sin x×cos x=dtdx⇒cot x dx=dtNow, ∫cot x·log sin x dx=∫t·dt=t22+C=log sin x22+C

Q31.

Answer :

∫sec x·log sec x+tan x dxLet log sec x+tan x=t⇒sec x tan x+ sec2xsec x+tan x=dtdx⇒sec x sec x+tan xsec x+tan x dx=dtNow, ∫sec x·log sec x+tan x dx=∫t·dt=t22+C=log sec x+ tan x22+C

Q32.

Answer :

∫cosec x·log cosec x-cot x dxLet log cosec x-cot x=t⇒-cosec x cot x+ cosec2xcosec x-cot x=dtdx⇒cosec x-cot xcosec x-cot x×cosec x dx=dt⇒cosec x dx=dtNow, ∫cosec x·log cosec x-cot x dx=∫t·dt=t22+C=log cosec x- cot x22+C

Q33.

Answer :

∫x3·cos x4 dxLet x4=t⇒4×3 dx=dt⇒x3 dx=dt4Now, ∫x3·cos x4 dx=14∫cos t dt=14sin t+C=14sinx4+C

Q34.

Answer :

∫x3·sin x4 dxLet x4=t⇒4×3=dtdx⇒x3 dx=dt4Now, ∫x3·sin x4 dx=14∫sin t dt=14-cos t+C=14-cos x4+C

Q35.

Answer :

∫555x·55x·5x dxLet 5x=t⇒5x log 5=dtdx⇒5x dx=dtlog 5Now, ∫555x·55x·5x dx=∫55t·5t· dtlog 5Again let 5t=p⇒5t log 5=dpdt⇒5t dt=dplog 5Again ∫55t·5t· dtlog 5=∫5p·dplog 52=5plog 53+C=555xlog 53+C

Q36.

Answer :

∫x3·sin x4+1 dxLet x4+1=t⇒4×3=dtdx⇒x3 dx=dt4Now, ∫x3·sin x4+1 dx=14∫sin t dt=14-cos t+C=14-cos x4+1+C

Q37.

Answer :

∫x+1 excos2 x·ex dxLet x ex=t⇒1·ex+x ex=dtdx⇒x+1 ex dx=dtNow, ∫x+1 excos2 x·ex dx=∫dtcos2t=∫sec2 t dt=tan t+C=tan x ex+C

Q38.

Answer :

∫x2·ex3·cos ex3 dxLet ex3=t⇒ex3·3×2 dx=dt⇒ex3·x2 dx=dt3Now, ∫x2·ex3·cos ex3 dx=13∫cost dt=13sin t +C=13sin ex3+C

Q39.

Answer :

∫2x sec3 x2+3·tan x2+3 dx=∫sec2 x2+3·sec x2+3·tan x2+3·2x dxLet sec x2+3=t⇒sec x2+3·tan x2+3·2x=dtdx⇒sec x2+3·tan x2+3·2x dx=dtNow, ∫sec2 x2+3·sec x2+3·tan x2+3·2x dx=∫t2 dt=t33+C=sec3 x2+33+C

Q40.

Answer :

∫x+1x·x+log x2 dxLet x+log x=t⇒1+1x=dtdx⇒x+1x dx=dtNow, ∫x+1x·x+log x2 dx=∫t2 dt=t33+C=x+log x33+C

Q41.

Answer :

∫tan x·sec2 x 1-tan2x dxLet tan x=t⇒sec2 x dx=dtNow, ∫tan x·sec2 x 1-tan2x dx=∫t·1-t2dtAgain let t2=p⇒2t dt=dp⇒t dt=dp2Again, ∫t·1-t2dt=12∫1-p dp=12∫1-p12dp=121-p12+112+1 -1+C=12×-231-p32+C=-131-p32+C=-131-tan2x32+C

Q42.

Answer :

∫log x sin 1+log x2x dxLet 1+log x2=t⇒2 log x ×1x dx=dt⇒log xxdx=dt2Now, ∫log x sin 1+log x2x dx=12∫sin t dt=12-cos t+C=-12cos 1+log x2+C

Q43.

Answer :

∫1×2·cos2 1x dxLet 1x=t⇒-1×2=dtdx⇒1x2dx=-dtNow, ∫1×2·cos2 1x dx=-∫cos2 t dt=-∫1+cos 2t2dt=-12∫1+cos 2tdt=-12t+sin 2t2+C=-121x+sin 2×2+C=-121x-14sin 2x+C

Q44.

Answer :

∫dxxx4-1=∫x dxx2x22-1Let x2=t⇒2x=dtdx⇒x dx=dt2Now, ∫x dxx2x22-1=12∫dttt2-1=12 sec-1 t+C=12sec-1 x2+C

Q45.

Answer :

∫ex·cos exxdxLet ex=t⇒ex×12x=dtdx⇒exxdx=2dtNow, ∫ex·cos exxdx=2∫cos t dt =2 sin t +C=2 sin ex+C

Q46.

Answer :

∫ex-1dxLet ex-1=t2⇒ex=t2+1ex=2t dtdxdx=2t dtexdx=2t dtt2+1Now, ∫ex-1dx=∫t·2t dtt2+1=2∫t2 dtt2+1=2∫t2+1-1t2+1dt =2∫dt-2∫dtt2+1=2t -2 tan-1 t+C=2ex-1-2 tan-1 ex-1+C

Q47.

Answer :

∫sin xxdxLet x=t⇒12x=dtdx⇒dxx=2dtNow, ∫sin xxdx=2∫sin t dt=2 -cos t+C=-2 cos x+C

Q48.

Answer :

∫x+1 exsin2 x exdxLet x ex=t⇒1·ex+x ex=dtdx⇒x+1 ex dx=dtNow, ∫x+1 exsin2 x exdx=∫dtsin2 t=∫cosec2 t dt =-cot t+C=-cot x ex+C

Q49.

Answer :

∫5x+tan-1x·x2+2×2+1dxLet x+tan-1 x=t1+11+x2=dtdx⇒x2+1+1×2+1dx=dt⇒x2+2×2+1dx=dtNow, ∫5x+tan-1x·x2+2×2+1dx=∫5t dt=5tlog 5+C=5x+ tan1xlog 5+C

Q50.

Answer :

∫em sin-1×1-x2dxLet sin-1 x=t⇒11-x2dx=dtNow, ∫em sin-1×1-x2dx=∫em t·dt=emtm+C=em sin-1xm+C

Q51.

Answer :

∫cos xxdxLet x=t⇒12x=dtdx⇒dxx=2 dt Now, ∫cos xxdx=2∫cos t dt=2 sin t+C=2 sin x+C

Q52.

Answer :

∫sin tan-1 x1+x2dxLet tan-1 x=t⇒11+x2dx=dt Now, ∫sin tan-1 x1+x2dx=∫sin t dt=- cos t+C=- cos tan-1 x+C

Q53.

Answer :

∫sin log xxdxLet log x=t⇒1xdx=dtNow, ∫sin log xxdx=∫sin t dt=- cos t+C=- cos log x+C

Q54.

Answer :

∫em tan-1 x1+x2dxLet tan-1 x=t⇒11+x2dx=dt Now, ∫em tan-1 x1+x2dx=∫emt dt=emtm+C=em tan-1xm+C

Page 19.58 Ex.19.5

Q55.

Answer :

∫x dxx2+a2+x2-a2Let x2=t⇒2x=dtdx⇒x dx=dt2Now, ∫x dxx2+a2+x2-a2=12∫dtt+a2+t-a2=12∫dtt+a2+t-a2×t+a2-t-a2t+a2-t-a2=12∫t+a2-t-a2t+a2-t-a2dt=14a2∫t+a212dt-14a2∫t-a212dt=14a2t+a212+112+1-14a2t-a212+112+1+C=16a2t+a232-t-a232+C=16a2x2+a232-x2-a232+C

Q56.

Answer :

∫x tan-1 x21+x4 dxLet tan-1 x2=t⇒11+x22×2x=dtdx⇒x dx1+x4=dt2Now, ∫x tan-1 x21+x4 dx=12∫t. dt=12×t22+C=tan-1 x224+C

Q57.

Answer :

∫sin-1 x31-x2 dxLet sin-1 x=t⇒11-x2dx=dtNow, ∫sin-1 x31-x2 dx =∫ t3 dt=t44+C=sin-1 x44+C

Q58.

Answer :

∫ sin 2+3 log xxdxLet 2+3 log x=t⇒3x=dtdx⇒dxx=dt3Now, ∫ sin 2+3 log xxdx=13∫ sin t dt=13 -cos t+C=-13cos 2+3 log x+C

Q59.

Answer :

∫ x.ex2 dxLet x2=t⇒2x dx=dt⇒x dx=dt2Now, ∫ x.ex2 dx=12∫et dt=12et+C=12ex2+C

Q60.

Answer :

Let I=∫dxx+1 x2+2x+2=∫dxx+1 x2+2x+1+1=∫dxx+1 x+12+1Putting x+1=t⇒dx=dtNow, integral becomesI=∫dtt t2+1=∫t·dtt2 t2+1Again putting t2=p⇒2t dt=dp⇒t dt=dp2Now, integral becomesI=12 ∫dpp p+1=12∫dpp2+p=12∫dpp2+p+14-14=12∫dpp+122-122=12 12×12 log p+12-12p+12+12 +C=12 log pp+1+C=12 log t2t2+1+C=12 log x+12x+12+1+C= log x+12x+12+1+C= log x+1×2+2x+2+C

Q61.

Answer :

∫x5 dx1+x3=∫x3.x2 dx1+x3Let 1+x3=t ⇒x3=t-1⇒3×2=dtdx⇒x2 dx=dt3Now, ∫x3.x2 dx1+x3=13∫t-1t dt=13∫t-1tdt=13 ∫t12-t-12dt=13t12+112+1-t-12+1-12+1+C=1323t32-2t+C=29 1+x332-231+x312+C

Q62.

Answer :

∫ 4×3 5-x2 dx=4∫x2×x 5-x2 dxLet 5-x2=t ⇒x2=5-t⇒2x=-dtdx⇒x dx=-dt2Now, 4∫x2×x 5-x2 dx=4-2 ∫5-t.t dt=-2∫5t12+2 ∫t32 dt=-10 t12+112+1+2 t32+132+1+C=-203t32+45t52+C=-2035-x232+455-x252+C

Q63.

Answer :

∫ ecos2. sin 2x dxLet cos2 x=t⇒2 cos x.-sin x=dtdx⇒sin 2x dx=-dtNow, ∫ ecos2. sin 2x dx =-∫et dt=-et+C=-ecos2 x +C

Q64.

Answer :

∫ x sin-1 x21-x4dxLet sin-1 x2=t⇒1×2×1-x4=dtdx⇒x dx1-x4=dt2Now, ∫ x sin-1 x21-x4dx=12∫tdt=t24+C=sin-1 x224+C

Q65.

Answer :

∫dxx+x=∫dxx 1+xLet 1+x=t⇒12x=dtdx⇒dxx=2dtNow, ∫dxx 1+x=∫2dtt=2∫dtt=2 log t+C=2 log 1+x+C

Q66.

Answer :

∫ sec4 x.tan x dx=∫ sec2 x.sec2 x tan x dx=∫ 1+tan2 x sec2 x. tan x dx=∫ tan x+tan3 x sec2 x dxLet tan x=t⇒sec2 x dx=dtNow, ∫ tan x+tan3 x sec2 x dx=∫t+t3 dt=t22+t44+C=tan2 x2+tan4 x4+C

Q67.

Answer :

∫dxx2x4+134=∫dxx2 x41+1×434=∫ dxx2.x3 1+1×434=∫1+1×4-34x5dxLet 1+1×4=t⇒-4x5dx=dt⇒dxx5=-dt4Now, ∫1+1×4-34x5dx=-14 ∫t-34 dt=-14 t-34+1-34+1+C=-t14+C=-1+1×414+C

Q68.

Answer :

∫cos5 xsin xdx=∫ cos4 x .cos xsin xdx=∫cos2 x2.cos xsin xdx=∫1-sin2 x2×cos xsin xdx=∫ 1-sin4 x-2 sin2 xsin xcos x dxLet sin x=t⇒cos x dx=dtNow, ∫ 1-sin4 x-2 sin2 xsin xcos x dx=∫ 1+t4-2t2tdt=∫1t+t3-2tdt=log t +t44-2t22+C=log t+t44-t2+C=log sin x+sin4 x4-sin2 x+C

Q69.

Answer :

∫sin5 xcos4 xdx=∫sin4 x. sin xcos4 xdx=∫sin2 x2. sin xcos4 xdx=∫ 1-cos2 x2 sin xcos4 xdx=∫ 1+cos4 x-2 cos2 xcos4 xsin x dx=∫ 1cos4 x+1-2cos2 xsin x dxLet cos x=t⇒-sin x=dtdx⇒sin x dx=-dtNow, ∫ 1cos4 x+1-2cos2 xsin x dx=-∫ t-4+1-2t-2dt=-t-4+1-4+1+t-2t-2+1-2+1+C=–13t3+t+2t+C=13t3-t-2t+C=13 cos3 x-cos x-2cos x+C

Q70.

Answer :

∫e2x dx1+ex⇒∫ex.ex1+exdxLet 1+ex=t ⇒ex=t-1⇒ex dx=dtNow, ∫ex.ex1+exdx=∫ t-1.dtt=1-1tdt=t-log t+C=1+ex-log 1+ex+CLet C+1=C’=ex-log 1+ex+C’

Q71.

Answer :

∫ sec2 xxdxLet x=t⇒12x=dtdx⇒dxx=2dtNow, ∫ sec2 xxdx=2∫ sec2 t dt=2 tan t+C=2 tan x+C

Q72.

Answer :

∫ tan3 x 2x.sec 2xdx=∫ tan2 2x. sec 2x tan 2x dx=∫ sec2 2x-1 sec 2x tan 2x dxLet sec 2x=t⇒sec 2x tan 2x×2=dtdx⇒sec 2x tan 2x dx=dt2Now, ∫ tan3 x 2x.sec 2xdx=12∫t2-1 dt=12t33-t+C=12 sec3 2×3-sec2x+C=16 sec3 2x-sec 2×2+C

 

Page 19.63 Ex.19.6

Q1.

Answer :

∫x2 x+2 dxLet x+2=t⇒x=t-2⇒dx=dtNow, ∫x2 x+2 dx=∫t-22 t dt=∫42-4t+4t12 dt=∫t2+12-4t1+12+4t12dt=∫t52-4t32+4t12dt=t52+152+1-4t32+132+1+4t12+112+1+C=27t72-85t52+83t32+C=27x+272-85x+252+83x+232+C

Q2.

Answer :

∫x2x-1dxLet x-1=t2⇒x=t2+1⇒1=2t dtdx⇒dx=2t dtNow, ∫x2x-1dx=∫t2+12t2t dt=2∫t4+2t2+1dt=2t4+14+1+2t2+12+1+t+C=2t55+2t33+t+C=23t5+10t3+15t15+C=215t3t4+10t2+15+C=215x-1 3x-12+10x-1+15+C=215x-1 3×2-2x+1+10x-10+15+C=215x-1 3×2-6x+3+10x-10+15+C=215x-13×2+4x+8 +C

Q3.

Answer :

∫x2 dx3x+4Let 3x+4=t ⇒x=t-43⇒1=13.dtdx⇒dx=dt3Now, ∫x2 dx3x+4=13∫t-432tdt=127∫t2t-8tt+16tdt=127∫t32-8t12+16t-12dt=127 t32+132+1+8t12+112+1+16t-12+1-12+1+C=127 25t52-8×23t32+32t12+C=2135t52-1681t32+3227t12+C=21353x+452-16813x+432+32273x+412+C

Q4.

Answer :

∫2x-1x-12dxLet x-1=t⇒x=t+1⇒1=dtdxNow, ∫2x-1x-12dx=∫2t+1-tt2dt=∫2t+1t2dt=2∫dtt+∫t-2 dt=2 log t+t-2+1-2+1+C=2 log x-1-1x-1+C

Q5.

Answer :

∫2×2+3 x+2 dxLet x+2=t⇒x=t-2⇒dx=dt∫2t-22+3t dt=∫2t t2-4t+4+3tdt=2∫t52-4t32+4t12 dt+3∫t12 dt=2t52+152+1-4t32+132+1+4t12+112+1+3t12+112+1+C=227t72-85t52+83t32+2t32+C=47t72-165t52+163t32+2t32+C=47t72-165t52+223t32+C=47x+272-165x+252+223x+232+C

Q6.

Answer :

∫x2+3x+1x+12 dxLet x+1=t⇒x=t-1⇒1=dtdx⇒dx=dtNow, ∫x2+3x+1x+12 dx=∫t-12+3t-1+1t2dt=∫t2-2t+1+3t-3+1t2dt=∫t2+t-1t2dt=∫1+1t-t-2 dt=t+log t-t-2+1-2+1+C=t+log t+1t+C=x+1+log x+1+1x+1+CLet 1+C=C’=x+log x+1+1x+1+C’

Q7.

Answer :

∫x21-xdxLet 1-x=t ⇒x=1-t⇒1=-dtdx⇒dx=-dtNow, ∫x21-xdx=∫1-t2tdt=∫1-t2-2ttdt=∫1t+t2t-2ttdt=∫t-12+t32-2t12dt=t-12+1-12+1+t32+132+1-2t12+112+1+C=2t12+25t52-43t32+C=2t121+t25-23t+C=2t1215+3t2-10t15+C=21-x 15+31-x2-101-x15+C=2151-x 15+312+x2-2x-10+10x+C=2151-x 15+3+3×2-6x-10+10x+C=2151-x 3×2+4x+8+C

Q8.

Answer :

∫x 1-x23 dxLet 1-x=t ⇒x=1-t⇒1=-dtdx⇒dx=-dtNow, ∫x 1-x23 dx=-∫1-t·t23 dt=-∫t23-t24dt=∫t24-t23 dt=t2525-t2424+C=24t25-25t24600+C=t2460024t-25+C=1-x24600 241-x-25+C=-1600 1-x24 1+24x+C

 

Page 19.67 Ex.19.7

Q1.

Answer :

∫ tan3 x sec2 x dx
Let tan x = t
⇒ sec2 x dx = dt
Now, ∫ tan3 x sec2 x dx
= ∫ t3.dt
=t44+C=tan4 x4+C

Q2.

Answer :

∫ tan x. sec4 x dx
= ∫ tan x. sec2 x . sec2 x dx
= ∫ tan x (1 + tan2 x) sec2 x dx
Let tan x = t
⇒ sec2 x dx = dt
Now, ∫ tan x (1 + tan2 x) sec2 x dx
= ∫ t (1 + t2) dt
= ∫ (t + t3) dt
=t22+t44+C=12tan2 x+14 tan4 x+C

Q3.

Answer :

∫ tan5 x sec4 x dx
= ∫ tan5 x. sec2 x . sec2 x dx
= ∫ tan5 x (1 + tan2 x) sec2 x dx
Let tan x = t
⇒ sec2x dx = dt
Now, ∫tan5x (1+tan2 x) sec2 x dx
= ∫ t5 (1 + t2) dt
= ∫ (t5 + t7) dt
=t66+t88+C=tan6 x6+tan8 x8+C

Q4.

Answer :

∫ sec6x tan x dx
=∫ sec6x.sec x tan x dx
Let sec x = t
⇒ sec x tan x dx = dt
Now, ∫ sec6x.sec x tan x dx
= ∫ t6. dt
=t66+C=sec6 x6+C

Q5.
Answer :

∫ tan5 x dx
= ∫ tan4 x. tan x dx
= ∫(sec2 x – 1)2 . tan x dx
= ∫ (sec4 x – 2 sec2 x + 1) tan x dx
= ∫ tan x . sec4x dx – 2 ∫ sec2 x . tan x dx+ ∫ tan x dx
= ∫ sec2x. sec2x . tan x dx – 2 ∫ tan x sec2x dx + ∫ tan x dx
= ∫ (1 + tan2x) . tan x . sec2x dx – 2 ∫ tan x . sec2x dx + ∫ tan x dx
Let I1=∫ (1 + tan2x) . tan x . sec2x dx – 2 ∫ tan x . sec2x dx
And I2=∫ tan x dx
∫ tan5x dx=I1 + I2
Now, I1=∫ (1 + tan2x) . tan x . sec2x dx – 2 ∫ tan x . sec2x dx
Let tan x = t
⇒ sec2x dx = dt
I1=∫ (1 + tan2x) . tan x . sec2x dx – 2 ∫ tan x . sec2x dx
∫ (1 + t2) . t. dt – 2 ∫ t. dt
∫ (t + t3) dt – 2 ∫ t dt
t22+t44-2t22+C1=t44-t22+C1=tan4 x4-tan2 x2+C1
And I2=∫ tan x dx
=logsec x+C2
∫tan5 x dx=tan4 x4-tan2x2+C1+logsec x+C2 =tan4 x4-tan2x2+logsec x+C1+C2 =tan4 x4-tan2x2+logsec x+C ∴C= C1+C2

Q6.

Answer :

∫ tan x ·sec4 x dx=∫tan x · sec2 x ·sec2 x dx=∫tan x·1+tan2 x sec2 x dxLet tan x=t⇒sec2 x dx=dtNow, ∫tan x·1+tan2 x sec2 x dx=∫t 1+t2 dt=∫t+t52dt=∫t12+t52dt=23t32+27t72+C=23tan32 x+27tan72 x+C

 

Page 19.68 Ex.19.7

Q7.

Answer :

∫ sec4 2x dx
= ∫ sec2 2x . sec2 2x dx
= ∫ (1 + tan2 2x) . sec2 2x dx
Let tan 2x = t
⇒sec2 2x . 2 dx = dt
⇒sec2 2x . dx=dt2Now, ∫1+tan22x.sec22x dx=12∫1+t2 dt=12t+t33+C=t2+t36+C=tan 2×2+tan3 2×6+C

Q8.

Answer :

∫ cosec4 3x dx
= ∫ cosec2 3x . cosec2 3x dx
= ∫ (1 + cot2 3x) cosec2 3x dx
Let cot (3x) = t
⇒–cosec2 (3x) × 3 dx = dt
⇒cosec2 3xdx=-dt3Now, ∫1+cot2 3x=-13∫1+t2 dt=-13 t+t33+C=-t3-t39+C=-cot 3×3-cot3 3×9+C

Q9.
Answer :

∫ cotn x cosec2 x dx
Let cot x = t
⇒ –cosec2 x dx = dt
⇒ cosec2 x dx = –dt
Now, ∫cotnx cosec2x dx=-∫tn dt =-tn+1n+1+C=-cotn+1 xn+1+C

Q10.
Answer :

∫ cot5 x . cosec4 x dx
= ∫ cot5 x . cosec2 x . cosec2 x dx
= ∫ cot5x . (1 + cot2x) . cosec2x dx
Let cot x = t
⇒ – cosec2x dx = dt
⇒ cosec2x dx = –dt
Now, ∫ cot5x . cosec4 x dx
= ∫ t5 (1 + t2) dt
= ∫(t5 + t7) dt
=-t66+t88+C=-cot6 x6+cot8 x8+C

Q11.
Answer :

∫ cot5 x dx
= ∫ cot4x . cot x dx
= ∫ (cosec2x – 1)2 cot x dx
= ∫ (cosec4x – 2 cosec2x + 1) cot x dx
= ∫ cosec4x . cot x dx – 2 ∫ cot x . cosec2x dx + ∫ cot x dx
= ∫ cosec2x . cosec2x . cot x . dx – 2 ∫ cot x cosec2x dx + ∫ cot x dx
=∫ (1 + cot 2 x) . cot x . cosec2x dx – 2 ∫ cot x cosec2x dx + ∫ cot x dx
= ∫ (cot x + cot3x) cosec2x dx – 2 ∫ cot x cosec2x dx + ∫ cot x dx
Now, let I1= ∫ (cot x + cot3x) cosec2x dx – 2 ∫ cot x cosec2x dx
And I2= ∫ cot x dx
First we integrate I1
I1= ∫ (cot x + cot3x) cosec2x dx – 2 ∫ cot x cosec2x dx
Let cot x = t
⇒ – cosec2x dx = dt
⇒ cosec2x dx = – dt

I1= ∫ (t + t3) (– dt) – 2∫ t (–dt)
= –∫(t + t3) + 2∫t dt
=-t22-t44+2.t22+ C1=t22-t44+C1=cot2 x2-cot4 x4+C1
Now we integrate I2
I2= ∫ cot x dx
= logsin x+C2
Now, ∫ cot5x dx=I1 + I2
= -14cot4x+12cot2x+logsin x+C1+C2
= -14cot4x+12cot2x+logsin x+C ∴C=C1+C2

Q12.

Answer :

∫ cot6x dx
= ∫ cot4x . (cosec2 x – 1) dx
= ∫ cot4 x × cosec2x dx – ∫ cot4x dx
= ∫ cot4 x . cosec2x dx – ∫ cot2x . cot2x dx
= ∫ cot4 x – cosec2x dx – ∫ (cosec2 x – 1) cot2x dx
= ∫ cot4 x . cosec2x dx – ∫ cot2x . cosec2x dx + ∫ cot2x dx
= ∫ cot4x . cosec2x dx – ∫ cot2 x . cosec2x dx + ∫ (cosec2x – 1) dx
Now, let I1= ∫ cot4 x . cosec2 x dx – ∫ cot2x . cosec2x dx
And I2= ∫ (cosec2x – 1) dx
First we integrate I1
I1= ∫ cot4x . cosec2x dx – ∫ cot2 x . cosec2x dx
Let cot x = t
⇒ –cosec2 x dx = dt
⇒ cosec2 dx = – dt
I1=– ∫ t4 dt + ∫ t2 dt
=-t55+t33+C1=-cot5 x5+cot3 x3+C1
Now we integrate I2
I2= ∫ (cosec2x – 1) dx
= – cot x – x + C1
Now, ∫ cot6 x dx=I1 + I2
= -15cot5x+13cot3x-cot x-x+C1+C2
= -15cot5x+13cot3x-cot x-x+C ∴C=C1+C2−14cot4x+12cot2x+log|sin x|+C [∴C=C1+C2]

 

Page 19.71 Ex.19.8

Q1.

Answer :

∫ sin4 x cos3 x dx
= ∫ sin4x . cos2x cos x dx
= ∫ sin4x . (1 – sin2x ) cos x dx
Let sin x = t
⇒ cos x dx = dt
Now, ∫ sin4x . (1 – sin2 x ) cos x dx
= ∫ t4 (1 – t2) dt
= ∫ (t4 – t6) dt
=t55-t77+C=sin5 x5-sin7 x7+C

Q2.

Answer :

∫ sin5x dx
= ∫ sin4x . sin x dx
= ∫ (1 – cos2x)2 sin x dx
= ∫ (1 – cos4x – 2 cos2x) sin x dx
Let cos x = t
⇒ – sin x dx = dt
⇒ sin x dx = – dt
Now, ∫ (1 – cos4x – 2 cos2x) sin x dx
=–∫ (1 + t4– 2t2) dt
=-t+t55-2t33+C=-t-t55+2t33+C=-cos x+23cos3 x-cos5 x5+C

Q3.

Answer :

∫ cos5x dx
= ∫ cos4x . cos x dx
= ∫ (1 – sin2x)2 cos x dx
Let sin x = t
⇒ cos x dx = dt
Now, ∫ (1 – sin2x)2cos x dx
= ∫ (1 – t2)2 . dt
= ∫ (1 + t4 – 2t2) dt
= ∫ dt + ∫ t4 dt – 2 ∫t2 dt
=t+t55-2t33+C=sin x+sin5 x5-23sin3 x+C

Q4.

Answer :

∫ sin5x cos x dx
Let sin x = t
cos x dx = dt
Now, ∫ sin5x cos x dx
= ∫ t5 . dt
=t66+C=sin6 x6+C

Q5.

Answer :

∫ sin3x . cos6x dx
= ∫ sin2x . cos6x . sin x dx
= ∫ (1 – cos2x) . cos2x . sin x dx
Let cos x = t
⇒ –sin x dx = dt
Now, ∫ (1 – cos2x) . cos2x . sin x dx
= –∫ (1 – t2) . t6 dt
= ∫ (t2 – 1) t6 dt
= ∫ (t8 – t6) dt
=t99-t77+C=cos9 x9-cos7 x7+C

Q6.

Answer :

∫ cos7x dx
= ∫ cos6x . cos x dx
= ∫ (cos2x)3 cos x dx
= ∫ (1 – sin2x)3 . cos x dx
Let sin x = t
⇒ cos x dx = dt
Now, ∫ (1 – sin2x)3.cos x dx
= ∫ (1 – t2)3 dt
= ∫ (1 – t6 – 3t2 + 3t4) dt
=t-t77-3t33+3t55+C=sin x-17sin7 x-sin3 x+35sin5x+C

Q7.

Answer :

∫ x . cos3 x2 sin x2 dx
Let x2 = t
⇒ 2x dx = dt
⇒x dx=dt2Now, ∫x. cos3x2 sin x2dx=12∫ cos3 t. sin t . dtAgain let cos t = p⇒-sin t dt = dp⇒sin t dt = -dpSo, 12∫ cos3 t. sin t . dt =-12p3 dp=-12 p44+C=-p48+C=-cos4 t8+C=-cos4 x28+C

Q8.

Answer :

∫ sin7x dx
= ∫ sin6x . sin x dx
= ∫ (sin2 x)3 sin x dx
= ∫ (1 – cos2x)3 sin x dx
Let cos x = t
⇒ –sin x dx = dt
⇒ sin x dx = – dt
Now, ∫ (1 – cos2x)3 sin x dx
= ∫ (1 – t2)3 . (–dt)
= –∫ (1 – t6 – 3t2 + 3t4) dt
=-t-t77-t3+3t55+C=-cos x-cos7 x7-cos3 x+35cos5 x+C=-cos x+17cos7 x+cos3 x-35cos5 x+C

Q9.

Answer :

∫ sin3x . cos5x dx
= ∫ sin2x . cos5x . sin x dx
= ∫ (1 – cos2x) . cos5x sin x dx
Let cos x = t
⇒ – sin x dx = dt
⇒ sin x dx = – dt
Now, ∫ (1 – cos2x) . cos5x sin x dx
= –∫ (1 – t2) t5 dt
= –∫ (t5 – t7) dt
= ∫(t7 – t5) dt
=t88-t66+C=cos8 x8-cos6 x6+C

Q10.

Answer :

∫dxsin4 x.cos2 xDividing numerator & denominator by sin2 x=∫1sin2 xsin4 x.cot2 xdx=∫cosec6 xcot2dx=∫cosec4 x.cosec2 x dxcot2 x=∫1+cot2 x2.cosec2 x dxcot2 xLet cot x=t⇒-cosec2 x=dtdx⇒-cosec2 x dx=dtNow, ∫1+cot2 x2.cosec2 x dxcot2 x=∫1+t2t2 -dt=-∫1+t4+2t2t2dt=-∫t-2+t2+2dt=-t-2+1-2+1+t33+2t+C=–1t+t33+2t+C=-13t3-2t+1t+C=-13cot3 x-2 cot x+1cot x+C=-13cot3 x-2 cot x+tan x+C

Q11.

Answer :

∫dxsin3 x.cos5 xdxDividing numerator & denominator by cos8 x=∫1cos8 xdxsin3 xcos3 x=∫sec8 xtan3 xdx=∫sec6 x.sec2 x dxtan3 x=∫1+tan2 x3. sec2 x dxtan3 xLet tan x=t⇒ sec2 x dx=dtNow, ∫1+tan2 x3. sec2 x dxtan3 x=∫1+t23t3.dt=∫1+t6+3t2+3t4t3dt=∫1t3+t3+3t+3tdt=∫t-3 dt+∫t3 dt+3∫dtt+3∫t dt=t-3+1-3+1+t3+13+1+3 log t+3t22+C=-12 tan x-2 +14tan4 x+3 log tan x+32 tan2 x+C

Q12.

Answer :

∫dxsin3 x . cos xDividing numerator & denominator by sin4 x=∫1sin4 xdxsin3 x.cos xsin4 x=∫cosec4 x dxcot x=∫cosec2 x.cosec2 x dxcot x=∫1+cot2 x.cosec2 x dxcot xLet cot x=t⇒-cosec2 x=dtdx⇒cosec2 x dx=-dtNow, ∫1+cot2 x.cosec2 x cot xdx=∫1+t2.-dtt=-∫1t+tdt=-log t-t22+C=-log cot x-cot2 x2+C=log cot x-1-cosec2 x-12+C=log 1cot x-cosec2 x2+12+C=log tan x-12sin2 x+C’ ∴C’=C+12

Q13.

Answer :

∫dxsin x. cos3 xDividing numerator & denominaor by cos4 x=∫1cos4 x dxsin x.cos3 xcos4 x=∫sec4 x dxtan x=∫sec2 x . sec2 x dxtan x=∫1+tan2 x . sec2 x tan xdxLet tan x = t⇒sec2 x = dxdt⇒sec2 x dx =dtNow, ∫1+tan2 x . sec2 x tan xdx =∫1+t2 tdt=∫1t+tdt=log t+t22+C=log tan x+tan2 x2+C

 

Page 19.76 Ex.19.9

Q1.

Answer :

∫dxa2-b2x2= 1b2∫dxa2b2-x2 = 1b2×12ab log ab+xab-x+C ∴∫dxa2-x2= 12a log a+xa-x+C= 12ab log a+bxa-bx+c

Q2.

Answer :

∫dxa2x2-b2 = 1a2∫dxx2-ba2= 1a2×12ba log x-bax+ba+C ∴∫dxx2-a2=12a log x-ax+a+C= 12ab log ax-bax+b+C

Q3.

Answer :

∫dxa2x2+b2= 1a2∫dxx2+ba2 = 1a2×abtan-1xba+C ∴∫dxa2+x2=1atan-1xa+C= 1abtan-1axb+C

Q4.

Answer :

∫x2-1×2+4dx = ∫x2+4-4-1×2+4dx = ∫x2+4×2+4dx-5∫dxx2+22= ∫dx-5∫dxx2+22= x-52tan-1×2+C ∴∫dxx2+a2= 1atan-1xa+C

Q5.

Answer :

∫dx1+4×2= ∫dx1+2x2let 2x=t⇒2dx=dt⇒dx=dt2Now, ∫dx1+2×2= 12∫dt1+t2 = 12 log t+1+t2+C ∵ ∫dxx2+a2=log x+x2+a2+C= 12 log 2x+1+4×2+C

Q6.

Answer :

∫dxa2+b2x2= ∫dxb2a2b2+x2= 1b∫dxx2+ab2=1b log x+x2+a2b2+C= 1blog x+b2x2+a2b+C= 1blog bx+b2x2+a2b+C= 1blog bx+b2x2+a2-log b+C= 1b log bx+b2x2+a2-log bb+Clet C-log bb=C’= 1blog bx+b2x2+a2+C’

Q7.

Answer :

∫dxa2-b2x2= ∫dxb2a2b2-x2= 1b∫dxab2-x2= 1bsin-1xba+C

Q8.

Answer :

∫dx2-x2+1let 2-x=t⇒ -dx=dt⇒ dx=-dtNow,∫dx2-x2+1 =-∫dtt2+1= -log t+t2+1+C= -log 2-x+2-x2+1+C

Q9.

Answer :

∫dx2-x2-1let 2-x=t⇒ -dx=dt⇒ dx=-dtNow, ∫dx2-x2-1= ∫-dtt2-1= -log t+t2-1+C= -log 2-x+2-x2-1+C

Q10.

Answer :

∫x4+1×2+1dx= ∫x4-1+1+1×2+1dx= ∫x4-1×2+1+2×2+1dx= ∫x2-1×2+1×2+1+2×2+1dx= ∫x2-1+2×2+1dx= x33-x+2tan-1x+C

 

Page 19.79 Ex.19.10

Q1.

Answer :

∫dx4x2+12x+5= 14∫dxx2+3x+54= 14∫dxx2+3x+322-322+54= 14∫dxx+322-94+54= 14∫dxx+322-12let x+32=t⇒dx=dtNow, 14∫dxx+322-12= 14∫dxt2-12= 14×12×1 log t-1t+1+C= 18 log x+32-1x+32+1+C= 18 log x+12x+52+C= 18 log 2x+12x+5+C

Q2.

Answer :

∫dxx2-10x+34= ∫dxx2-10x+25-25+34= ∫dxx-52+9= ∫dxx-52+32let x-5=t⇒ dx=dtNow, ∫dxx-52+32= ∫dtt2+32= 13tan-1t3+C= 13tan-1x-53+C

Q3.

Answer :

∫dx1+x-x2= ∫-dxx2-x-1= ∫-dxx2-x+14-14-1= ∫-dxx-122-54= ∫dx54-x-122= ∫dx522-x-122let x-12=t⇒ dx=dtNow, ∫dx522-x-122= ∫dt522-t2= 12×52 log 52+t52-t+C
= 15 log 5+2t5-2t+C= 15 log 5+2x-125-2x-12+C= 15 log 5-1+2×5+1-2x+C

Q4.

Answer :

∫dx2x2-x-1= 12∫dxx2-x2-12= 12∫dxx2-x2+142-142-12= 12∫dxx-142-116-12= 12∫dxx-142-1+816= 12∫dxx-142-342let x-14=t⇒ dx=dt
Now, 12∫dxx-122-342= 12∫dtt2-342= 12∫dtt2-342= 12×34×12 log t-34t+34+C= 23×12 log x-14-34x-14+34+C= 23×12 log x-1x+12+C= 13 log 2x-12x+1+C= 13 log x-12x+1+log2+C= 13 log x-12x+1+13 log 2+C= 13 log x-12x+1+C’ ∵C’=13 log 2+C

Q5.

Answer :

∫dx4x2-4x+3= ∫dx4x2-4x+1-1+3= ∫dx2x2-2×2x×1+1+2=∫dx2x-12-22

= 12 tan-12x-12×12+C= 122 tan-12x-12+C

Q6.

Answer :

∫dxx2+6x+13= ∫dxx2+2×x×3+9-9+13= ∫dxx+32+22= 12 tan-1x+32+C

 

Page 19.82 Ex.19.11

Q1.

Answer :

∫sec2 x dx1-tan2 xlet tan x=t⇒ sec2 x dx=dtNow, ∫sec2 x dx1-tan2 x= ∫dt1-t2= 12 log 1+t1-t+C= 12 log 1+tanx1-tanx+C

Q2.

Answer :

∫exdx1+e2xlet ex=t⇒exdx=dtNow, ∫exdx1+e2x=∫dt1+t2= tan-1t+C= tan-1ex+C

Q3.

Answer :

∫cos x dxsin2 x+4sin x+5let sin x =t⇒ cos x dx=dtNow,∫cos x dxsin2 x+4sin x+5 = ∫dtt2+4t+5= ∫dtt2+2×t×2+4+1= ∫dtt+22+12= 11 tan-1t+21+C= tan-1sin x+2+C

Q4.

Answer :

∫ex dxe2x+5ex+6let ex=t⇒ ex dx=dtNow, ∫ex dxe2x+5ex+6=∫dtt2+5t+6= ∫dtt2+5t+522-522+6= ∫dtt+522-254+6= ∫dtt+522-25+244= ∫dtt+522-122= 12×12 log t+52-12t+52+12+C= log t+2t+3+C= log ex+2ex+3+C

Q5.

Answer :

∫e3x dx4e6x-9let e3x=t⇒ e3x×3dx=dt⇒ e3x dx=dt3Now, ∫e3x dx4e6x-9= 13∫dt4t2-9= 13∫dt2t2-32= 13×12×3 log 2t-32t+3×12+C= 136 log 2t-32t+3+C= 136 log 2e3x-32e3x+3+C

Q6.

Answer :

∫dxex+e-x= ∫dxex+1ex= ∫ex dxe2x +1let ex=t⇒ ex dx=dtNow, ∫ex dxe2x+1= ∫dt1+t2= tan-1t+c= tan-1ex+c

Q7.

Answer :

∫x dxx4+2×2+3let x2=t⇒ 2x dx=dt⇒ x dx =dt2Now, ∫x dxx4+2×2+3= 12∫dtt2+2t+3= 12∫dtt2+2t+1+2= 12∫dtt+12+22 = 12×12 tan-1t+12+C ∵∫dxx2+a2=1atan-1xa+C= 122 tan-1×2+12+C

Q8.

Answer :

∫3×51+x12dxlet x6=t⇒ 6×5 dx=dt⇒ x5 dx=dt6Now, ∫3×51+x12dx= 36∫dt1+t2= 12 tan-1t+C

= 12 tan-1×6+C

Q9.

Answer :

∫x2dxx6-a6let x3=t⇒ 3×2 dx=dt⇒ x2 dx=dt3Now, ∫x2dxx6-a6= 13∫dtt2-a32= 13×12a3 log t-a3t+a3+C= 16a3 log x3-a3x3+a3+C

Q10.

Answer :

∫x2x6+a6dx⇒ ∫x2dxx32+a32let x3=t⇒ 3x2dx=dt⇒ x2dx=dt3Now, ∫x2x6+a6dx= 13∫dtt2+a32= 13a3tan-1ta3+C= 13a3tan-1x3a3+C

Q11.

Answer :

∫dxxx6+1= ∫x5dxx6x6+1let x6=t⇒ 6x5dx=dt⇒ x5dx=dt6Now, ∫dxx6x6+1= 16∫dttt+1= 16∫dtt2+t= 16∫dtt2+t+14-14= 16∫dtt+122-122= 16×12×12 log t+12-12t+12+12+C= 16 log tt+1+C= 16 log x6x6+1+C

Q12.

Answer :

∫x dxx4-x2+1Let x2=t⇒ 2x dx=dt⇒ x dx=dt2Now, ∫x dxx4-x2+1=12∫dtt2-t+1= 12∫dtt2-t+122-122+1= 12∫dtt-122+34= 12∫dtt-122+322= 12×23tan-1t-1232+C= 13tan-12t-13+C= 13tan-12×2-13+C

Q13.

Answer :

∫x dx3x4-18×2+11let x2=t⇒ 2x dx=dt⇒ x dx=dt2Now, ∫x dx3x4-18×2+11= 12∫dt3t2-18t+11= 13×2∫dtt2-6t+113= 16∫dtt2-6t+9-9+113= 16∫dtt-32-163= 16∫dtt-32-432= 16×12×43 log t-3-43t-3+43+C= 348 log x2-3-43×2-3+43+C

Q14.

Answer :

∫exdx1+ex2+exlet ex=t= exdx=dt= ∫dt1+t2+t= ∫dt2+t+2t+t2= ∫dtt2+3t+2= ∫dtt2+3t+322-322+2= ∫dtt+322-94+2= ∫dtt+322-14= ∫dtt+322-122

= 12×12 log t+32-12t+32+12+C= log t+1t+2+C= log ex+1ex+2+C

 

Page 19.85 Ex.19.12

Q1.

Answer :

∫dx2x-x2= ∫dx2x-x2-1+1= ∫dx1-x2-2x+1= ∫dx1-x-12 = sin-1x-1+C ∵∫dxa2-x2=sin-1xa+C

Q2.

Answer :

∫dx8+3x-x2⇒ ∫dx8-x2-3x⇒ ∫dx8-x2-3x+322-322⇒ ∫dx8-x-322+94⇒ ∫dx4122-x-322⇒ sin-1x-32412+C⇒ sin-12x-341+C

Q3.

Answer :

∫dx5-4x-2×2= ∫dx252-2x-x2= 12∫dx52-2x-x2= 12∫dx52-x2+2x= 12∫dx52-x2+2x+1-1= 12∫dx52-x+12+1= 12∫dx72-x+12= 12∫dx722-x+12= 12sin-1x+127+C= 12sin-127x+1+C

Q4.

Answer :

∫dx3x2+5x+7=∫dx3x2+53x+73=13∫dxx2+53x+562-562+73=13∫dxx+562-2536+73=13∫dxx+562+-25+8436=13∫dxx+562+5936=13∫dxx+562+59362=13 log x+56+x+562+5936+C=13 log x+56+x2+53x+73+C

Q5.

Answer :

Let I=∫dxx-α β-x=∫dxβx-x2-αβ+αx=∫dx-x2+α+β x-αβ=∫dx-x2-α+β x+αβ=∫dx-x2-α+β x+α+β22-α+β22+αβ=∫dx-x-α+β22+α+β22-αβ=∫dx-x-α+β22+α+β2-4αβ4=∫dx-x-α+β22+α-β22=∫dxα-β22-x-α+β22=sin-1 x-α+β2α-β2+C=sin-1 2x-α-βα-β+C

Q6.

Answer :

∫dx7-3x-2×2=12∫dx72-32x-x2=12∫dx72-x2-32x=12∫dx722-x2+32x+342-342=12∫dx722-x+342+916=12∫dx72+916-x+342=12∫dx56+916-x+342=12∫dx6542-x+342=12 sin-1 x+34654+C=12sin-1 4x+365+C

Q7.

Answer :

∫dx16-6x-x2=∫dx16-x2+6x=∫dx16-x2+6x+32-32=∫dx16+9-x+32=∫dx52-x+32=sin-1 x+35+C

Q8.

Answer :

∫dx7-6x-x2=∫dx7-x2+6x=∫dx7-x2+6x+32-32=∫dx7+9-x+32=∫dx42-x+32=sin-1x+34+C

Q9.

Answer :

∫dx5x2-2x=∫dx5x2-25x=15∫dxx2-25x+152-152=15∫dxx-152-152=15 log x-15+x-152+152+C=15 log 5x-15+5×2-2×5+C

 

Page 19.89 Ex.19.13

Q1.

Answer :

∫x dxx4+a4=∫x dxx22+a22let x2=t⇒2x dx=dt⇒x dx=dt2Now, ∫x dxx22+a22=12∫dtt2+a22=12 log t+t2+a4+C=12 log x2+x4+a4+C

Q2.

Answer :

∫sec2x dx4+tan2 xlet tan x=t⇒sec2x dx=dtNow, ∫sec2x dx4+tan2 x=∫dt22+t2=log t+4+t2+C=log tan x+4+tan2x+C

Q3.

Answer :

∫ex dx16-ex2let ex=t⇒ex dx=dtNow, ∫ex dx16-ex2= ∫dt16-t2=∫dt42-t2=sin-1 t4+C=sin-1 ex4+C

Q4.

Answer :

∫cos x dx4+sin2xlet sin x=t⇒cos x dx=dtNow,∫cos x dx4+sin2x =∫dt22+t2=log t+4+t2+C=log sin x+4+sin2x+C

Q5.

Answer :

∫sin x dx4 cos2x-1let cos x=t⇒-sin x dx=dt⇒sin x dx=-dtNow, ∫sin x dx4 cos2x-1=∫-dt4t2-1=∫-dt4t2-14=-1 2∫dtt2-122=-12 log t+t2-14+C=-1 2 log t+4t2-12+C=-12 log 2t+4t2-12+C=-12log 2t+4t2-1-log 2+C=-12 log 2t+4t2-1+log 22+Clet C´=log 22+C=-12 log 2cost+4cos2t-1+C´

Q6.

Answer :

∫x dx4-x4⇒∫x dx22-x22let x2=t⇒2x dx=dt⇒x dx=dt2Now, ∫x dx22-x22=12∫dt22-t2=12×sin-1 12+C=12sin-1 x22+C

Q7.

Answer :

∫dxx4-9 log x2let log x=t⇒1x dx=dtNow, ∫dxx4-9 log x2=∫dt4-9t2=∫dt22-3t2=13 sin-1 3t2+C=13 sin-1 3 log x2+C

Q8.

Answer :

∫sin 8x dx9+sin4 4x⇒∫2 sin 4x·cos 4 x9+sin24x2dxlet sin2 4x=t⇒2 sin 4x·cos 4x × 4 dx=dt⇒2 sin 4x cos 4x dx=dt4Now, ∫2 sin 4x·cos 4 x9+sin24x2dx=14∫dt9+t2=14∫dt32+t2=14 log t+32+t2+C=14 log sin2 4x+9+sin4 4x+C

Q9.

Answer :

∫cos 2 x·dxsin2 2x+8let sin 2x=t⇒cos 2x×2·dx=dt⇒cos 2x·dx=dt2Now, ∫cos 2 x·dxsin2 2x+8 =12∫dtt2+222=12log t+t2+8+C=12 log sin 2x+sin2 2x+8+C

Q10.

Answer :

∫sin 2 x dxsin4x+4 sin2x-2let sin2x=t⇒2 sin x cos x dx=dt⇒sin 2 x dx=dtNow, ∫sin 2 x dxsin4x+4 sin2x-2=∫dtt2+4t-2=∫dtt2+4t+4-4-2=∫dtt+22-62=log t+2+t+22-6+C=log t+2+t2+4t-2+C=log sin2x+2+sin4x+4 sin2x-2+C

 

Page 19.90 Ex.19.13

Q11.

Answer :

∫sin 2 x dxcos4x-sin2 x+2⇒∫2 sin x cos x dxcos4x-1-cos2x+2⇒∫2 sin x cos xcos4x+cos2x+1Let cos2x =t⇒2 cos x ×-sin x dx=dtsin 2x dx=-dtNow, ∫sin 2 x dxcos4x-sin2 x+2=∫-dtt2+t+1=∫-dtt2+t+122-122+1=-∫dtt+122+34=-∫dtt+122+322=-log t+12+t+122+322+C=-log t+12+t2+t+1+C=-log cos2x+12+cos4x+cos2x+1+C

Q12.

Answer :

∫cos x dx4-sin2xlet sin x=t⇒cos x dx=dtNow, ∫cos x dx4-sin2x=∫dt4-t2=∫dt22-t2=sin-1 t2+C=sin-1 sin x2+C

Q13.

Answer :

∫dxx23x23-22=∫dxx23x132-22Let x13=t⇒13 x-23 dx=dt⇒13×23 dx=dt⇒dxx23=3 dtNow, ∫dxx23x23-22=3∫dtt2-22=3 log t+t2-22+C=3 log x13+x23-4+C

Q14.

Answer :

∫dx1-x2 9+sin-1 x 2let sin-1x=t⇒11-x2 dx=dtNow, ∫dx1-x2 9+sin-1 x 2 =∫dt9+t2=∫dt32+t2=log t+32+t2+C=log sin-1x+9+sin-1×2+C

Q15.

Answer :

∫cos x dxsin2x-2 sin x-3let sin x=t⇒cos x dx=dtNow, ∫cos x dxsin2x-2 sin x-3=∫dtt2-2t-3=∫dtt2-2t+1-1-3=∫dtt-12-22=log t-1+t-12-22+C=log t-1+t2-2t-3+C=log sin x-1+sin2x-2 sin x-3+C

Q16.

Answer :

∫cosec x-1 dx=∫1sin x-1dx=∫1-sin xsin xdx=∫1-sin x 1+sin xsin x 1+sin xdx=∫1-sin2xsin2x+sinxdx=∫cos x dxsin2x+sin xLet sin x=t⇒cos x dx=dtNow, ∫cos x dxsin2x+sin x=∫dtt2+t ∫dtt2+t=∫dtt2+t+122- 122=∫dtt+122-122=log t+12+t+122-122+C=log t+12+t2+t+C=log sin x+12+sin2x+sinx+C

Q17.

Answer :

∫sin x-cosxsin 2x dx=∫sin x-cos x1+sin 2x-1dx=∫sin x-cos xsin2x+cos2x+2 sin x cos x-1dx=∫sin x-cos xsin x+cos x2-1dxlet sin x+cos x=t⇒cos x-sin x dx=dt⇒sin x-cos xdx=-dtNow, ∫sin x-cos xsin x+cos x2-1dx=-∫dtt2-12=-log t+t2-1+C=-log sin x+cos x+sin x+cos x2-1+C=-log sin x+cos x+sin2 x+cos2 x +2sinx.cosx-1+C=-log sin x+cos x+sin 2x+C

 

Page 19.94 Ex.19.14

Q1.

Answer :

∫xx2+3x+2dxx=A ddxx2+3x+2+Bx=A 2x+3+Bx=2 Ax+3A+B

Comparing the Coefficients of like powers of x we get
2A=1⇒A=123A+B=032+B=0B=-32x=12 2x+3-32

Now, ∫xx2+3x+2dx=∫122x+3-32×2+3x+2dx=12∫2x+3dxx2+3x+2-32∫dxx2+3x+2=12∫2x+3dxx2+3x+2-32∫dxx2+3x+322- 322+2=12∫2x+3dxx2+3x+2 -32∫dxx+322-94+2=12∫2x+3 dxx2+3x+2-32∫dxx+322-122=12 log x2+3x+2-32×12×12 log x+32-12x+32+12+C=12 log x2+3x+2-32 log x+1x+2+C

Q2.

Answer :

∫x+1 dxx2+x+3x+1=Addxx2+x+3+Bx+1=A 2x+1+Bx+1 =2 Ax+A+B

Comparing Coefficients of like powers of x
2A=1A=12A+B=112+B=1B=12x+1=12 2x+1+12

Now, ∫x+1 dxx2+x+3=∫12 2x+1dxx2+x+3+12∫dxx2+x+3=12∫2x+1dxx2+x+3+12∫dxx2+x+122- 122+3=12∫2x+1dxx2+x+3 +12∫dxx+122+3 -14=12∫2x+1 dxx2+x+3+12∫dxx+122+1122=12 log x2+x+3+12×211 tan-1 x+12112+C=12 log x2+x+3+111 tan-1 2x+111+C

Q3.

Answer :

∫x-3×2+2x-4dxx-3=Addxx2+2x-4+Bx-3=A 2x+2+Bx-3 =2 A x+2A+B

Comparing Coefficients of like powers of x

2A=1A=122A+B=-32×12+B=-3B=-4

Now, ∫x-3×2+2x-4dx=∫122x+2 -4×2+2x-4dx=12∫2x+2 dx x2+2x-4-4∫dxx2+2x+1-1-4=12∫2x+2 dxx2+2x-4-4∫dxx+12- 52=12 log x2+2x-4-425 log x+1-5x+1+5+C=12 log x2+2x-4-25 log x+1-5x+1+5+C

Q4.

Answer :

∫2x-3 dxx2+6x+132x-3=Addxx2+6x+13+B2x-3=A 2x+6+B2x-3 =2 A x+6A+B

Comparing Coefficients of like powers of x
2A=2A=16 A+B=-36+B=-3B=-9∴ 2x-3=1 2x+6-9

∴ ∫2x-3×2+6x+13dx=∫2x+6-9 x2+6x+13dx=∫2x+6×2+6x+13dx -∫9 dxx2+6x+13=∫2x+6 dxx2+6x+13-9∫dxx2+6x+32-32+13=∫2x+6 dxx2+6x+13-9∫dxx+32+22=log x2+6x+13-9×12 tan-1 x+32+C=log x2+6x+13-92 tan-1 x+32+C

Q5.

Answer :

∫x-13×2-4x+3dxx-1=Addx3x2-4x+3+Bx-1=A 6x-4+Bx-1 =6 A x+B-4 A

Comparing the Coefficients of like powers of x
6 A=1A=16B-4 A=-1B-4×16=-1B=-1+23B=13

Now, ∫x-1 dx3x2-4x+3=∫166x-4+133×2-4x+3dx=16∫6x-4 dx3x2-4x+3+13∫dx3x2-4x+3=16∫6x-4 dx3x2-4x+3+19∫dxx2-43x+1=16∫6x-4 dx3x2-4x+3+19∫dxx2-43x+232 232+1=16∫6x-4 dx3x2-4x+3+19∫dxx-232-49+1=16∫6x-4 dx3x2-4x+13+19∫dxx-232+532=16 log 3×2-4x+3+19×35 tan-1 x-2353+C=16 log 3×2-4x+3+135 tan-1 3 x-25+C=16 log 3×2-4x+3+515 tan-1 3x-25+C

Q6.

Answer :

∫2x dx2+x-x22x=Addx2 +x-x2+B2x=A 0+1-2x+B2x=-2 A x+A+B

Comparing the Coefficients of like powers of x
-2 A=2A=-1A+B=0-1+B=0B=1

Now, ∫2x dx2+x-x2=∫-11-2x+1-x2+x+2dx=-∫1-2x-x2+x+2dx+∫dx-x2+x+2=-I1+I2 … 1 say whereI1=∫1-2x-x2+x+2dxI2=∫dx-x2+x+2I1=∫1-2x-x2+x+2dxlet -x2+x+2=t⇒1-2x dx=dtI1=∫dttI1=log t+C1=log 2+x-x2+C1 … 2I2=∫dx-x2+x+2I2=∫-dxx2-x-2I2=∫-dxx2-x+122-122-2I2=∫-dxx-122-322I2=-12×32log x-12-32x-12+32+C2I2=-13 log x-2x+1+C2 … 3from 1 2 and 3∫2×2+x-x2dx=-log 2+x-x2-13log x-2x+1+C1+C2=-log 2+x-x2+13 log 1+xx-2+Cwhere C =C1+C2

Q7.

Answer :

∫1-3x dx3x2+4x+21-3x=Addx3x2+4x+2+B1-3x=A 6x+4+B1-3x=6 A x+4 A+B

Comparing the Coefficients of like powers of x

6 A=-3A=-124 A+B=14×-12+B=1B=3

1-3x=-126x+4+3Now, ∫1-3x dx3x2+4x+2=∫-126x+4+33×2+4x+2dx=-12∫6x+4 dx3x2+4x+2+3∫dx3x2+4x+2=-12 I1+3I2 say … 1whereI1=∫6x+43×2+4x+2 and I2=∫dx3x2+4x+2I1=∫6x+43×2+4x+2dxlet 3×2+4x+2=t⇒6x+4 dx=dtI1=∫dtt=log t+C1=log 3×2+4x+2+C1 … 2I2=∫dx3x2+4x+2I2=13∫dxx2+43x+23I2=13∫dxx2+4xx+232-232+23I2=13∫dxx-232-49+23I2=13∫dxx+232+29I2=13∫dxx+232+232I2=13×32 tan-1 x+2323+C2I2=12 tan-1 3x+22+C2 … 3from 1, 2 and 3∫1-3x dx3x2+4x+2=-12 log 3×2+4x+2+3×12 tan-1 3x+22+C1+C2=-12 log 3×2+4x+2+32 tan-1 3x+22+C Where C=C1+C2

Q8.

Answer :

∫2x+5 dxx2-x-22x+5=Addxx2-x-2+B2x+5=A 2x-1+B2x+5=2 A x+B-A

Comparing the Coefficients of like powers of x

2 A=2A=1B-A=5B-1=5B=6

∴ 2x+5=1·2x-1+6∴ ∫2x+5×2-x-2dx⇒∫2x-1+6×2-x-2dx⇒∫2x-1×2-x-2dx+6∫dxx2-x-2=I1+6 I2 say … 1whereI1=∫2x-1×2-x-2dx I2=∫dxx2-x-2I1=∫2x-1×2-x-2dxlet x2-x-2=t⇒2x-1 dx=dtI1=∫dttI1=log tI1=log x2-x-2+C1 … 2I2=∫dxx2-x-2I2=∫dxx2-x+122- 122-2I2=∫dxx-122-14-2I2=∫dxx-122-322I2=12×32 log x-12-32x-12+32I2=13 log x-2x+1+C2 … 3∫2x+5 dxx2-x-2=log x2-x-2+63 log x-2x+1+C1+C2=log x2-x-2+2 log x-2x+1+C Where C=C1+C2

Q9.

Answer :

∫3 sin x-2 cos x dx5-cos2x-4 sin x=∫3 sin x-2 cos x dx5-1-sin2x-4 sin x=∫3 sin x-2 cos x dx sin2x-4 sin x+4Let sin x=t⇒cos x dx=dt∫3t-2 dtt2-4t+43t-2=Addxt2-4t+4+B3t-2=A 2t-4+B3t-2=2 A t+B-4 A

Comparing the Coefficients of like powers of t

2 A=3A=32B-4 A=-2B-4×32=-2B=-2+6B=4

3t-2=32 2t-4+4∴ ∫3t-2 dtt2-4t+4=∫322t-4+4t2-4t+4dt=32∫2t-4t2-4t+4dt+4∫dtt2-4t+4=32 I1+4 I2 … 1whereI1=∫2t-4 dtt2-4t+4, I2=∫dtt2-4t+4I1=∫2t-4 dtt2-4t+4Let t2-4t+4=p⇒2t-4 dt=dpI1=∫2t-4 dtt2-4t+4=∫dpp=log p+C1=log t2-4t+4+C1 … 2I2=∫dtt2-4t+4I2=∫dtt-22I2=∫t-2-2 dtI2=t-2-2+1-2+1+C2I2=-1t-2+C2 … 3from 1, 2 and 3∫3 sin x-2 cos x dx5-cos2x-4 sinx=32 log t2-4t+4+4×-1t-2+C1+C2=32 log sin2x-4 sin x+4+42-t+C Where C=C1+C2=32log sin x-22+42-sin x+C=32×2 log sin x-2+42-sin x+C=3 log 2-sin x+42-sin x+C

Q10.

Answer :

∫ax3+bx x4+c2dx=∫ax3 x4+c2dx+∫bx x22+c2dx=I1+I2 sayWhereI1=∫ax3 x4+c2dx & I2=∫bx x22+c2dxNow, I1=∫ax3 x4+c2dxlet x4+c2=t⇒4×3 dx=dt⇒x3 dx=dt4I1=a4∫dtt=a4 log t+C1=a4 log x4+c2+C1Now, I2=∫bx x22+c2dxlet x2=p⇒2x dx=dp⇒x dx=dp2

I2=b2∫dpp2+c2=b2×1c tan-1 pc+C2=b2c tan-1 x2c+C2∫ax3+bx x4+c2dx=a4 log x4+c2+b2c tan-1 x2c+C1+C2 =a4 log x4+c2+b2c tan-1 x2c+C Where C=C1+C2

Q11.

Answer :

∫x+22×2+6x+5dxx+2=Addx2x2+6x+5+Bx+2=A 4x+6+Bx+2=4 A x+6 A+B

Comparing the Coefficients of like powers of x

4 A=1A=146 A+B=26×14+B=2B=12

∴ ∫x+22×2+6x+5dx=∫144x+6+122×2+6x+5dx=14∫4x+62×2+6x+5dx+12∫12×2+6x+5dx=14∫4x+62×2+6x+5dx+14∫dxx2+3x+52=14∫4x+62×2+6x+5dx+14∫dxx2+3x+322-322+52=14∫4x+62×2+6x+5dx+14∫dxx+322-94+52=14∫4x+62×2+6x+5dx+14∫dxx+322+14=14∫4x+62×2+6x+5dx+14∫dxx+322+122=14 log 2×2+6x+5+14×2 tan-1 x+3212+C=14 log 2×2+6x+5+12 tan-1 2x+3+C

 

Page 19.96 Ex.19.15

Q1.

Answer :

∫x2+x+1×2-xdxx2+x+1×2-x=1+2x+1×2-x∴∫x2+x+1×2-xdx=∫1+2x+1×2-xdx=∫1+2x-1+2×2-xdx=∫dx+∫2x-1 dxx2-x+∫2 dxx2-x+122-122=∫dx+∫2x-1 dxx2-x+2∫dxx-122-122=x+log x2-x+2×12×12logx-12-12x-12+12=x+log x2-x+2 log x-1x+C

Q2.

Answer :

∫x2+x-1×2+x-6dxx2+x-1×2+x-6=1+5×2+x-6 ∫x2+x-1×2+x-6dx=∫dx+5∫dxx2+x-6=∫dx+5∫dxx2+x+122-122-6=∫dx+5∫dxx+122-14-6=∫dx+5∫dxx+122-522=x+5×12×52 log x+12-52x+12+52+C=x+log x-2x+3+C

Q3.

Answer :

We have,I=∫1-x2 x 1-2xdx=∫-x2+1-2×2+xdx=∫12dx+∫1-x2-2×2+xdx=12∫dx+12∫2-x-2×2+xdx=12∫dx+∫2-x-2×2+xdx=12I1+I2 saywhere I1=∫dx & I2=∫2-x-2×2+xdxNow, I1=∫dx =x+C1I2=∫2-x-2×2+xdxLet 2-x=A ddx -2×2+x+B⇒2-x=A -4x+1+B⇒2-x=-4Ax+A+B

Comparing coefficients of like terms

-1=-4 A ⇒A=14& A+B=2⇒14+B=2⇒B=2-14 =8-14 =74

∴∫2-x-2×2+xdx=∫14-4x+1+74-2×2+xdx =∫14-4x+1-2×2+xdx+∫74-2×2+xdx =14log -2×2+x+74∫1-2×2-x2+116-116dx =14log -2×2+x-78∫1x-142-142dx =14log x-2x+1-78×12×14logx-14-14x-14+14+C2 =14log x+14log -2x+1-74logx-12x+C2 =14log x+14log -2x+1-74log x-12+74log x+C2 =2 log x+14log -2x+1-74log 2x-1+C3 , where C3=C2+74log 2 =2 log x+14log -2x+1-74log 1-2x+C3 =2 log x-32log 1-2x+C3Thus, I= 12x+C1+2 log x-32log 1-2x+C3 =12x+log x-34log 1-2x+C, where C=12C1+C3

Q4.

Answer :

Let I∫x2+1×2-5x+6dxDividing Numerator by Denominatorx2-5x+6×2+1 1 x2-5x+6 – + – 5x-5×2+1×2-5x+6=1+5x-5×2-5x+6 ….. 1Also 5x-5×2-5x+6=5x-5x-2 x-3Let 5x-5x-2 x-3=Ax-2+Bx-3⇒5x-5x-2 x-3=A x-3 +B x-2x-2 x-3⇒5x-5=A x-3+B x-2let x=35×3-5=A×0+B 3-210=Blet x=25×2-5=A 2-3+B×0A=-55x-5x-2 x-3=-5x-2+10x-3 …..2from 1 and 2I=∫dx-5∫dxx-2+10∫dxx-3=x-5 log x-2+10 log x-3+C

Q5.

Answer :

Let I=∫x2x2+7x+10dxNow,x2+7x+10×2 1 x2+7x+10 – – – -7x-10 ∴x2x2+7x+10=1-7x+10×2+7x+10⇒x2x2+7x+10=1-7x+10×2+2x+5x+10x2x2+7x+10=1-7x+10x x+2 +5 x+2x2x2+7x+10=1- 7x+10x+2 x+5 ….. 1Consider,7x+10x+2 x+5=Ax+2+Bx+57x+10=A x+5+B x+2let x+5=0x=-5⇒7 -5+10=A×0+B -5+2-25=B -3⇒B=253let x+2=0x=-27 -2+10=A -2+5⇒-4=A 3⇒A=-437x+10x+2 x+5=-43 x+2+253 x+5 …..2from 1 and 2x2x2+7x+10=1+43 x+2-253 x+5⇒∫x2 dxx2+7x+10=∫dx+43∫dxx+2-253∫dxx+5=x+43 log x+2-253 log x+5+C

Q6.

Answer :

Let I=∫x2+x+1×2-x+1dxNow,x2-x+1×2+x+1 1 x2-x+1 – + – 2x Therefore,x2+x+1×2-x+1=1+2xx2-x+1⇒∫x2+x+1×2-x+1 dx=∫dx+∫2x-1+1×2-x+1 dx=∫dx+∫2x-1×2-x+1 dx+∫dxx2-x+1=∫dx+∫2x-1 dxx2-x+1+∫dxx2-x+122-122+1=∫dx+∫2x-1 dxx2-x+1+∫dxx-122+322=x+ log x2-x+1+23 tan-1 2x-13+C

Q7.

Answer :

Let I=∫x-12×2+2x+2 dx=∫x2-2x+1×2+2x+2 dxHere,x2+2x+2×2-2x+1 1 x2+2x+2 – – – -4x-1 Therefore,x2-2x+1×2+2x+2=1-4x+1×2+2x+2 ….. 1Let 4x+1=Addx x2+2x+2+B4x+1=A 2x+2+B4x+1=2A x+2A+BEquating Coefficients of like terms2A=4A=22A+B=12×2+B=1B=-3∫x2-2x+1×2+2x+2 dx=∫dx-2∫2x+2×2+2x+2 dx+3∫dxx2+2x+2=∫dx-2∫2x+2×2+2x+2 dx+3∫dxx+12+12=x-2 log x2+2x+2+31 tan-1 x+11+C=x-2 log x2+2x+2+3 tan-1 x+1+C

Q8.

Answer :

Let I=∫x3+x2+2x+1×2-x+1 dxx2-x+1×3+x2+2x+1 x+2 x3-x2+x – + – 2×2+ x+1 2×2-2x+2 – + – 3x-1Therefore,x3+x2+2x+1×2-x+1=x+2+3x-1×2-x+1 ….. 1Let3x-1=Addx x2-x+1+B3x-1=A 2x-1+B3x-1=2A x+B-AEquating Coefficients of like terms2A=3A=32B-A=-1B-32=-1B=12∫x3+x2+2x+1×2-x+1 dx =∫x+2 dx+∫32 2x-1+12×2-x+1 dx=∫x+2 dx+32 ∫2x-1×2-x+1 dx+12∫dxx2-x+1=∫x+2 dx+32∫2x-1 dxx2-x+1+12∫dxx2-x+14-14+1=∫x+2 dx+32∫2x-1 dxx2-x+1 +12∫dxx-122+322=x22+2x+32 logx2-x+1+12×23 tan-1 x-1232+C=x22+2x+32 log x2-x+1+13 tan-1 2x-13+C

Q9.

Answer :

Let I=∫x2 x4+4×2+4 dx=∫x6+4x2x2+4 dxNow,x2+4×6+4×2 x4-4×2+20 x6+4×4 – – -4×4+4×2 -4×4-16×2 + + 20×2 20×2 + 80 – – -80 Therefore, x2 x4+4×2+4=x4-4×2+20-80×2+4I=∫x2 x4+4×2+4 dx=∫x4-4×2+20 dx-80∫dxx2+ 22=∫x4 dx-4∫x2 dx+20∫dx-80∫dxx2+22=x4+14+1-4 x33+20 x-80×12 tan-1 x2+C=x55-43 x3+20x-40 tan-1 x2+C

Q10.

Answer :

Let I=∫x2 dxx2+6x+12Now,x2+6x+12×2 1 x2+6x+12 – – – -6x-12Therefore,x2x2+6x+12=1-6x+12×2+6x+12 ….. 1Let 6x+12=Addx x2+6x+12+B⇒6x+12=A 2x+6+B⇒6x+12=2A x+6A+BEquating Coefficients of like terms2A=6A=36A+B=1218+B=12B=-6∴x2x2+6x+12=1-3 2x+6-6×2+6x+12I=∫x2 dxx2+6x+12=∫dx-3∫2x+6 dxx2+6x+12+6∫dxx2+6x+12=∫dx-3 ∫2x+6 dxx2+6x+12+6∫dxx2+6x+9+3=∫dx-3∫2x+6 dxx2+6x+12+6∫dxx+32+32=x-3 log x2+6x+12+63 tan-1 x+33+C=x-3 log x2+6x+12+23 tan-1 x+33+C

 

Page 19.99 Ex.19.16

Q1.

Answer :

Let I=∫x dxx2+6x+10x=A ddx x2+6x+10+Bx=A 2x+6+Bx=2A x+6A+BEquating Coefficients of like terms2A=1A=126A+B=06×12+B=0B=-3I=∫x dxx2+6x+10=∫12 2x+6-3×2+6x+10dx=12∫2x+6 dxx2+6x+10-3∫dxx2+6x+32-32+10=12∫2x+6 dxx2+6x+10-3∫dxx+32+12let x2+6x+10=t⇒2x+6 dx=dtI=12∫dtt-3∫dxx+32+1=12×2t-3 log x+3+x+32+1+C=t-3 log x+3+x2+6x+10+C=x2+6x+10-3 log x+3+x2+6x+10+C

Q2.

Answer :

Let I=∫2x+1 dxx2+2x-1=∫2x+2-1 dxx2+2x-1=∫2x+2 dxx2+2x-1-∫dxx2+2x-1=∫2x+2 dxx2+2x-1-∫dxx2+2x+1-1-1=∫2x+2 dxx2+2x-1-∫dxx+12-22let x2+2x-1=t⇒2x+2 dx=dtI=∫dtt-∫dxx+12-22=2t-log x+1+x+12-22+C=2×2+2x-1-log x+1+x2+2x-1+C

Q3.

Answer :

Let I=∫x+1 dx4+5x-x2Also, x+1=A ddx 4+5x-x2+Bx+1=A 5-2x+Bx+1=-2A x+5A+BEquating Coefficients of like terms-2A=1⇒A=-12And5A+B=1⇒-52+B=1B=72I=∫x+1 dx4+5x-x2=∫-12 5-2x+724+5x-x2dx=-12∫5-2x dx4+5x-x2+72∫dx4-x2-5x=-12∫5-2x dx4+5x-x2+72∫dx4-x2-5x+522-522=-12∫5-2x dx4+5x-x2+72∫dx4-x-522+254=-12∫5-2×4+5x-x2dx+72∫dx414-x-522=-12∫5-2×4+5x-x2dx+72∫dx4122-x-522let 4+5x-x2=t⇒5-2x dx=dtThen,I=-12∫dtt+72∫dx4122-x-522=-12×2t+72×sin-1 x-52412+C=-t+72 sin-1 2x-541+C=-4+5x-x2+72 sin-1 2x-541+C

Q4.

Answer :

Let I=∫6x-53×2-5x+1dxPutting 3×2-5x+1=t⇒6x-5 dx=dtThen,I=∫dtt=2t+C=23×2-5x+1+C

Q5.

Answer :

Let I=∫3x+1 dx5-2x-x2Consider, 3x+1=A ddx 5-2x-x2+B⇒3x+1=A -2-2x+B⇒3x+1=-2A x-2A+BEquating Coefficients of like terms-2A=3⇒A=-32And-2A+B=1⇒-2×-32+B=1⇒B=1-3⇒B=-2∴I=∫-32 -2-2x-25-2x-x2dx=-32∫-2-2x dx5-2x-x2-2∫dx5-2x-x2=-32∫-2-2x dx5-2x-x2-2∫dx5-x2+2x=-32∫-2-2x dx5-2x-x2-2∫dx5-x2+2x+1-1=-32∫-2-2x dx5-2x-x2-2∫dx6-x+12=-32∫-2-2x dx5-2x-x2-2∫dx62-x+12let 5-2x-x2=t⇒-2-2x dx=dt∴I=-32∫dtt-2∫dx62-x+12=-32×2t-2 sin-1 x+16+C=-35-2x-x2-2 sin-1 x+16+C

Q6.

Answer :

Let I=∫x dx8+x-x2Consider, x=Addx 8+x-x2+Bx=A 1-2x+Bx=-2A x+A+BEquating Coefficients of like terms-2A=1⇒A=-12AndA+B=0⇒-12+B=0⇒B=12∴x=-12 1-2x+12Then,I=-12∫1-2x dx8+x-x2+12∫dx8+x-x2=-12∫1-2x dx8+x-x2+12∫dx8-x2-x=-12∫1-2x dx8+x-x2+12∫dx8-x2-x+14-14=-12∫1-2x dx8+x-x2+12∫dx8+14-x-122=-12∫1-2x dx8+x-x2+12∫dx3322-x-122let 8+x-x2=t⇒1-2x dx=dt∴I=-12∫dtt+12∫dx3322-x-122=-12×2t+12 sin-1 x-12332+C=-t+12 sin-1 2x-133+C=-8+x-x2+12 sin-1 2x-133+C

Q7.

Answer :

Let I=∫x+2 dxx2+2x-1Consider,x+2=A ddx x2+2x-1+B⇒x+2=A 2x+2+B⇒x+2=2A x+2A+BEquating Coefficients of like terms2A=1⇒A=12And2A+B=2⇒2×12+B=2⇒B=1Then,I=∫12 2x+2+1×2+2x-1dx=12∫2x+2 dxx2+2x-1+∫dxx2+2x-1let x2+2x-1=t⇒2x+2 dx=dt∴I=12∫dtt+∫dxx2+2x-1=12∫t-12dt+∫dxx2+2x+1-2=12 t-12+1-12+1+∫dxx+12-22=t+ log x+1+x+12-22+C=x2+2x-1+ log x+1+x2+2x-1+C

Q8.

Answer :

Let I=∫x+2×2-1dx=∫xx2-1dx+2∫dxx2-1let x2-1=t⇒2x dx=dt⇒x dx=dt2Then,I=12∫dtt+2∫dxx2-12=12∫t-12 dt+2∫dxx2-12=12 t-12+1-12+1+2 log x+x2-1+C=t+2 log x+x2-1+C=x2-1+2 log x+x2-1+C

Q9.

Answer :

Let I=∫x-1×2+1 dx=∫x dxx2+1-∫dxx2+1Putting x2+1=t⇒2x dx=dt⇒x dx=dt2Then,I=12∫dtt-∫dxx2+12=12∫t-12dt-∫dxx2+12=12 t-12+1-12+1-∫dxx2+12=t- log x+x2+1+C=x2+1- log x+x2+1+C

Q10.

Answer :

Let I=∫x dxx2+x+1Consider,x=A ddx x2+x+1+B⇒x=A 2x+1+B⇒x=2A x+A+BEquating Coefficient of like terms2A=1⇒A=12AndA+B=0⇒12+B=0⇒B=-12∴I=∫12 2x+1-12×2+x+1 dx=12∫2x+1×2+x+1dx-12∫dxx2+x+14-14+1Putting x2+x+1=t⇒2x+1 dx=dtThen,I=12∫dtt-12∫dxx+122+322=12∫t-12 dt-12 log x+12+x+122+322+C=12t-12+1-12+1-12 log x+12+x2+x+1+C=t-12 log x+12+x2+x+1+C=x2+x+1-12 log x+12+x2+x+1+C

Q11.

Answer :

Let I=∫x+1×2+1 dx=∫x dxx2+1+∫dxx2+1Putting, x2+1=t⇒2x dx=dt⇒x dx=dt2Then,I=12∫dtt+∫dxx2+1=12∫t-12dt+∫dxx2+1=12 t-12+1-12+1+log x+x2+1+C=t+ log x+x2+1+C=x2+1+ log x+x2+1+C

Q12.

Answer :

Let I=∫2x+5 dxx2+2x+5Consider,2x+5=A ddx x2+2x+5+B⇒2x+5=A 2x+2+B⇒2x+5=2A x+2A+BEquating Coefficients of like terms2A=2⇒A=1And 2A+B=5⇒B=3∴I=∫2x+2+3×2+2x+5 dx=∫2x+2 dxx2+2x+5+3∫dxx2+2x+5let x2+2x+5=t⇒2x+2 dx=dtThen,I=∫dtt+3∫dxx2+2x+1+4=∫t-12 dt+3 ∫dxx+12+22=t-12+1-12+1+3 log x+1+x+12+4+C=2t+3 log x+1+x2+2x+5+C=2×2+2x+5+3 log x+1+x2+2x+5+C

Q13.

Answer :

Let I=∫3x+1 dx5-2x-x2Consider,3x+1=A ddx 5-2x-x2+B⇒3x+1=A -2-2x+B⇒3x+1=-2A x+-2A+BEquating Coefficients of like terms-2A=3⇒A=-32And-2A+B=1⇒-2×-32+B=1⇒B=-2∴I=∫-32 -2-2x-25-2x-x2 dx=-32∫-2-2x dx5-2x-x2-2∫dx5-2x-x2=-32∫-2-2x dx5-2x-x2-2∫dx5-x2+2x=-32∫-2-2x dx5-2x-x2-2∫dx5-x2+2x+1-1=-32∫-2-2x dx5-2x-x2-2 ∫dx6-x+12=-32∫-2-2x dx5-2x-x2-2∫dx62-x+12Putting, 5-2x-x2=t⇒-2-2x dx=dtThen,I=-32∫dtt-2 sin-1 x+16+C1=-32×2t-2 sin-1 x+16+C=-35-2x-x2-2 sin-1 x+16+C

Q14.

Answer :

Let I=∫1-x1+x dx=∫1-x1-x1+x1-x dx=∫1-x1-x2 dx=∫dx1-x2-∫x dx1-x2Putting 1-x2=t⇒-2x dx=dt⇒x dx =-dt2Then,I=∫dx1-x2+12∫dtt=sin-1 x+12×2t+C=sin-1 x+1-x2+C

Q15.

Answer :

Let I=∫2x+1 dxx2+4x+3Consider,2x+1=A ddx x2+4x+3+B⇒2x+1=A 2x+4+B⇒2x+1=2A x+4A+BEquating Coefficients of like terms2A=2⇒A=1And4A+B=1⇒4+B=1⇒B=-3∴I=∫2x+4-3×2+4x+3dx=∫2x+4 dxx2+4x+3 -3∫dxx2+4x+4-4+3=∫2x+4 dxx2+4x+3-3∫dxx+22-12Let x2+4x+3=t⇒2x+4 dx=dtThen,I=∫dtt-3∫dxx+22-12=∫t-12 dt-3 ∫dxx+22-12=t-12+1-12+1-3 log x+2+x+22-1+C=2t-3 log x+2+x2+4x+3+C=2×2+4x+3-3 log x+2+x2+4x+3+C

Q16.

Answer :

Let I=∫2x+3 dxx2+4x+5=∫2x+4-1×2+4x+5dx=∫2x+4 dxx2+4x+5-∫dxx2+4x+5=∫2x+4 dxx2+4x+5-∫dxx+22+1Consider, x2+4x+5=t⇒2x+4 dx=dt∴I=∫dtt-∫dxx+22+12=∫t-12 dt-∫dxx+22+12=t-12+1-12+1- log x+2+x+22+1+C=2×2+4x+5- log x+2+x2+4x+5+C

Q17.

Answer :

Let I=∫5x+3 dxx2+4x+10Consider,5x+3=A ddx x2+4x+10+B⇒5x+3=A 2x+4+B⇒5x+3=2A x+4A+BEquating Coefficients of like terms2A=5⇒A=52And4A+B=3⇒4×52+B=3⇒B=-7∴I=52∫2x+4 dxx2+4x+10-7∫dxx2+4x+10=52∫2x+4 dxx2+4x+10 -7∫dxx2+4x+4-4+10=52∫2x+4 dxx2+4x+10-7∫dxx+22+62Putting, x2+4x+10=t⇒2x+4 dx=dtThen,I=52∫dtt-7 log x+2+x+22+6+C=52∫t-12 dt-7 log x+2+x2+4x+10+C=52×2t-7 log x+2+x2+4x+10+C=5×2+4x+10-7 log x+2+x2+4x+10+C

 

Page 19.103 Ex.19.17

Q1.

Answer :

Let I =∫ 14 cos2 x+9 sin2 xdxDividing numerator and denominator by cos2 x⇒I=∫ 1cos2 x4+9 tan2 xdx =∫ sec2 x 4+9 tan2 xdxLet tan x=t⇒sec2 x dx=dt∴I =∫ dt4+9t2 =19∫ dt49+t2 =19∫ dt232+t2 =19×32tan-1 t23+C =16tan-1 3t2+C =16tan-1 3 tan x2+C

Q2.

Answer :

Let I=∫14 sin2 x+5 cos2 xdxDividing numerator & denominator by cos2 x⇒I=∫sec2 x 4 tan2 x+5dxLet tan x=t⇒sec2 x dx=dt∴I=∫ dt4t2+5 =14∫ dtt2+54 =14∫dtt2+522 =14×25 tan-1 t5×2+C =125tan-1 2 tan x5+C

Q3.

Answer :

Let I=∫ 2 2+sin 2xdx =∫ 2 2+2 sin x cos xdx =∫ 11+sin x cos xdxDividing numerator and denominator by cos2 x⇒I=∫ sec2 x dxsec2 x+tan x =∫ sec2 x dx1+tan2 x+tan xLet tan x=t⇒sec2 x dx=dt∴I=∫ dtt2+t+1 =∫dtt2+t+14-14+1 =∫ dtt+122+322 =23tan-1 t+1232+C =23tan-1 2t+13+C =23tan-1 2 tan x+13+C

Q4.

Answer :

Let I=∫ cos x cos 3xdx =∫cos x4 cos3x-3 cos xdx cos 3A=4 cos3 A-3 cos A =∫ 14 cos2 x-3dxDividing numerator and denominator by cos2 x⇒I=∫ sec2 x4-3 sec2 x dx =∫ sec2 x4-31+tan2 x dx =∫ sec2 x1-3 tan2 x dx =∫ sec2 x 1-3 tan x2 dxLet 3 tan x=t⇒3 sec2 x dx=dt⇒sec2 x dx=dt3∴I=13 ∫ dt12-t2 =13×12ln 1+t1-t+C =123ln 1+3 tan x1-3 tan x+C

Q5.

Answer :

Let I=∫ 11+ 3 sin2 xdxDividing numerator and denominator by cos2 x⇒I=∫ sec2 xsec2 x+3 tan2 xdx =∫ sec2 x 1+tan2 x+3 tan2 xdx =∫ sec2 x 1+4 tan2 xdx =∫ sec2 x 1+2 tan x2dxLet 2 tan x=t⇒2 sec2 x dx=dt⇒sec2 x dx=dt2∴I=12∫ dt1+t2 =12 tan-1 t+C =12 tan-1 2 tan x+C

Q6.

Answer :

Let I=∫ 13+2 cos2 xdxDividing numerator and denominator by cos2 x⇒I=∫ sec2 x3 sec2 x+2 dx =∫ sec2 x 3 1+tan2 x+2dx =∫ sec2 x 3 tan2 x+5dx =∫ sec2 x 52+3 tan x2dxLet 3 tan x=t⇒3 sec2 x dx=dt⇒sec2 x dx=dt3∴I=13∫ dt52+t2 =13×15 tan-1 t5+C =115 tan-1 3 tan x5+C

Q7.

Answer :

Let I=∫ 1sin x-2 cos x 2 sin x+cos xdxDividing numerator and denominator by cos2 x⇒I=∫ sec2 x sin x-2 cos xcos x×2 sin x+cos xcos xdx =∫ sec2 x tan x-2 2 tan x+1dxLet tan x=t⇒sec2 x dx=dt∴I=∫ dtt-2 2t+1 =∫ dt2t2+t-4t-2 =∫ dt2t2-3t-2 =12∫ dtt2-32t-1 =12∫ dtt2-32t+342-342-1 =12∫ dtt-342-916-1 =12∫ dtt-342-542 =12×12×54 log t-34-54t-34+54+C =15 ln t-2t+12+C =15ln t-222t+1+C =15ln t-22t+1+15 ln 2+C =15 ln t-22t+1+C’ where C’=C+15ln 2 =15 ln tan x-22 tan x+1+C

Q8.

Answer :

Let I=∫ sin 2xsin4 x+cos4 x dx =∫ 2 sin x cos xsin4 x+cos4 x dxDividing numerator & denominator by cos4 x⇒I=∫ 2 sin x cos xcos4 xtan4 x+1dx =∫ 2 tan x. sec2 xtan2 x2+1 dxLet tan2 x=t⇒2 tan x sec2 x dx=dt=∫ dtt2+1∴I=tan-1 t+C =tan-1 tan2 x+C

Q9.

Answer :

Let I=∫ 1cos xsin x+2 cos xdxDividing numerator and denominator by cos2 x⇒I=∫ sec2 x cos xcos x×sin x+2 cos xcos xdx =∫ sec2 x tan x+2dxLet tan x+2=t⇒sec2 x dx=dt∴I=∫ dtt =ln t+C =ln tan x+2+C

Q10.

Answer :

Let I=∫ 1sin2 x+sin 2xdx =∫ 1sin2 x+2 sin x cos xdxDividing numerator and denominator by cos2 x⇒I=∫ sec2 x tan2 x+2 tan xdxLet tan x=t⇒sec2 x dx=dt∴ I=∫ dtt2+2t =∫ dtt2+2t+1-1 =∫ dtt+12–12 =12ln t+1-1t+1+1+C =12ln tt+2+C =12ln tan xtan x+2+C

Q11.

Answer :

Let I=∫ 1cos 2x+3 sin2 xdx =∫ 11-2 sin2 x+3 sin2 xdx =∫ 11+sin2 xdxDividing numerator and denominator by cos2 x⇒I=∫sec2 x sec2 x+tan2 xdx =∫sec2 x 1+tan2 x+tan2 xdx =∫ sec2 x 1+2 tan2dx =∫ sec2 x 1+2 tan x2dxLet 2 tan x=t⇒2 sec2 x dx=dt⇒sec2 x dx=dt2∴I=12 ∫ dt1+t2 =12 tan-1 t+C =12 tan-1 2 tan x+C

 

Page 19.105 Ex.19.18

Q1.

Answer :

Let I=∫ 15+4 cos xdxPutting cos x= 1-tan2 x21+tan2 x2 I =∫ 15+41-tan2 x21+tan2 x2dx =∫ 1+tan2 x25 1+tan2 x2+41-tan2 x2dx =∫ sec2 x2 dx5+5 tan2 x2+4-4 tan2 x2 =∫ sec2 x2 dxtan2 x2+9Let tan x2=t⇒12 sec2 x2dx=dt⇒sec2 x2dx=2dt∴I=2 ∫ dtt2+32 =23tan-1 t3+C =23tan-1 tan x23+C

Q2.

Answer :

Let I=∫ 15-4 sin xdxPutting sin x= 2 tan x21+tan2 x2⇒I=∫ 15-4×2 tan x21+tan2 x2dx =∫ 1+tan2 x251+tan2 x2-8 tan x2dx =∫ sec2 x2 5 tan2 x2-8 tan x2+5dxLet tan x2=t⇒12 sec2x2dx=dt⇒sec2 x2dx=2dt∴I=2 ∫ dt5t2-8t+5 =25∫ dtt2-85t+1 =25∫ dtt2-85t+452-452+1 =25 ∫ dtt-452-1625+1 =25 ∫ dtt-452+352 =25×53 tan-1 t-4535+C =23 tan-1 5t-43+C =23tan-1 5 tan x2-43+C

Q3.

Answer :

Let I = ∫ 11-2 sin xdxPutting sin x=2 tan x21+tan2 x2⇒I =∫11-2 ×2 tan x21+tan2 x2dx =∫ 1+tan2 x2 1+tan2 x2-4 tan x2dx =∫ sec2 x2tan2 x2-4 tan x2+1 dxLet tan x2=t⇒sec2 x2×12dx=dt⇒sec2 x2dx=2dt∴I=2∫ dtt2-4t+1 =2∫ dtt2-4t+4-4+1 =2 ∫ dtt-22-3 =2 ∫ dtt-22-32 =2×123ln t-2-3t-2+3+C =13ln tan x2-2-3tan x2-2+3+C

Q4.

Answer :

Let I =∫ 14 cos x-1dxPutting cos x= 1-tan2 x21+tan2 x2⇒I=∫ 141-tan2 x21+tan2 x2-1dx =∫ 141-tan2 x2-1+tan2 x21+tan2 x2 =∫ 1+tan2 x2dx4-4 tan2 x2-1-tan2 x2 =∫ sec2 x2 dx3-5 tan2 x2Let tan x2=t⇒12 sec2 x2dx=dt⇒ sec2 x2dx=2dt∴I=2 ∫ dt3-5 t2 =25 ∫ dt35-t2 =25 ∫ dt352-t2 =25×523ln 35+t35-t+C =115ln 3+5 t3-5 t+C =115ln 3+5 tan x23-5 tan x2+C

 

Page 19.106 Ex.19.18

Q5.

Answer :

Let I=∫ 11-sin x+cos xdxPutting sin x=2 tan x21+tan2 x2 and cos x=1-tan2 x21+tan2 x2 =∫ 11-2 tan x21+tan2 x2+1-tan2 x21+tan2 x2dx =∫ 1+tan2 x21+tan2 x2-2 tan x2+1-tan2 x2dx =∫ sec2 x22-2 tan x2dx =12∫ sec2 x21-tan x2dxLet 1-tan x2=t⇒-sec2 x2×12dx=dt⇒sec2 x2dx=-2dt∴I=12 ∫ -2 dtt =-∫ dtt =- ln t+C =-ln 1-tan x2+C

Q6.

Answer :

Let I=∫ 13+2 sin x+cos xdxPutting sin x=2 tan x21+tan2 x2and cos x=1-tan2 x21+tan2 x2⇒I =∫ 13+2×2 tan x21+tan2 x2+1-tan2 x21+tan2 x2dx =∫ 1+tan2 x231+tan2 x2+4 tan x2+1-tan2 x2dx =∫ sec2 x23+3 tan2 x2+4 tan x2+1-tan2 x2 dx =∫ sec2 x22 tan2 x2+4 tan x2+4dx =12∫ sec2 x2tan2 x2+2 tan x2+2dxLet tan x2=t⇒ sec2 x2×12 dx=dtsec2 x2dx=2dt∴I=12 ∫ 2 dtt2+2 t+2 =∫ dtt2+2t+1+1 =∫ dtt+12+12 =tan-1 t+11+C =tan-1 1+tan x2+C

Q7.

Answer :

Let I=∫ 113+3 cos x+4 sin xdxPutting cos x =1-tan2 x21+tan2 x2 and sin x=2tan x21+tan2 x2∴I =∫ 113+3 1-tan2 x21+tan2 x2+4×2tan x21+tan2 x2dx =∫ 1+tan2 x2131+tan2 x2+3-3 tan2 x2+8 tan x2 dx =∫ sec2 x2 13 tan2 x2-3 tan2 x2+16+8 tan x2dx =∫ sec2 x2 10 tan2 x2+8 tan x2+16dxLet tan x2=t⇒12 sec2 x2dx=dt⇒sec2 x2dx=2dt∴I=∫ 2 dt10t2+8t+16 =∫ dt5t2+4t+8 =15 ∫ dtt2+45t+85 =15∫ dtt2+45t+252-252+85 =15∫ dtt+252-425+85 =15∫ dtt+252+-4+4025 =15∫ dtt+252+652 =15×56tan-1 t+2565+C =16tan-1 5t+26+C =16 tan-1 5 tan x2+26+C

Q8.

Answer :

Let I=∫ dxcos x-sin xPutting cos x=1-tan2 x21+tan2 x2 and sin x=2 tan x21+tan2 x2⇒I=∫ dx1-tan2 x21+tan2 x2-2 tan x21+tan2 x2     =∫ sec2 x2dx1-tan2 x2-2 tan x2Let tan x2=t⇒12 sec2 x2dx=dtsec2 x2dx=2 dt∴I=∫ 2 dt1-t2-2t     =∫ -2 dtt2+2t-1     =∫ -2dtt2+2t+1-2     =-∫ 2dtt+12-22     =∫ 2dt22-t-12     =222ln 2+t+12-t-1+C     =12 ln 2+tan x2+12-tan x2-1+C

Q9.

Answer :

Let I=∫1sin x+cos xdxPutting sin x =2 tan x21+tan2 x2 and cos x=1-tan2 x21+tan2 x2 =∫ 12 tan x21+tan2 x2+1-tan2 x21+tan2 x2dx =∫ sec2 x21-tan2 x2+2 tan x2 dxLet tan x2=t⇒ 12sec2 x2dx=dt⇒sec2 x2dx=2dt∴I=2∫ dt1-t2+2t =-2 ∫ dtt2-2t-1 =-2 ∫ dtt2-2t+1-2 =2∫ dt22-t-12 =2×122ln 2+t-12-t+1+C =12ln 2+tan x2-12-tan x2+1+C

Q10.

Answer :

Let I=∫ 15-4 cos xdxPutting cos x=1-tan2 x21+tan2 x2 ⇒I=∫ 15-4 1-tan2 x21+tan2 x2dx =∫ 1+tan2 x25 1+tan2 x2-4+4 tan2 x2dx =∫ sec2 x2 9 tan2 x2+1dxLet tan x2=t⇒12 sec2 x2dx=dt⇒sec2 x2dx=2dt∴I=2∫dt9t2+1 =29∫dtt2+19 =29∫ dtt2+132 =29×3 tan-1 t13+C =23 tan-1 3t+C =23 tan-1 3 tan x2+C

Q11.

Answer :

Let I=∫ 12+sin x+cos xdxPutting sin x=2 tan x21+tan2 x2 and cos x=1-tan2 x21+tan2 x2⇒I =∫ 12+2 tan x21+tan2 x2+1-tan2 x21+tan2 x2dx =∫ 1+tan2 x2 21+tan2 x2+2 tan x2+1-tan2 x2dx =∫ sec2 x2 2+2tan2 x2+2 tan x2+1-tan2 x2dx =∫ sec2 x2 tan2 x2+2 tan x2+3dxLet tan x2=t⇒12 sec2 x2dx=dt⇒sec2 x2dx=2dt∴ I=2∫ dtt2+2t+3 =2∫ dtt2+2t+1+2 =2∫ dtt+12+22 =2×12 tan-1 t+12+C =2 tan-1 tan x2+12+C

Q12.

Answer :

Let I=∫ 1sin x+3 cos xdxPutting sin x=2 tan x21+tan2 x2 and cos x=1-tan2 x21+tan2 x2⇒I =∫ 12 tan x21+tan2 x2+31-tan2 x21+tan2 x2dx =∫ 1+tan2 x2 2 tan x2+3-3tan2 x2dx =∫sec2 x2-3tan2 x2+2 tan x2+3dx

Let tan x2=t⇒12 sec2 x2dx=dt⇒sec2 x2dx=2dt∴ I=2∫ dt-3t2+2t+3=-23∫ dtt2-23t-1=-23∫dtt2-23t+132-132-1=-23∫ dtt-132-232=-23 ×1223log t-13-23t-13+23+C

=-12log t-33t+13+C=-12log 3t-33t+1+C=12log 3t+13t-3+C=12log 3tanx2+13tanx2-3+Cor, 12log 1+3tanx23-3tanx2+C

Q13.

Answer :

Let I=∫ dx3 sin x+cos xPutting sin x=2 tan x21+tan2 x2 and cos x=1-tan2 x21+tan2 x2⇒I =∫ 132 tan x21+tan2 x2+1-tan2 x21+tan2 x2dx =∫ 1+tan2 x2 23 tan x2+1-tan2 x2dx =∫sec2 x2-tan2 x2+23 tan x2+1dx

Let tan x2=t⇒12 sec2 x2dx=dt⇒sec2 x2dx=2dt∴ I=2∫ dt-t2+23t+1=-2∫ dtt2-23t-1=-2∫dtt2-23t+32-32-1=-2∫ dtt-32-22=-22×2log t-3-2t-3+2+C

=-12logtanx2-2-3tanx2+2-3+C=12logtanx2+2-3tanx2+2-3+C

Q14.

Answer :

Let I=∫ dxsin x-3 cos xPutting sin x=2 tan x21+tan2 x2 and cos x=1-tan2 x21+tan2 x2⇒I =∫ 12 tan x21+tan2 x2-31-tan2 x21+tan2 x2dx =∫ 1+tan2 x2 2 tan x2-3+3tan2 x2dx =∫sec2 x23tan2 x2+2 tan x2-3dx

Let tan x2=t⇒12 sec2 x2dx=dt⇒sec2 x2dx=2dt∴ I=2∫ dt3t2+2t-3=23∫ dtt2+23t-1=2∫dtt2+23t+132-1-132=2∫ dtt+132-232=22×23log t+13-23t+13+23+C
=32log tanx2-13tanx2+33+C=32log 3 tanx2-13 tanx2+3+C

Q15.

Answer :

Let I=∫ 15+7 cos x+sin xdxPutting cos x=1-tan2 x21+tan2 x2 and sin x=2 tan x21+tan2 x2 ⇒I = ∫ 15+7 1-tan2 x21+tan2 x2+2 tan x21+tan2 x2 dx =∫ sec2 x251+tan2 x2+7-7 tan2 x2+2 tan x2dx =∫ sec2 x2-2 tan2 x2+2 tan x2+12dxLet tan x2=t⇒12 sec2 x2dx=dt⇒sec2 x2dx=2dt∴I=∫ 2 dt-2t2+2t+12 =∫ dt-t2+t+6 =∫ -dtt2-t-6 =∫ -dtt2-t+122-122-6 =∫ -dtt-122-14-6 =∫ -dtt-122-522 =∫ dt522-t-122 =12×52log 52+t-1252-t+12+C =15log 2+t3-t+C =15log 2+tan x23-tan x2+C

 

Page 19.110 Ex.19.19

Q1.

Answer :

Let I= ∫11-cot xdx =∫11-cos xsin xdx =∫sin xsin x-cos xdx =12∫2 sin xsin x-cos x dx =12∫sin x+cos x+sin x-cos xsin x-cos xdx =12∫sin x+cos xsin x-cos xdx+12∫dxPutting sin x -cos x =t⇒cos x+sin x dx=dt∴ I=12∫1tdt+12∫dx =12 ln t+x2+C =x2+12 ln sin x-cos x+C

Q2.

Answer :

Let I= ∫11-tan xdx =∫11-sin xcos xdx =∫cos x cos x-sin xdx =12∫2 cos x cos x-sin xdx =12∫cos x+sin x+cos x-sin xcos x-sin xdx =12∫cos x+sin xcos x-sin xdx+12∫dxPutting cos x-sin x=t⇒-sin x-cos xdx=dt⇒sin x+cos xdx=-dt∴ I=-12∫dtt+x2+C =-12 ln cos x-sin x+x2+C =x2-12 ln cos x-sin x+C

Q3.

Answer :

Let I=∫3+2 cos x +4 sin x 2 sin x+cos x+3dxLet 3+2 cos x+4 sin x=A 2 sin x+cos x+3 +B 2 cos x-sin x +C⇒3+2 cos x+4 sin x=2A-B sin x+A+2B cos x+3A+C

Comparing the coefficients of like terms
2A-B=4 … 1A+2B=2 … (2)3A+C=3 … (3)

Multiplying eq (1) by 2 and adding it to eq (2) we get ,
⇒4A-2B+A+2B=8+2⇒5A=10⇒A=2

Putting value of A = 2 in eq (1)

⇒2×2-B=4⇒B=0Putting value of A in eq (3) ⇒3×2+C=3⇒ C=-3

∴ I=∫2 2 sin x+cos x+3-32 sin x+cos x+3dx =2∫dx-3∫12 sin x+cos x+3dxSubstituting sin x=2 tan x21+tan2 x2 and cos x =1-tan2 x21+tan2 x2∴ I=2∫dx-3∫12×2 tan x21+tan2 x2+1-tan2 x21+tan2 x2+3dx =2∫dx-3∫1+tan2 x2 4 tan x2+1-tan2 x2+3 1+tan2 x2dx =2∫dx-3∫sec2 x22 tan2 x2+4 tan x2+4 dx =2∫dx-32∫sec2 x2 tan2 x2+2 tan x2+2dxPutting tan x2=t⇒12 sec2 x2 dx=dt⇒sec2 x2 dx=2dt∴ I=2∫dx-32∫2t2+2t+2 dt =2∫dx-3∫1t2+2t+1+1dt =2∫dx-3∫1t+12+12dt =2x-31 tan-1 t+11+C =2x-3 tan-1 tan x2+1+C ∵ t= tan x2

Q4.

Answer :

Let I=∫dxp+q tan x =∫1p+q sin xcos xdx =∫cos x q sin x+p cos xdxLet cos x=A q sin x+p cos x+B q cos x-p sin x⇒cos x=Ap+Bq cos x+Aq-Bp sin x

Comparing coefficients of like terms

Ap+Bq=1 … 1Aq-Bp=0 … 2

Multiplying eq (1) by p and eq (2) by q and then adding

⇒Ap2+Bpq=p⇒Aq2-Bpq=0⇒A=pp2q2

Putting value of A in eq (1)
p2p2+q2+Bq=1⇒Bq=1-p2p2+q2⇒Bq=p2+q2-p2p2+q2⇒B=qp2+q2∴ I=∫pp2+q2×q sin x+p cos xq sin x +p cos x+qp2+q2×q cos x-p sin xq sin x+p cos xdx =pp2+q2∫dx+qp2+q2∫q cos x-p sin xq sin x +p cos xdxPutting q sin x+p cos x=t⇒q cos x-p sin x dx=dt∴ I=pp2+q2∫dx+qp2+q2∫1tdt =pp2+q2 x+qp2+q2 ln q sin x+p cos x+C

Q5.

Answer :

Let I=∫5 cos x+62 cos x+sin x+3dx& let 5 cos x+6=A 2 cosx+sin x+3+B-2 sin x+cos x+C ….(1) ⇒5 cos x+6=A-2B sin x+2A+B cos x +3A+C

Comparing coefficients of like terms

A-2B=0 … 22A+B=5 … (3)3A+C=6 … (4)

Multiplying eq (3) by 2 and then adding to eq (2)

4A + 2B + A – 2B = 10
⇒A = 2

Putting value of A in eq (2) and eq (4) we get,
B = 1& C = 0

By putting the values of A,B and C in eq (1) we get ,∴ I=∫2 2 cos x+sin x+3+-2 sin x+cos x2 cos x+sin x+3dx =2∫dx+∫ -2 sin x+cos x2 cos x+sin x+3dxPutting 2 cos x+sin x+3=t⇒-2 sin x+cos xdx=dt∴ I=2∫dx+∫1tdt =2x+ln 2 cos x+sin x+3+C

Q6.

Answer :

Let I=∫2 sin x+3 cos x3 sin x+4 cos xdx& let 2 sin x+3 cos x=A 3 sin x+4 cos x+B 3 cos x-4 sin x …(1)⇒2 sin x+3 cos x=3A-4B sin x+4A+3B cos x

By comparing the coefficients of like terms we get,

3A-4B=2 … 24A-3B=3 … 3

Multiplying eq (2) by 3 and eq (3) by 4 and then adding,

9A-12B+16A+12B=6+12⇒25A=18⇒A=1825Putting value of A=1825 in eq 2 we get,3×1825-4B=2⇒5425-2=4B⇒425×4=B⇒B=125
Thus, substituting the values of A,B and C in eq (1) we get ,

I =∫18253 sin x+4 cos x+125 3 cos x-4 sin x3 sin x+4 cos xdx =1825∫dx+125∫3 cos x-4 sin x3 sin x+4 cos xdxPutting 3 sin x+4 cos x=t⇒3 cos x-4 sin x dx=dt∴ I=1825∫dx+125∫1tdt =18×25+125 ln t+C =18×25+125 ln 3 sin x+4 cos x+C

 

Page 19.111 Ex.19.19

Q7.

Answer :

Let I=∫13+4 cot xdx =∫13+4 cos xsin xdx =∫sin x 3 sin x+4 cos xdxLet sin x=A3 sin x+4 cos x+B 3 cos x-4 sin x …(1)⇒sin x=3A-4B sin x+4A+3B cos xBy comparing the coefficients of both sides we get ,3A-4B=1 … 24A+3B=0 … 3

Multiplying eq (2) by 3 and equation (3) by 4 , then by adding them we get

9A-12B+16A+12B=3+0⇒25A=3⇒A=325Putting value of A in eq 3 we get,4×325+3B=0⇒3B=-1225⇒B=-425
Thus, by substituting the value of A and B in eq (1) we getI=∫3253 sin x+4 cos x-4253 cos x-4 sin x3 sin x+4 cos xdx =325∫dx-425∫3 cos x-4 sin x3 sin x+4 cos xdxPutting 3 sin x+4 cos x=t⇒3 cos x-4 sin xdx=dt∴I=325∫dx-425∫dtt =325x-425 ln t+C =3×25-425 ln 3 sin x+4 cos x+C

Q8.

Answer :

Let I=∫2 tan x+33 tan x+4dx =∫2 sin xcos x+33 sin xcos x+4dx =∫2 sin x+3 cos x3 sin x+4 cos xdxLet 2 sin x+3 cos x=A 3 sin x+4 cos x+B 3 cos x-4 sin x ….(1) ⇒2 sin x+3 cos x=3A-4B sin x+4A+3B cos xEquating the coefficients of like terms3A-4B=2 … 24A+3B=3 … 3

Multiplying equation (2) by 3 and equation (3) by 4 ,then by adding them we get

9A-12B=616A+12B=12 25A=18⇒A=1825Putting value of A in eq 2 we get,⇒B=125
Thus, by substituting the values of A and B in eq (1) we get,I= ∫1825 3 sin x+4 cos x+1253 cos x-4 sin x3 sin x+4 cos xdx =1825∫dx+125∫3 cos x-4 sin x3 sin x+4 cos xdxPutting 3 sin x+4 cos x=t⇒3 cos x-4 sin xdx=dt∴ I=1825x+125∫1tdt =18×25+125 ln t+C =18×25+125 ln 3 sin x+4 cosx+C

Q9.

Answer :

Let I=∫dx4 +3 tan x=∫dx4+3 sin xcos x=∫cos x dx4 cos x+3 sin xConsider,cos x=A 4 cos x+3 sin x+Bddx4 cos x+3 sin x⇒cos x=A 4 cos x+3 sin x+B -4 sin x+3 cos x⇒cos x=4A+3B cos x+3A-4B sin xEquating the coefficients of like terms4A+3B=1 …..13A-4B=0 …..2
Solving (1) and (2), we get
A=425 and B=325
∫4254 cos x+3 sin x+-4 sin x+3 cos x3254 cos x+3 sin xdx=425∫dx+325∫-4 sin x+3 cos x4 cos x+3 sin xdxlet 4 cos x+3 sin x=t⇒-4 sin x+3 cos xdx=dtThen,I=425∫dx+325∫dtt=4×25+325 log t+C=4×25+325 log 4 cos x+3 sin x+C

Q10.

Answer :

Let I=∫8 cot x+13 cot x+2dx =∫8 cos xsin x+13 cos xsin x+2dx =∫8 cos x+sin x3 cos x+2 sin xdxNow, let 8 cos x+sin x=A 3 cos x+2 sin x+B -3 sin x+2 cos x …(1) ⇒8 cos x+sin x=3A cos x+2A sin x-3B sin x+2B cos x ⇒8 cos x+sin x=3A+2B cos x+2A-3B sin x Equating the coefficients of like terms we get, 2A-3B=1 … 23A+2B=8 … 3

Solving eq (2) and eq (3) we get,
A = 2, B = 1
Thus, by substituting the values of A and B in eq (1) we get ,
I=∫2 3 cos x+2 sin x+1-3 sin x+2 cos x3 cos x+2 sin xdx =2∫3 cos x+2 sin x3 cos x+2 sin xdx+∫-3 sin x+2 cos x3 cos x+2 sin xdx =2∫dx+∫-3 sin x+2 cos x3 cos x+2 sin xdxPutting 3 cos x+2 sin x=t⇒-3 sin x+2 cos xdx=dt∴ I=2∫dx+∫1tdt =2x+ln t+C =2x+ln 3 cos x+2 sin x+C

Q11.

Answer :

Let I=∫4 sin x+5 cos x5 sin x+4 cos xdx& let 4 sin x+5 cos x=A 5 sin x+4 cos x+B 5 cos x-4 sin x …(1) ⇒4 sin x+5 cos x=5A-4B sin x+4A+5B cos xBy equating the coefficients of like terms we get, 5A-4B=4 … 24A+5B=5 … 3

By solving eq (2) and eq (3) we get,
A=4041, B=941Thus, by substituting the values of A and B in eq (1) , we getI=∫40415 sinx +4 cos x+9415 cos x-4 sin x5 sin x+4 cos xdx =4041∫dx+941∫5 cos x-4 sin x5 sin x+4 cos xdxPutting 5 sin x+4 cos x=t⇒5 cos x-4 sin xdx=dt∴I=4041x+941∫1tdt =40 41x+941 ln t+C =4041x+941 ln 5 sin x+4 cos x+C

 

Page 19.121 Ex.19.20

Q1.

Answer :

∫ x cosx dxTaking x as the first function and cos x as the second function.= x∫cosx dx-∫ddxx∫cosx dxdx= x sinx-∫sinx dx= x sinx+cosx+C

Q2.

Answer :

∫ log x+1dx= ∫1. log x+1dxTaking log x+1 as the first function and 1 as the second function.= log x+1∫1 dx-∫ddxlogx+1∫1 dxdx= x log x+1-∫xx+1dx= x log x+1-∫x+1x+1-1x+1dx= x log x+1-x+log x+1+C

Q3.

Answer :

∫x3 logx dxTaking log x as the first function and x3 as the second function.= logx∫x3dx-∫ddxlogx∫x3dxdx= log xx44-∫1xx44dx= x4x logx-x416+C

Q4.

Answer :

∫xex dxTaking x as the first function and ex as the second function.=x∫exdx-∫ddxx∫ex dxdx= xex-∫1exdx= xex-ex+C= x-1ex+C

Q5.

Answer :

∫xe2x dxTaking x as the first function and e2x as the second function .= x∫e2xdx-∫ddxx∫e2x dxdx= x e2x2-∫e2x2dx= x2e2x-e2x4+C= e2xx2-14+C

Q6.

Answer :

∫x2 e-x dxTaking x2 as the first function and e-x as the second function.= x2∫e-xdx-∫ddxx2∫e-xdxdx= -x2 e-x-∫2xe-x-1dx= -x2 e-x+2∫x e-x dx= – x2 e-x+2-x e-x+∫e-x dx= -x2 e-x+2-x e-x -e-x+C= -e-xx2+2x+2+C

Q7.

Answer :

∫x2 cosx dxTaking x2 as the first function and cos x as the second function.= x2∫cosx dx-∫ddxx2∫cosx dxdx= x2sinx-∫2x sinx dx= x2sinx-2x∫sinx-∫ddxx∫sinx dxdx= x2sinx-2-xcosx+∫cosx dx= x2sinx+2x cosx-2 sinx+C

Q8.

Answer :

∫x2 cos 2x dxTaking x2 as the first function and cos 2x as the second function.= x2∫cos 2x dx-∫2x∫cos 2x dxdx= x2 sin 2×2-∫2x sin 2x2dx= x22sin 2x-∫x sin 2x dx= x22sin 2x-x∫sin2x-∫∫sin 2x dxdx= x22sin 2x–x cos 2×2+∫cos 2x2dx= x22sin 2x+x cos 2×2-sin 2×4+C

Q9.

Answer :

∫x sin 2x dx Taking x as the first function and sin 2x as the second function.= x∫sin2x dx-∫ddxx∫sin 2x dxdx= -x cos 2×2+∫cos 2x2dx= -x cos 2×2+sin 2×4+C

Q10.

Answer :

∫log log xxdxTaking log log x as the first function and 1x as the second function.= log log x∫1xdx-∫ddx log log x∫1xdxdx= log x.log log x-∫1x log xlog xdx= log x.log log x-∫1xdx= log x.log log x-log x+ C

= log xlog log x-1+C

Q11.

Answer :

∫x2 cosx dxTaking x2 as the first function and cos x as the second function.= x2∫cosx dx-∫ddxx2∫cosx dxdx= x2sinx-∫2x sinx dx= x2sinx-2x∫sinx-∫ddxx∫sin x dxdx= x2sinx+2xcosx-2∫cos x dx= x2sinx+2x cosx-2 sinx+C

Q12.

Answer :

∫x cosec2x dx Taking x as the first function and cosec2 x as the second function.= x∫cosec2x dx-∫ddxx∫cosec2x dxdx= -x cotx+∫cotx dx= -x cotx+log sinx+c

Q13.

Answer :

∫x cos2x dxTaking x as the first function and cos2x as the second function.= x∫1+cos 2x 2dx-∫ddxx∫1+cos 2x 2dxdx= x2x+sin2x2-∫12x+sin2x2dx= x2x+sin2x2-x24-cos2x8+C= x22+x sin2x2-x24+cos2x8+C= x24+x sin2x2+cos2x8+C

Q14.

Answer :

∫xn logx dxTaking log x as the first function and xn as the second function.= logx∫xndx -∫ddx logx∫xn dxdx= logxxn+1n+1-∫1xxn+1n+1dx= logxxn+1n+1-∫xnn+1dx= logxxn+1n+1-xn+1n+12+C

Q15.

Answer :

∫1xn logx dxTaking log x as the first function and 1xnas the second function.= logx∫1xndx-∫ddxlogx∫1xndxdx= logxx-n+1-n+1-∫1xx-n+1-n+1dx= logxx-n+1-n+1-∫x-n-n+1dx= logxx-n+1-n+1-x-n+1-n+12+C=logxx1-n1-n-x1-n1-n2+C

Q16.

Answer :

∫x2 sin2x dxTaking x2 as the first function and sin2 x as the second function.= x2∫1-cos2x2-∫ddxx2∫1-cos2x2dxdx= x22x-sin2x2-∫2xx-sin2x22dx= x22x-sin2x2-∫x2dx+∫xsin2x2dx Here, taking x as the first function and sin 2x as the second function.=x32-x2sin2x4-x33+12x∫sin 2x-∫ddxx∫sin 2x dxdx= x32-x2sin2x4-x33+12-xcos2x2+∫cos2x dx4= x36-x2sin2x4-x cos2x4+sin2x8+C

Q17.

Answer :

∫2×3·ex2dx=∫x2·ex2·2x dxLet x2=t⇒2x dx=dt=∫tI·eIIt dt=t·et-∫1·et dt=t et-et+C=x2 ex2-ex2+C=ex2x2-1+C

Q18.

Answer :

∫x3 cosx2 dx Let x2=t ⇒2x=dtdx⇒dx=dt2x= 12∫t cost dtTaking t as the first function and cos t as the second function .= 12tsint-∫sint dt= 12tsint+cost …(1) Substituting the value of t in eq (1) = x2sinx22+cosx22+c

Q19.

Answer :

∫xsin x·cos x dx=12∫x2 sin x cos x dx=12∫x·sin 2x dxTaking x as the first function and sin 2x as the second function . =12x∫sin 2x dx -∫ddxx∫sin 2x dxdx=12x×-cos 2×2-∫1·-cos 2x2dx=12-x cos 2×2+sin 2×4+C=-x cos 2×4+sin 2×8+C

Q20.

Answer :

Let I=∫sin x·log cos x dxLet cos x =t⇒-sin x dx=dt⇒sin x dx=-dt ∴ I=-∫log t dt =-∫1·log t dtTaking log t as the first function and 1 as the second function . =log t∫1 dt-∫ddt log t∫1dtdt =-log t ·t-∫1t×t dt =-log t·t-t+C =-tlog t-1+C ….(1) Substituting the value of t in eq (1) =-cos xlog cos x-1+C =cos x 1-log cos x+C

Q21.

Answer :

∫log x2 x ·dxTaking log x2 as the first function and x as the second function . =log x2∫x dx-∫ddxlog x2∫xdxdx=log x2·x22-∫2 log xx×x22 dx=log x2×x22-∫xII log xI dx=log x2×x22-logx ∫x dx -∫ddxlog x∫x dxdx=log x2×x22-log x·x22-∫1x×x22dx=log x2×x22-log x·x22+x24+C=x22log x2-log x+12 +C

Q22.

Answer :

Let I =∫ex dx =∫x·exxdxLet x=t⇒12xdx=dt⇒dxx=2 dt ∴I=2∫t·et dtTaking t as the first function and et as the second function . =2t∫etdt-∫ddtt∫etdtdt =2t·et-∫1·et dt+C …(1)Substituting the value of t in eq(1) =2x ex-ex+C =2exx-1+C

Q23.

Answer :

Let I=∫log x+2 dxx+22Let log x+2=t⇒x+2=et⇒1x+2dx=dt∴I=∫tetdt =∫t e-t dtTaking t as the first function and e-t as the second function. =t∫e-t-∫ddtt∫e-2tdtdt =t×e-t-1-∫1·e-t dt =-t e-t+e-t-1+C =-e-tt+1+C =-t+1et+C …(1)Substituting the value of t in eq (1) =-log x+2+1x+2+C =-log x+2 x+2-1x+2+C

Q24.

Answer :

∫x+sin x1+cos xdx=∫x1+cos x+sin x1+cos xdx=∫x2 cos2 x2+2 sin x2 cos x22 cos2 x2dx=12∫xI·sec2II x2dx+∫tan x2dx=12x·tan x212-∫1×2 tan x2dx+log sec x212+C=x tan x2-log sec x212+log sec x212+C=x tan x2+C

Q25.

Answer :

∫log10 x dx=∫log xlog 10dx=1log 10∫1·log x dxTaking log x as the first function and 1 as the second function=1log 10logx ∫1 dx-∫ddxlog x∫1 dxdx=1log 10log x·x-∫1x·x dx=1log 10x log x-x+C=1log 10xlog x-1+C

Q26.

Answer :

Let I=∫cos x dx =∫x· cos xxdxLet x=t⇒12xdx=dt⇒dxx=2dt∴I=2∫t·cos t·dtTaking t as the first function and cos t as the second function . =2 t·sin t-∫1·sin t dt =2 t·sin t+cos t+C ….(1) Substituting the value of t in eq (1) =2 x·sin x+cos x+C

Q27.

Answer :

Let, I=∫sin3x dx …..1Consider, x=t …..2Differentiating both sides we get,12xdx=dt⇒dx=2x dt⇒dx=2t dtTherefore, 1 becomes,I=∫sin3t 2t dt =2∫tsin3t dt =2∫t 3sint-sin3t4 dt Since, sin3A=3sinA-4sin3A =32∫t sint dt-12∫t sin3t dt =32t∫ sint dt-∫ dtdt∫sint dtdt-12t∫ sin3t dt-∫ dtdt∫sin3t dtdt =32-t cost +∫cost dt-12-t cos3t 3+13∫cos3t dt =32-t cost +sint -12-t cos3t 3+19sin3t +C =-32t cost+32sint+16t cos3t -118sin3t+C =-32xcosx+32sinx+16xcos3x-118sin3x+C

Note: The answer in indefinite integration may vary depending on the integral constant.

Q28.

Answer :

Let, I=∫cos3x dx …..1Consider, x=t …..2Differentiating both sides we get,12xdx=dt⇒dx=2x dt⇒dx=2t dtTherefore, 1 becomes,I=∫cos3t 2t dt =2∫t cos3t dt =2∫t 3cost+cos3t4 dt Since, cos3A=4cos3A-3cosA =32∫t cost dt+12∫t cos3t dt =32t∫ cost dt-∫ dtdt∫cost dtdt+12t∫ cos3t dt-∫ dtdt∫cos3t dtdt =32t sint -∫sint dt+12t sin3t 3-13∫sin3t dt =32t sint+cost +12t sin3t 3+19cos3t +C =32t sint+32cost+16t sin3t +118cos3t+C=32xsinx+32cosx+16xsin3x+118cos3x+C

Note: The final answer in indefinite integration may vary based on the integration constant.

Q29.

Answer :

Let I =∫cosec3x dx =∫cosec2x·cosec x dx =∫cosec2x·1+cot2x dxLet cot x=t⇒-cosec2x dx=dt∴ I=-∫1+t2dt =-t21+t2-122 log t+1+t2+C …(1)Substituting the value of t in eq (1) =-cot x2·cosec x-12 log cot x+cosec x+C =-12cosec x cot x-12 log cos xsin x+1sin x+C =-12 cosec x cot x-12 log 2 cos2 x22 sin x2 cos x2+C =-12 cosec x cot x-12 log cot x2+C =-12 cosec x cot x+12 log tan x2+C ∵ log cot x2=log 1tan x2 ⇒-log tan x2

Q30.

Answer :

Let I =∫x sin3x dx
sin (3A) = 3 sin A – 4 sin3 A
sin3 A=143 sin A-sin 3A∴I=14∫ x.3 sin x-sin 3xdx =34∫ xI.sin xII dx-14∫xI.sin 3xIIdx =34x-cos x-∫1.-cos xdx-14x-cos 3×3-∫1.-cos 3x3dx =-3x cos x4+34sin x+x cos 3×12-136sin 3x+C

Q31.

Answer :

Let I=∫x cos3x dx

As we know ,cos 3x=4 cos3 x-3cosx⇒cos3 x=14cos 3x+3cos x

∴I=14∫x.cos 3x+3 cos xdx =14∫ xI.cosII 3x dx+34 ∫ xI.cos xII dx =14x.∫cos 3x dx-∫ddxx.∫cos 3x dxdx+34x∫cos x-∫ddxx.∫cos x dxdx =14x.sin 3×3-∫1.sin 3x3dx+34xsin x-∫1.sin x dx =x sin 3×12+cos 3×36+34x sin x+34cos x+C

Q32.

Answer :

∫ x tan2 x dx
= ∫ x (sec2 x – 1) dx
=∫ xI. sec2 xII dx-∫ x dx=x∫sec2x-∫ddxx∫sec2x dxdx-x22+C1=x.tan x-∫1.tan x dx-x22+C1=x tan x-log sec x-x22+C1+C2=x tan x-log sec x-x22+C where C=C1+C2

Q33.

Answer :

∫ xsec 2x-1sec 2x+1dx=∫ x 1cos 2x-11cos 2x+1dx=∫ x 1-cos 2×1+cos 2xdx=∫ x 2 sin2 x2 cos2 xdx ∵1-cos 2x=2sin2 x and 1+cos 2x=2 cos2x=∫ x. tan2 x dx=∫ x.sec2 x-1 dx=∫ xI.sec2 xII dx-∫ x dx=x∫sec2x dx-∫ddxx∫sec 2x dxdx-x22+C1=x tan x-∫1. tan x dx-x22+C1=x tan x-log sec x-x22+C2+C1=x tan x-log sec x-x22+C where C=C1+C2

Q34.

Answer :

∫ x+1ex .log x ex dxLet x ex=t⇒x.ex+1.exdx=dt∴∫ x+1ex .log x ex dx=∫1II.log tIdt =log t∫1 dt-∫ddtlog t-∫1dtdt =log t×t-∫1t×t dt =t log t-t+C …(1)Substituting the value of t in eq (1)⇒∫ x+1ex .log x ex dx=x ex.log x ex-x ex+C =x exlogx ex-1+C

Q35.

Answer :

∫ sin-1 (3x – 4x3)dx
Let x = sin θ
⇒ dx = cos θ.dθ
& θ = sin-1 x
∫ sin-1 (3x – 4x3)dx =∫ sin–-1 (3 sin θ – 4 sin3 θ) . cos θ dθ
= ∫ sin-1 (sin 3θ) . cos θ dθ
=3∫ θI.cos θII dθ=3θ∫cos θdθ-∫ddθθ-∫cos θ dθdθ =3θ.sin θ-∫1.sin θ dθ=3θ.sin θ+cos θ+C=3θ.sin θ+1-sin2 θ+C=3sin-1 x.x+1-x2+C ∵θ= sin-1x

Q36.

Answer :

∫ sin-1 2×1+x2dxLet x=tan θdx=sec2 θ dθ∴∫ sin-1 2×1+x2dx=∫ sin-1 2 tan θ1+tan2 θ. sec2 θ dθ =∫ sin-1 sin 2θ.sec2 θ dθ =∫ 2θ sec2 θ dθ =2∫ θI sec2 θII dθ =2θ∫sec2θ dθ-∫ddθθ∫sec2θ dθdθ =2θ.tan θ-∫1.tan θ dθ =2θ tan θ-log sec θ+C =2θ tan θ-log 1+tan2 θ12+C =2tan-1 x×x-log 1+x212+C =2 x tan-1 x-2×12log 1+x2+C =2 x tan-1 x-log 1+x2+C

Q37.

Answer :

Let I= ∫tan-1 3x-x31-3×2 dx=∫3 tan-1 x dx=3∫tan-1 x×1 dx=3 tan-1 x×x-∫11+x2×x dx=3x tan-1 x-3∫x1+x2 dxlet 1+x2=t⇒2x dx=dtThen,I=3x tan-1x-32∫dtt=3x tan-1x-32 log t+C=3x tan-1x-32 log 1+x2+C

Q38.

Answer :

∫ x2II.sin-1Ix dx=sin-1x∫ x2 dx-∫ddxsin-1x∫x2 dxdx=sin-1x.x33-∫11-x2 x33dxLet 1-x2=t⇒x2=1-t⇒-2x dx=dt⇒x dx=-dt2∴∫ x2.sin-1x dx=sin-1 x.x33-13∫ x2.x1-x2dx =sin-1 x.x33-16∫ 1-ttdt =sin-1 x.x33+16∫t-12 dt-16∫t12 dt =sin-1 x.x33+16×2t-16×23t32+C =sin-1 x.x33+1-x23-191-x232+C ∵ 1-x2=t

Q39.

Answer :

∫ x.sin-1 x1-x2dxLet sin-1 x=θx=sin θdx=cos θ dθ∴∫ x.sin-1 x1-x2dx=∫ sin θ.θ1-sin2 θ.cos θ dθ =∫ sin θ.θcos θ.cos θ dθ =∫ θI.sin θII dθ =θ∫sin θ dθ-∫ddθθ∫sin θ dθdθ =θ-cos θ-∫ 1.-cos θ dθ =-θ cos θ+sin θ+C =-θ 1-sin2 θ+sin θ+C =-sin-1 x 1-x2+x+C ∵sin-1 x=θ

Q40.

Answer :

Let I=∫ x2 tan-1 x1+x2dx =∫ x2+1-1×2+1tan-1 x dx =∫ 1-1×2+1tan-1 x dx =∫ 1II.tan-1I x dx-∫ tan-1 xx2+1dx =tan-1 x∫1 dx-∫ddxtan-1x∫1 dxdx-∫ tan-1 xx2+1dx =tan-1x×x-∫x1+x2dx-∫tan-1 xx2+1dxPutting x2+1=t in the first integral and tan-1 x=p in the second integral⇒2x dx=dt and 11+x2dx=dp⇒x dx=dt2and 11+x2dx=dp∴ I=tan-1 x.x-12∫ dtt-∫p.dp =x tan-1 x-12ln t-p22+C =x tan-1 x-12ln 1+x2-tan-1 x22+C ∵ t=x2+1 and p=tan-1x

Q41.

Answer :

∫ cos-1 4×3-3xdxLet x=cos θ ⇒θ=cos-1 x& dx=-sin θ dθ∴∫ cos-1 4×3-3xdx=∫ cos-1 4 cos3 θ-3 cos θ.-sin θdθ =∫ cos-1 cos 3θ.-sin θdθ ∵cos 3θ=4 cos3 θ-3 cos θ =-3 ∫ θI sin θII dθ =θ∫sin θ dθ-∫ddθθ∫sin θ dθdθ =3 θ -cos θ-∫1.-cos θdθ =3θ cos θ-3 sin θ+C =3 cos-1 x.x-31-x2+C ∵x=cos θ

Q42.

Answer :

Let I=∫ cos-1 1-x21+x2dx =2 ∫ 1II. tan-1I x dx ∵ cos -11-x21+x2=2 tan-1x =2tan-1x∫1 dx-∫ddxtan-1x∫1 dxdx =2tan-1 x. x-∫11+x2×x dx =2 x tan-1 x-∫2×1+x2dxPutting 1+x2=t⇒2x dx=dt∴ I=2x tan-1 x-∫ dtt =2x tan-1 x-ln t+C =2x tan-1 x-ln 1+x2+C ∵ t=1+x2

Q43.

Answer :

Let I=∫ tan-1 2×1-x2dx =2∫ 1II.tan-1 xI dx =2 tan-1x∫1 dx-∫ddxtan-1x∫1 dxdx =2tan-1 x.x-∫11+x2×x dx =2 tan-1 x.x-∫ 2×1+x2dxPutting 1+x2=t⇒2x dx=dt∴ I=2x tan-1 x-∫ dtt =2x tan-1 x-ln t+C =2x tan-1 x-ln 1+x2+C ∵ t= 1+x2

Q44.

Answer :

Let I=∫ tan-1 1-x1+x dxPutting x=cos θ⇒dx=-sin θ dθ& θ=cos-1 x∴ I=∫ tan-1 1-cos θ1+cos θ -sin θ dθ =∫ tan-1 2 sin2 θ22 cos2 θ2 -sin θ dθ =∫ tan-1 tan θ2 -sin θ dθ =-12∫ θI sin θII dθ =-12θ∫ sinθ dθ-∫ddθθ∫sin θ dθdθ =-12 θ-cos θ-∫ 1.-cos θ dθ =-12 -θ cos θ+sin θ+C =-12 -θ.cos θ+1-cos2 θ+C =-12-cos-1 x.x+1-x2+C ∵ θ=cos-1 x =x cos-1 x2-1-x22+C

 

Page 19.122 Ex.19.20

Q45.

Answer :

Let I=∫ sin-1 xa+x dxPutting x=a tan2 θ⇒xa=tan θ⇒dx=a2 tan θsec2 θ dθ∴ I=∫ sin-1 a tan2 θa+a tan2 θ 2a tan θsec2 θ dθ =∫ sin-1 tan2 θsec2 θ 2a tan θ sec2 θ dθ =2a ∫ sin-1 sin θtan θ sec2 θ dθ

=2a ∫ θ Itan θ sec2 θII dθ =2a θtan2θ2-∫1tan2 θ2dθ=2a θ.tan2 θ2-12∫sec2 θ-1dθ=a θ tan2 θ-a tan θ+aθ+C=axa tan-1 xa-axa+a tan-1 xa+C=x tan-1 xa-ax+a tan-1 xa+C

Q46.

Answer :

∫ elog x+sin x cos x dx=∫ x+sin xcos x dx ∵elog x=x =∫ x cos x+sin x cos x dx=∫ x cos x dx+12∫ 2 sin x cos x dx=∫ xI cos xII dx+12 ∫sin 2x dx=x∫cos x dx-∫ddxx∫cos x dxdx+12 ∫sin 2x dx=x sin x-∫1.sin x dx+12-cos 2×2+C=x sin x–cos x-14cos 2x+C=x sin x+cos x-141-2 sin2 x+C=x sin x+cos x+sin2 x2-14+C=x sin x+cos x+sin2 x2+C’ where C’=C-14

Q47.

Answer :

Let I=∫ x tan-1 x1+x232dxPutting x=tan θ⇒dx=sec2 θ dθ& θ=tan-1 x∴ I=∫ tan θ.θ.sec2 θ dθ1+tan2 θ32 =∫ θ.tan θ sec2 θ dθsec2 θ32 =∫ θ tan θ.sec2 θ dθsec3 θ =∫ θ.tan θsec θ dθ =∫ θI.sin θII dθ =θ∫sin θ dθ-∫ddθθ∫sin dθdθ =θ -cos θ-∫1.-cos θ dθ =-θ cos θ+ sin θ+C =-θsec θ+1cosec θ+C =-θ1+tan2 θ+11+cot2 θ+C =-θ1+tan2 θ+tan θtan2 θ+1+C =-tan-1 x1+x2+xx2+1+C

Q48.

Answer :

Let I=∫ x3 × sin-1 x21-x4dxPutting sin-1 x2=t ⇒x2=sin t⇒ 1×2x dx1-x22=dt⇒x dx1-x4=dt2∴I=∫ x2. sin-1 x21-x4.x dx =∫ sin t.t.dt2 =12∫ tI.sin tII dt =12t∫sin t dt-∫ddtt∫sin t dtdt =12 t.-cos t-∫ 1.-cos t dt =12-t cos t+sin t+C =12 -t1-sin2 t+sin t+C =12 -sin-1 x2 1-x4+x2+C

Q49.

Answer :

∫ x3II.tan-1 xI dx=tan-1 x∫ x3 dx-∫ddxtan-1 x∫x3 dxdx=tan-1 x.x44-∫11+x2×x44 dx=tan-1 x.x44-14 ∫ x4x2+1dx=tan-1 x.x44-14∫ x4-1+1×2+1dx=tan-1 x.x44-14∫ x4-1×2+1dx-14 ∫ 1×2+1dx=tan-1 x.x44-14∫ x2-1 x2+1×2+1dx-14∫ 1×2+1dx=tan-1 x.x44-14×33-x-14 tan-1 x+C=x4-14tan-1x -112×3-3x+C

Q50.

Answer :

∫ x. cos 2x sin x dx=12 ∫ x 2 cos 2x sin x dx ∵2 cos A sin B=sin A+B-sin A-B=12 ∫ x sin 3x-sin x dx=12 ∫ x.sin 3x dx-12 ∫ x sin x dx=12x∫sin 3x dx-∫ddxx∫sin 3x dxdx-12x∫sin x dx-∫ddxx∫sinx dxdx=12 x.-cos 3×3-∫ 1.-cos 3x3dx-12 x.-cos x-∫ 1.-cos x dx=12x.-cos 3×3+19sin 3x -12x.-cos x+sin x=-x cos 3×6+sin 3×18+x cos x2-sin x2+C

Q51.

Answer :

Let I =∫ (tan-1 x2) x dx
Putting x2 = t
⇒ 2x dx = dt
⇒x dx=dt2∴ I=12∫ 1II.tan-1 tI.dt =12tan-1t∫1 dt-∫ddttan-1t∫1 dtdt =12 tan-1 t. t-∫ t1+t2dtNow putting 1+t2=p⇒2t dt=dp⇒t dt=dp2∴ I=12t. tan-1 t-12∫ t dt1+t2 =t.tan-1 t2-12×2 ∫ dpp =t.tan-1 t2-14ln p+C =x2.tan-1 x22-14 ln 1+x4+C ∵ p=1+t2

Q52.

Answer :

∫ x3II.tan-1 xI dx=tan-1x ∫x3 dx-∫ddxtan-1x∫x3 dxdx=tan-1 x.x44-∫11+x2×x44dx=tan-1 x.x44-14∫ x4 dxx2+1=tan-1 x.x44-14∫ x4-1+1×2+1dx=tan-1 x.x44-14∫ x4-1×2+1dx-14∫ 1×2+1dx=tan-1 x.x44-14∫x2-1 x2+1×2+1dx-14∫ 1×2+1dx=tan-1x.x44-14∫ x2-1dx-14 tan-1 x+C=tan-1 x.x44-14×33-x-14tan-1 x+C=x4-14 tan-1x -112×3-3x+C

Q53.

Answer :

Let I=∫ tan-1 x dx =∫ x.tan-1 x dxxLet x=t⇒12xdx=dt=dxx=2dt∴I=2∫ tII.tan-1 tI dt =2 tan-1t∫t dt-∫ddttan-1t∫t dtdt =2 tan-1 t.t22-∫ 11+t2.t22dt =tan-1 t.t2-∫ t21+t2 dt =tan-1 t.t2-∫ 1+t2-11+t2dt =tan-1 t.t2-∫ dt+∫dt1+t2 =tan-1 t.t2-t+tan-1 t+C ∵x=t =tan-1 x.x-x+tan-1 x+C =x+1 tan-1 x-x+C

Q54.

Answer :

∫ 1II.log 1+x2I dx=log1+x2∫1 dx-∫ddxlog1+x2∫1 dxdx=log 1+x2.x-∫ 2×1+x2.x dx=x log 1+x2-2∫ x2+1-11+x2dx=x log 1+x2-2 ∫ dx+2∫ dx1+x2=x log 1+x2-2x+2 tan-1 x+C

Q55.

Answer :

Let I=∫ x2II.tan-1 xI dx =tan-1x∫x2dx-∫ddxtan-1x∫x2dxdx =tan-1 x×x33-∫ 11+x2×x33 dx =tan-1 x.x33-13∫ x2. x1+x2dxLet 1+x2=t⇒2x dx=dt⇒x dx=dt2∴I=tan-1 x.x33-16∫ t-1t.dt =tan-1 x.x33-16∫ dt+16∫ dtt =tan-1x.x33-t6+16log t+C =tan-1 x.x33-1+x26+16log 1+x2+C =tan-1 x.x33-x26+16log 1+x2-16+C =tan-1 x.x33-x26+16log 1+x2+C’ where C’=C-16

Q56.

Answer :

Let I=∫ sin-1 x dx=∫ x.sin-1 xxdxLet x=t⇒12xdx=dt⇒dxx=2dt∴I=∫ tII.sin-1 tI dt =sin-1 t∫t dt-∫ddtsin-1 t∫tdtdt =2 sin-1 t.t22-∫ 11-t2×t22dt =sin-1 t.t2-∫ t21-t2dt =sin-1 t.t2+∫1-t2-11-t2dt =sin-1 t.t2+∫ 1-t2 dt-∫ dt1-t2 =sin-1 t.t2+t21-t2+12sin-1 t-sin-1 t+C =sin-1 t.t2+t21-t2-12sin-1t+C =x.sin-1 x+x2 1-x-12sin-1 x+C ∵x=t =2x-1 sin-1 x2+x-x22+C

Q57.

Answer :

∫ 1II.sec-1 xI dx=sec-1 x∫1 dx-∫ddxsec-1 x∫1 dxdx=sec-1 x.x-∫ 1x 1-x×12x×x dx= x sec-1 x-12 ∫ 1-x-12 dx=x sec-1 x-12 1-x-12+1-12+1 -1+C=x sec-1 x+1-x12+C

Q58.

Answer :

Let I=∫ x2.sin-1 x dx1-x232Putting x=sin θ ⇒dx=cos θ dθ& θ=sin-1 x∴I=∫ sin2 θ.θ.cos θ dθ1-sin2 θ32 =∫ sin2 θ.θ.cos θ dθcos2 θ32 =∫ sin2 θ.θ.cos θ dθcos3 θ =∫ tan2 θ.θ.dθ =∫ sec2 θ-1θ.dθ =∫ θI.sec2 θII dθ-∫ θ.dθ =θ∫sec2 θ dθ-∫ddθθ∫sec2 θ dθdθ-∫ θ.dθ =θ tan θ-∫ 1.tan θ dθ-θ22 =θ.tan θ-ln sec θ-θ22+C =θ.sin θcos θ+ln cos θ-θ22+C =θ.sin θcos θ+ln 1-sin2 θ-θ22+C =θ. sin θ1-sin2 θ+12ln 1-sin2 θ-θ22+C =x sin-1 x1-x2+12ln 1-x2-12sin-1 x2+C ∵ θ=sin-1 x

Q59.

Answer :

∫ x+1II.log xI dx=log x∫x+1dx-∫ddxlog x∫x+1dxdx=log xx22+x-∫ 1xx22+xdx=log xx22+x-∫ x2+1dx=log xx22+x-x24+x+C

Q60.

Answer :

Let I=∫ sin-1 xx2 dxPutting x=sin θ⇒θ=sin-1 x & dx=cos θ dθ∴ I=∫ θ.cos θ sin2 θdθ =∫ θ.cos θsin θ×1sin θ dθ =∫ θI.cosec θII cot θ dθ =θ∫cosec θ cot θ dθ-∫ddθθ∫cosec θ cot θ dθdθ =θ -cosec θ-∫1.-cosec θ dθ =-θ cosec θ+∫ cosec θ dθ =-θ cosec θ+ln cosec θ-cot θ+C =-θsin θ+ln 1-cos θsin θ+C =-θsin θ+ln 1-1-sin2 θsin θ+C =-sin-1 xx+ln 1-1-x2x+C ∵ θ=sin-1 x

 

Page 19.129 Ex.19.21

Q1.

Answer :

Let I=∫ex cos x- sin x dx let ex cos x=t Diff both sides w.r.t xex·cos x+ex-sin x=dtdx Put ex fx=t⇒ex cos x-sin x dx=dt∴∫ex cos x-sin x dx=∫dt⇒I=t+C=ex cos x+C

Q2.

Answer :

Let I=∫ex 1×2- 2×3 dxAlso let ex×1×2=t Diff both sides w.r.t xex×1×2+ex -2×3=dtdx⇒ex 1×2-2×3 dx=dt∴∫ex 1×2-2×3 dx=∫dt=t+C=exx2+C

Q3.

Answer :

Let I=∫ex 1+sin x1+cos x dx=∫ex 11+cosx +sin x1+cos x dx=∫ex 12 cos2 x2+2 sin x2 cos x22 cos2 x2 dx=∫ex 12 sec2 x2+tan x2 dx Putting ex tan x2=tDiff both sides w.r.t. xex·tan x2+ex×12sec2 x2=dtdx⇒ex tan x2+12 sec2 x2 dx=dt∴∫ex 12 sec2 x2+tan x2 dx=∫dt=t+C=ex tanx2+C

Q4.

Answer :

Let I=∫excotx-cosec2xdxhere f(x)=cotx put exf(x)=t f'(x)=-cosec2xlet excotx=tDiff both sides w.r.t xexcotx+ex-cosec2x=dtdx⇒excotx-cosec2xdx=dt∴∫excotx-cosec2xdx=∫dt=t+C=excot x+C

Q5.

Answer :

Let I=∫exx-12x2dx=12∫ex1x-1x2dxhere 1x=f(x) Put exf(x)=t⇒-1×2=f'(x)let ex1x=tDiff both sides w.r.t xex1x+ex-1×2=dtdx⇒ex1x-1x2dx=dt∴I=12∫dt=t2+C=ex2x+C

Q6.

Answer :

Let I=∫exsecx1+tanxdx=∫exsecx+secx tanxdxHere, f(x)=secx Put exf(x)=t⇒f'(x)=secx tanxlet exsecx=tDiff both sides w.r.t xexsecx+exsecx tanx=dtdx⇒exsecx+tanxdx=dt∴∫exsecx+secx tanxdx=∫dt=t+C=exsecx+C

Q7.

Answer :

Let I=∫extanx-log cosxdxhere f(x)=-log cosx Put exf(x)=t⇒f'(x)=tanxlet -exlog cosx=tDiff both sides w.r.t x-exlogcosx+ex1cosx×-sinx=dtdx⇒-exlogcosx+extanxdx=dt∴∫extanx-log cosxdx=∫dt=t+C=-exlogcosx+C=exlogsec x+C

Q8.

Answer :

Let I=∫exsecx+logsecx+tanxdxHere, f(x)=logsecx+tanx Put exf(x)=t⇒f'(x)=secx let exlogsecx+tanx=tDiff both sides w.r.t xexlogsecx+tanx+ex1secx+tanxsecx+tanx+sec2x=dtdx⇒exlogsecx+tanx+exsecxdx=dt⇒exsecx+logsecx+tanxdx=dt∴∫exsecx+logsecx+tanxdx=∫dt=t+C=exlogsecx+tanx+C

Q9.

Answer :

Let I=∫excotx+log sinxdxHere,f(x)=log sinx Put exf(x)=t⇒f'(x)=cotxlet exlog sinx=tDiff both sides w.r.t xexlog sinx+ex×1sinx×cosx=dtdx⇒exlogsinx+excotxdx=dt⇒excotx+log sinxdx=dt∴∫excotx+log sinxdx=∫dt=t+C=exlog sinx+C

Q10.

Answer :

Let I=∫exx-1x-13dx=∫exx+1-2x+13dx=∫ex1x-12-2x+13dxHere, f(x)=1x+12⇒f'(x)=-2x+12Put exf(x)=tlet ex1x+12=tDiff both sidesex1x+12+ex-2x+13=dtdx⇒ex1x+12-2x+13dx=dt∴∫ex1x+12-2x+13dx=∫dt=t+C=exx+12+C

Q11.

Answer :

Let I=∫exsin4x-41-cos4xdx=∫ex2sin2x cos2x2sin2(2x)-42sin22xdx=∫excot(2x)-2cosec2(2x)dxHere, f(x)=cot(2x)⇒f'(x)=-2cosec2(2x)Put exf(x)=tlet excot(2x)=tDiff both sides w.r.t xexcot(2x)+ex×-2cosec2(2x)=dtdx⇒excot(2x)-2cosec2(2x)dx=dt∴∫excot2x-2cosec22xdx=∫dt⇒I=t+C=excot2x+C

Q12.

Answer :

Let I=∫ex1-x21+x22dx=∫ex1+x2-2×1+x22dx=∫ex11+x2-2×1+x22dxHere, f(x)=11+x2⇒f'(x)=-2×1+x22Put exf(x)=t⇒ex11+x2=tDiff both sides w.r.t xex11+x2+ex-11+x222x=dtdx⇒ex11+x2-2×1+x22dx=dt∴∫ex11+x2-2×1+x22dx=∫dt⇒I=t+C=ex1+x2+C

Q13.

Answer :

Let I=∫ex1+x2+x2dx=∫ex2+x-12+x2dx=∫ex12+x-12+x2dxHere, f(x)=12+x⇒f'(x)=-12+x2Put exf(x)=t⇒ex1x+2=tDiff both sides w.r.t xex1x+2+ex-1x+22=dtdx⇒ex1x+2-1x+22dx=dt∴∫ex12+x-12+x2dx=∫dt⇒I=t+C=ex2+x+C

Q14.

Answer :

Let I=∫1-sinx1+cosxe-x2dx=∫cos2x2+sin2x2-2sinx2cosx22cos2x2e-x2dx=∫cosx2-sinx222cos2x2e-x2dx=∫sinx2-cosx22cos2x2e-x2dx=∫12secx2tanx2-12secx2e-x2dx=12∫secx2tanx2-secx2e-x2dxlet e-x2 secx2=tDiff both sides w.r.t xe-x2secx2tanx22+secx2×e-x2×-12=dtdx⇒e2-x2secx2tanx2-secx2dx=dt∴12∫secx2tanx2-secx2e-x2dx=∫dt⇒I=∫t+C=e-x2secx2+C

Q15.

Answer :

Let I=∫exlogx+1xdxHere, f(x)=logx⇒f'(x)=1xput exf(x)=t⇒ ex logx=tDiff both sides w.r.t xexlogx+ex1x=dtdx⇒exlogx+1xdx=dt∴∫exlogx+1xdx=∫dt⇒I=t+C=exlogx+C

Q16.

Answer :

Let I=∫logx+1x2exdx=∫exlogx+1x-1x+1x2dx=∫exlogx+1xdx+∫ex-1x+1x2dxlet exlogx=tDiff both sidesexlogx+ex1xdx=dtlet ex-1x=pDiff both sidesex-1x+ex1x2dx=dp∴I=∫dt+∫dp=t+p+C=exlogx+ex-1x+C=exlogx-1x+C

Q17.

Answer :

Let I=∫exxxlogx2+2logxdx=∫exlogx2+2logxxdxHere, f(x)=logx2⇒f'(x)=2logxxput exf(x)=t⇒exlogx2=tDiff both sides w.r.t xexlogx2+ex2logxxdx=dt∴I=∫dt=t+C=exlogx2+C

Q18.

Answer :

Let I=∫ex1-x2sin-1x+11-x2dx=∫exsin-1x+11-x2dxHere, f(x)=sin-1x⇒f'(x)=11-x2Put exf(x)=t⇒ exsin-1x=tDiff both sides w.r.t xexsin-1x+ex×11-x2dx=dt∴I=∫dt=t+C=exsin-1x+C

 

Page 19.130 Ex.19.21

Q19.

Answer :

Let I=∫e2x-sinx+2cosxdxPut e2xcosx=tDiff both sides w.r.t x2e2xcosx+e2x×-sinxdx=dt∴I=∫dt=t+C=e2xcosx+C

Q20.

Answer :

Let I=∫1logx-1logx2dxPut logx=t⇒x=et⇒dx=etdt∴I=∫et1t-1t2dtHere, f(t)=1t⇒ f'(t)=-1t2let et×1t=pDiff both sides w.r.t tet×1t+et×-1t2dt=dp∴I=∫dp=p+C=ett+C=xlogx+C

Q21.

Answer :

Let I=∫exsinx cosx-1sin2xdx=∫excotx-cosec2xdxHere, f(x)=cotx⇒f'(x)=-cosec2xPut exf(x)=t⇒excotx=tDiff both sides w.r.t xexcotx-cosec2xdx=dt∴I=∫dt=t+C=excot x+C

Q22.

Answer :

Let I=∫tanlogx+sec2logxdxPut logx=t⇒x=et⇒dx=etdt∴I=∫tant+sec2tetdtHere, f(t)=tant⇒f'(t)=sec2tlet ettan(t)=pDiff both sides w.r.t tettant+sec2t=dpdt⇒ettant+sec2tdt=dp∴I=∫dp=p+C=ettant+C=x tan(logx)+C

Q23.

Answer :

Let I=∫2-x1-x2exdx=∫1+1-x1-x2exdx=∫11-x2+11-xexdxHere, f(x)=11-x⇒f'(x)=11-x2Put exf(x)=t⇒ex1-x=tDiff both sides w.r.t xex×11-x+ex×11-x2dx=dt∴I=∫dt=t+C=ex1-x+C

Q24.

Answer :

Let I=∫exx-4x-23dx=∫exx-2-2x-23dx=∫ex1x-22-2x-23dxHere, f(x)=1x-22⇒f'(x)=-2x-23Put exf(x)=t⇒ ex1x-22=tDiff both sides w.r.t xex1x-22+ex-2x-23dx=dt∴I=∫dt=t+C=exx-22+C

Q25.

Answer :

Let I=∫extan-1x+11+x2dxHere, f(x)=tan-1(x)⇒f'(x)=11+x2Put exf(x)=t⇒ extan-1(x)=tDiff both sides w.r.t xextan-1x+ex×11+x2dx=dt∴I=∫dt=t+C=extan-1x+C

Q26.

Answer :

Let I=∫exx-3x-13dx=∫exx-1-2x-13dx=∫ex1x-12-2x-13dxHere, f(x)=1x-12⇒f'(x)=-2x-13Put exf(x)=t⇒ ex1x-12=tDiff both sides w.r.t xex1x-12+ex-2x-13dx=dt∴I=∫dt=t+C=exx-12+C

 

Page 19.135 Ex.19.22

Q1.

Answer :

Let I=∫ eaxcosbxdxConsidering cos bx as first function and eax as second functionI=cosbxeaxa-∫-sinbx×b×eaxadx⇒I=eaxcos bxa+ba∫sin bxeax dx⇒I=eaxacosbx+ba∫eax×sin bxdx⇒I=eaxacosbx+baI1 …..1where I1=∫eaxsinbxdxNow, I1=∫eaxsin bxdxConsidering sin bx as first function eax as second functionI1=sin bxeaxa-∫cos bxbeaxadx⇒I1=sin bxeaxa-ba∫eaxcos bxdx⇒I1=eaxsin bxa-baI …..2From 1 and 2I=eaxacos bx+baeaxsin bxa-baI⇒I=eaxcos bxa+beaxsin bxa2-b2a2I⇒I1+b2a2=eaxa cos bx+b sin bxa2∴I=eaxa cos bx+b sin bxa2+b2+C

Q2.

Answer :

Let I=∫ eaxsin bx+CdxConsidering sin bx+C as first function and eax as second functionI=sin bx+Ceaxa-∫ cos bx+Cbeaxadx⇒I=eaxsin bx+Ca-ba∫ eax cos bx+C dx⇒I=eaxsin bx+Ca-baI1 …1where I1=∫ eaxcos bx+CdxNow, I1=∫ eaxcos bx+CdxConsider cos bx+C as first function eax as second funcitonI1=cos bx+Ceaxa-∫ -sin bx+Cbeaxadx⇒I1=eaxcos bx+Ca+ba∫ eaxsin bx+Cdx⇒I1=eaxcos bx+Ca+baI …..2From 1 & 2I=eaxsin bx+Ca-baeaxcos bx+Ca+baI⇒I=eaxsin bx+Ca-ba2eaxcos bx+C-b2a2I⇒I1+b2a2=eax asin bx+C-beax cos bx+Ca2+C1⇒I=eax a sin bx+C-b cos bx+Ca2+b2+C1Where C1 is integration constant

Q3.

Answer :

Let I=∫ cos log xdxLet log x=t⇒x=et⇒dx=et dtI=∫ etcostdtConsidering cost as first function and et as second functionI=cos t et-∫ -sin tet dt⇒I=cos t et+∫ sin t et dt⇒I=cos t et+I1 …..1where I1=∫etsin t dtI1=∫ etsin t dtCosidering sin t as first function and et as second functionI1=sin t et-∫ cos t etdt⇒I1=sin t et-I …..2From 1 & 2I=cos t et+sin t et-I⇒2I=etsin t+cos t⇒I=etsin t+cos t2+C⇒I=elog x sinlog x+coslog x2+C⇒I=x2sin log x+cos log x+C

Q4.

Answer :

Let I=∫ e2xcos 3x+4dxConsidering cos 3x+4 as first function and e2x as second functionI=cos 3x+4e2x2-∫-sin 3x+4×3e2x2dx⇒I=e2xcos 3x+42+32∫ e2xsin 3x+4dx⇒I=e2xcos 3x+42+32I1 …..1where I1=∫ e2xsin 3x+4dxconsidering sin 3x+4 as first function and e2x as second functionI1=sin 3x+4e2x2-∫ 3 cos 3x+4e2x2dx⇒I1=e2x sin 3x+42-32∫ e2xcos 3x+4dx⇒I1=e2xsin 3x+42-32 I …..2From 1 & 2I=e2xcos 3x+42+34 e2xsin 3x+4-94I⇒I+94I=2e2xcos3x+4+3e2xsin3x+44⇒I=e2x132 cos 3x+4+3 sin 3x+4+C

Q5.

Answer :

Let I=∫ e2xsin x cos x dxI=12∫ e2x 2 sin x cos xdx⇒I=12∫ e2xsin2xdxConsidering sin2x as first function and e2x as second function.I=12sin2xe2x2-∫2cos2xe2x2dx⇒I=e2xsin2x4-12∫ e2xcos2xdx⇒I=e2xsin2x4-12I1 …..1Where I1=∫ e2xcos2xdxConsidering cos2x as first function and e2x as second functionI1=cos2xe2x2-∫-2 sin2xe2x2dx⇒I1=e2xcos2x2+∫ e2xsin2x dx⇒I1=e2xcos2x4+2I …..2⇒I=e2xsin2x4-12e2xcos2x2+2I⇒I=e2xsin2x4-e2xcos2x4-I2×2⇒2I=e2x sin2x-cos2x4+C⇒I=e2x8sin2x-cos2x+C

Q6.

Answer :

Let I=∫ e2xsin x dxConsidering sin x as first function and e2x as second functionI=sin xe2x2-∫ cos xe2x2dx⇒I=sin xe2x2-12∫ cos x e2x dx⇒I=sin x e2x2-12cos xe2x2-∫-sin xe2x2dx⇒I=sin x e2x2-cos x e2x4-12∫e2xsin x2dxI=e2x2 sin x-cos x4-I4⇒5I=e2x 2 sin x-cos x⇒I=e2x 2 sin x-cos x5+C

Q7.

Answer :

Let I=∫ exsin2 x dx=∫ ex 1-cos 2x2dx=12∫ ex dx-12∫ ex cos 2x dx=ex2-12∫ excos 2x dx …..1Let I1=∫ excos 2xdxConsidering cos 2x as first function and ex as second functionI1=cos 2xex-∫-2 sin 2xex dx⇒I1=cos 2xex+2∫ sin 2xex dx⇒I1=cos 2xex+2sin 2xex-∫ 2 cos 2xex dx⇒I1=cos 2xex+2 sin 2xex-4I1⇒5I1=ex cos 2x+2 sin 2x⇒I1=ex5cos 2x+2 sin 2x+C …..2From 1 & 2I=ex2-ex10cos 2x+2 sin 2x+C

Q8.

Answer :

Let I=∫ 1x3sin log xdxPutting log x=t⇒x=et⇒dx=et dt∴I=∫ 1e3tsin t et dt=∫e-2t sin t dtConsidering sin t as first function and e-2t as second functionI=sin te-2t-2-∫ cos te-2t-2dt⇒I=sin t e-2t-2+12∫cos t e-2t dt⇒I=sin t e-2t-2+12cos te-2t-2-∫-sin te-2t-2dt⇒I=sin t e-2t-2-14 cos t e-2t-∫ e-2tsin t dt4⇒I=e-2t -2 sin t-cos t4-I4⇒5I4=e-2t -2 sin t-cos t4⇒I=e-2t5-2 sin t-cos t+C⇒I=-x-252 sin log x+cos log x+C⇒I=-15x2cos log x+2 sin log x+C

Q9.

Answer :

Let I=∫ e2xcos2 x dx=∫ e2x1+cos 2x2dx=12∫ e2xdx +12∫e2xcos 2xdx=e2x4+12I1 …..1Where I1=∫ e2xcos 2x dxConsidering cos 2x as first function and e2x as second function I1=cos 2xe2x2-∫-2 sin 2x×e2x2dx ⇒I1=cos 2xe2x2+∫ e2xsin 2x dxNow considering sin 2x as first function and e2x as second function I1=cos 2xe2x2+sin 2xe2x2-∫ 2 cos 2xe2x2dx⇒ I1=e2xcos 2x+sin 2×2-I1⇒2 I1=e2xcos 2x+sin 2×2⇒ I1=e2xcos 2x+sin 2×4 …..2From 1 & 2I=e2x4+e2x8cos 2x+sin 2x+C

Q10.

Answer :

Let I=∫ e-2xsin x dxConsidering sin x as first function and e-2x as second functionI=sin xe-2x-2-∫cos xe-2x-2dx⇒I=-e-2xsin x2+12∫e-2x cos x dx⇒I=-e-2xsin x2+I12 where …..1Where, I1=∫ e-2xcos x dxConsidering cos x as first and e-2x as second functionI1=cos x e-2x-2-∫-sin xe-2x-2dx⇒I1=e-2xcos x-2-∫sin x e-2x dx2⇒I1=-e-2x cos x2-I2 …..2From 1 & 2I=-e-2x sin x2+12-e-2xcos x2-I2⇒I+I4=-e-2xsin x2-e-2xcos x4⇒5I4=-e-2x 2 sin x+cos x4∴I=e-2×5-2 sin x-cos x+C

Q11.

Answer :

Given integral is,∫ x2ex3cos x3 dxLet x3=t⇒3×2 dx=dt⇒x2 dx=dt3Integral becomes,13∫ etcos t dt=13I …..1Where, I=∫ etcos t dtI=∫ etcos t dtConsidering cos t as first and et as second functionI=cos t et-∫-sin t et dt⇒I=etcos t+∫ sin t et dtAgain considering sin t as first and et as second functionI=etcos t+sin t et-∫ cos t et dt⇒I=et cos t+sin t et-I⇒2I=etsin t+cos t⇒I=et2sin t+cos t∴∫ x2ex3cos x3 dx=13et2sin t+cos t+C From 1=ex36sin x3+cos x3+C

 

Page 19.139 Ex.19.23

Q1.

Answer :

∫ 3+2x-x2 dx=∫ 3-x2-2x dx=∫ 3-x2-2x+1-1 dx=∫ 4-x-12 dx=∫ 22-x-12 dx ∵∫a2-x2dx=12xa2-x2+12a2sin-1xa+C=x-12 22-x-12+222sin-1 x-12+C=x-123+2x-x2+sin-1 x-12+C

Q2.

Answer :

∫ x2+x+1 dx=∫ x2+x+122-122+1 dx=∫ x+122+322=x+122 x+122+322+38log x+12+12+x2+x+1+C ∵∫x2+a2dx=12xx2+a2+12a2 lnx+x2+a2+C=2x+14 x2+x+1+38log 2x+1+12+x2+x+1+C

Q3.

Answer :

∫ x-x2 dx=∫ -x2-x dx=∫ -x2-x+122-122 dx=∫ 122-x-122 dx=x-122 x-x2 +18sin-1 x-1212+C ∵∫a2-x2dx=12xa2-x2+12a2sin-1xa+C=2x-14 x-x2+18 sin-1 2x-1+C

Q4.

Answer :

∫ 1+x-2×2 dx=∫ 212+x2-x2 dx=2 ∫12-x2-x2 dx=2 ∫ 12-x2-x2+142-142 dx=2 ∫ 12+116-x-142 dx=2 ∫ 342-x-142 dx=2 x-142 342-x-142+932sin-1x-1434+C ∵∫a2-x2dx=12xa2-x2+12a2sin-1xa+C=4x-18 1+x-2×2+9232sin-1 4x-13+C

Q5.

Answer :

Let I=∫ cos x 4-sin2 x dxPutting sin x=t⇒cos x dx=dt∫ 22-t2 dt=t222-t2+222 sin-1 t2+C ∵∫a2-x2 dx=12xa2-x2+12a2sin-1xa+C=sin x2 4-sin2 x+2 sin-1 sin x2+C ∵t= sin x

Q6.

Answer :

Let I=∫ ex e2x+1 dxPutting ex=t⇒ex dx=dt∴I=∫ t2+1dt =t2t2+1+122ln t+t2+1+C ∵∫x2+a2dx=12xx2+a2+12lnx+x2+a2+C =ex2 e2x+1+12ln ex+e2x+1+C ∵ t= ex

Q7.

Answer :

∫ 9-x2 dx=∫ 32-x2 dx=x232-x2+322sin-1 x3+C ∵∫a2-x2 dx=12xa2-x2+12a2 sin-1xa+C=x29-x2+92sin-1 x3+C

Q8.

Answer :

∫ 16×2+25 dx=∫ 16×2+2516dx=4∫ x2+542 dx=4x2x2+542+5422ln x+x2+542+C ∵∫x2+a2 dx=12xx2+a2+12a2 lnx+x2+a2+C=2x x2+2516+258ln x+x2+2516+C

Q9.

Answer :

∫ 4×2-5dx=∫ 4×2-54 dx=2∫ x2-522 dx=2x2x2-54-58ln x+x2-54 +C ∵∫x2-a2 dx=12xx2-a2-12a2 lnx+x2-a2+C=x x2-54-54ln x+x2-54+C

Q10.

Answer :

∫ 2×2+3x+4 dx=2 ∫ x2+32x+2 dx=2 ∫ x2+32x+342-342+2 dx=2 ∫ x+342-916+2 dx=2 ∫ x+342+2342dx=2 x+342 x+342+2342+2332ln x+34+x2+32x+2+C ∵∫x2+a2 dx=12xx2+a2-12a2 lnx+x2+a2+C=2 4x+38 x2+32x+2+2332ln x+34+x2+32x+2+C=4x+38 2×2+3x+4+23232ln x+34+x2+32x+2+C

Q11.

Answer :

Let I=∫3-2x-2x2dx=∫3-2×2+2xdx=∫3-2 x2+xdx=∫3-2 x2+x+14-14dx=∫3-2 x+122+12dx=∫72-2 x+122dx=2∫74-x+122dx=2∫722-x+122dx=2×x+122 722-x+122+2×74×2 sin-1 x+1272+C=2x+14 3-2x-2×2+742 sin-1 2x+17+C

Q12.

Answer :

Let I=∫xx4+1dx=∫xx22+1dxPutting x2=t⇒2x dx=dt⇒x dx=dt2∴I=12∫t2+1dt=12∫t2+12dt=12 t2t2+1+122 log t+t2+1+C=12×22 x4+1+12 log x2+x4+1+C=x24 x4+1+14 log x2+x4+1+C

Q13.

Answer :

Let I=∫x2a6-x6dx=∫x2a32-x32dxPutting x3=t⇒3×2 dx=dt⇒x2 dx=dt3∴I=13∫a32-t2dt=13 t2a32-t2+a322 sin-1 ta3+C=x36 a6-x6+a66 sin-1 x3a3+C

Q14.

Answer :

Let I=∫16+log x2xdxPutting log x=t⇒1x dx=dt∴I=∫16+t2dt=∫42+t2dt=t2 42+t2+422 log t+42+t2+C=log x2 16+log x2+8 log log x+16+log x2+C

Q15.

Answer :

Let I=∫2ax-x2dx=∫a2+2ax-x2-a2dx=∫ a2-x2-2ax+a2dx=∫a2-x-a2dx=x-a2 2ax-x2+a22 sin-1 x-aa+C

Q16.

Answer :

Let I= ∫3-x2dx=∫32-x2dx=x232-x2+322 sin-1 x3+C=x2 3-x2+32 sin-1 x3+C

 

Page 19.143 Ex.19.24

Q1.

Answer :

Let I= ∫ x+1 x2-x+1 dxAlso, x+1=λddxx2-x+1+μ⇒x+1=λ2x-1+μ⇒x+1=λ2x-1+μ⇒x+1=2λx+μ-λEquating the coefficient of like terms2λ=1⇒λ=12Andμ-λ=1⇒μ-12=1⇒μ=32∴I=∫122x-1+32 x2-x+1dx=12∫2x-1 x2-x+1dx+32∫x2-x+1dx=12∫2x-1 x2-x+1 dx+32∫ x2-x+14-14+1 dx=12∫2x-1 x2-x+1 dx+32∫x-122+34dx=12∫2x-1 x2-x+1 dx+32∫x-122+322dxLet x2-x+1=t⇒2x-1dx=dt∴I=12∫t dt+32∫x-122+322 dx=12×t3232+32x-122 x-122+322+38log x-12+x-122+322+C=13×2-x+132+382x-1 x2-x+1+916log x-12+x2-x+1+C

Q2.

Answer :

Let I=∫ x+1 2×2+3 dxAlso, x+1=λddx2x2+3+μ⇒x+1=λ4x+μEquating coefficient of like terms4λ=1⇒λ=14 and μ=1∴I=∫ 144x+1 2×2+3 dx=14∫ 4x 2×2+3 dx+∫2×2+3 dx=14∫4x2x2+3dx+∫2×2+32dx=14∫4x 2×2+3 dx+2 ∫x2+322 dxLet 2×2+3=t⇒4x dx=dt∴I=14∫ t dt+2x2x2+32+34log x+x2+32=14t3232+2x22x2+32+324 log x+2×2+32+C=162×2+332+x22x2+3+324log 2x+2×2+32+C=162×2+332+x22x2+3+324log 2x+2×2+3-324log 2+C=162×2+332+x22x2+3+324log 2x+2×2+3+C’Where C’=C-324log 2

Q3.

Answer :

Let I=∫ 2x-5 2+3x-x2 dxAlso, 2x-5=λddx2+3x-x2+μ⇒2x-5=λ-2x+3+μ⇒2x-5=-2λx+3λ+μEquating coeffieicents of like terms-2λ=2⇒λ=-1And3λ+μ=-5⇒3-1+μ=-5⇒μ=-5+3⇒μ=-2∴2x-5=-1-2x+3-2Hence, I=∫ –2x+3-2 2+3x-x2 dx=-∫ -2x+3 2+3x-x2dx-2∫2+3x-x2 dx=-I1-2I2 …..1I1=∫-2x+3 2+3x-x2 dxLet 2+3x-x2=t⇒-2x+3dx=dt∴I1=∫ t12 dt=t12+112+1=23t32=232+3x-x232 …..2And I2=∫ 2+3x-x2 dxI2=∫ 2-x2-3x dx=∫ 2-x2-3x+322-322 dx=∫2+94-x-322 dx=∫ 1722-x-322 dx=x-322 1722-x-322+17222sin-1 x-32172=2x-342+3x-x2+178 sin-1 2x-317 …..3From eq 1, 2 and 3 we haveI=-23 2+3x-x232-2x-322+3x-x2-174sin-1 2x-317+C

Q4.

Answer :

Let I=∫ x+2 x2+x+1 dxAlso, x+2=λddx x2+x+1+μ⇒x+2=λ2x+1+μ⇒x+2=2λx+λ+μEquating coefficient of like terms2λ=1 ⇒λ=12And λ+μ=2⇒12+μ=2⇒μ=32∴I=∫ 122x+1+32×2+x+1dx=12∫ 2x+1 x2+x+1 dx+32∫x2+x+1 dx=12∫2x+1 x2+x+1dx+32∫x2+x+122-122+1dx=12∫ 2x+1 x2+x+1 dx+32 ∫x+122+322 dxLet x2+x+1=t⇒2x+1dx=dtThen,I=12∫ t dt+32 ∫x+122+322 dx=12∫ t12 dt+32 x+122 x+122+322+38log x+12+ x+122+322+C=12t3232+382x+1 x2+x+1+916log x+12+x2+x+1+C=13 x2+x+132+38 2x+1 x2+x+1+916log x+12+x2+x+1+C

Q5.

Answer :

Let I=∫ 4x+1 x2-x-2 dxAlso, 4x+1=λddxx2-x-2+μ⇒4x+1=λ2x-1+μ⇒4x+1=2λx+μ-λEquating coefficient of like terms2λ=4⇒λ=2Andμ-λ=1⇒μ-2=1⇒μ=3∴I=∫ 22x-1+3 x2-x-2 dx=2∫2x-1 x2-x-2dx+3∫x2-x-2dx=2∫2x-1 x2-x-2 dx+3 ∫ x2-x+122-122-2 dx=2 ∫ 2x+1 x2-x-2 dx+3 ∫ x-122-2-14 dx=∫ 2x-1 x2-x-2 dx+3 ∫x-122-322 dxLet x2-x-2=t⇒ 2x-1dx=dt∴I=2∫ t dt+3x-122 x-122-322-3222log x-12+x2-x-2=2 t3232+34 2x-1 x2-x-2-278log x-12+x2-x-2+C=43 x2-x-232+34 2x-1 x2-x-2-278log x-12+x2-x-2+C

Q6.

Answer :

Let I=∫ x-2 2×2-6x+5 dxAlso, x-2=λddx2x2-6x+5+μ⇒x-2=4λx+μ-6λEquating the coefficient of like terms4λ=1⇒λ=14Andμ-6λ=-2⇒μ-6×14=-2⇒μ=-2+32=-12∴I=∫ 144x-6-12 2×2-6x+5 dx=14 ∫ 4x-6 2×2-6x+5 dx-12∫2×2-6x+5 dxLet 2×2-6x+5=t⇒4x-6dx=dt∴I=14∫ t12 dt-12∫2×2-3x+52dx=14∫ t12-22∫x2-3x+322-322+52 dx=14t3232-12∫ x-322-94+52 dx=16t32-12 ∫ x-322-9+104 dx=16t32-12∫x-322+122 dx=162×2-6x+532-12 x-322 x-322+122+18log x-32+x2-3x+52+C=16 2×2-6x+532-12 2x-34 x2-3x+52+18log 2x-32+x2-3x+52+C

Q7.

Answer :

Let I=∫ x+1 x2+x+1 dxAlso, x+1=λddx x2+x+1+μ⇒x+1=λ2x+1+μ⇒x+1=2λx+λ+μEquating coefficient of like terms2λ=1 ⇒ λ=12Andλ+μ=1⇒12+μ=1∴μ=12∴I= 12∫ 2x+1 x2+x+1dx+12∫x2+x+1 dx=12∫2x+1 x2+x+1 dx+12∫x2+x+122-122+1 dx=12∫2x+1 x2+x+1 dx+12∫x+122+322 dxLet x2+x+1=t⇒2x+1dx=dtThen,
I=12∫t dt+12x+122x+122+322+38log x+12+x+122+322+C=12×23t32+122x+14 x2+x+1+38log x+12+x2+x+1+C=13×2+x+132+122x+14 x2+x+1+38log x+12+x2+x+1+C

Q8.

Answer :

Let I=∫ 2x+3 x2+4x+3 dxAlso, 2x+3=λddxx2+4x+3+μ⇒2x+3=λ2x+4+μ⇒2x+3=2λx+4λ+μEquating coefficient of like terms.2λ=2 ⇒ λ=1And4λ+μ=3⇒4+μ=3⇒μ=-1∴I=∫ 2x+4-1 x2+4x+3dx=∫ 2x+4 x2+4x+3dx-∫x2+4x+3 dx=∫ 2x+4 x2+4x+3 dx-∫x2+4x+4-1 dx=∫2x+4 x2+4x+3dx-∫x+22-12 dxLet x2+4x+3=t⇒2x+4dx=dtThen,I=∫t dt-∫x+22-12 dx=23t32-x+22x+22-1-122log x+2+x+22-1+C=23 x2+4x+332-12x+2 x2+4x+3-log x+2+ x2+4x+3+C

Q9.

Answer :

Let I=∫ 2x-5 x2-4x+3 dx=∫ 2x-4-1 x2-4x+3 dx=∫2x-4 x2-4x+3 dx-∫x2-4x+3 dx=∫2x-4 x2-4x+3 dx-∫ x2-4x+4-4+3 dx=∫2x-4 x2-4x+3 dx-∫ x-22-12 dxLet x2-4x+3=t⇒2x-4dx=dt∴I=∫t dt-∫x-22-12 dx=23t32-x-22 x-22-12-122logx-2+x-22-1+C=23×2-4x+332-x-22 x2-4x+3+12log x-2+x2-4x+3+C

Q10.

Answer :

Let I=∫ xx2+xdxAlso, x=λddxx2+x+μ⇒x=λ2x+1+μ⇒x=2λx+λ+μEquating coefficient of like terms2λ=1⇒λ=12Andλ+μ=0⇒μ=-12∴I=∫ 122x+1-12 x2+xdx=12∫2x+1 x2+xdx-12∫x2+xdx=12∫ 2x+1 x2+xdx-12∫x2+x+14-14dx=12∫2x+1 x2+x dx-12∫x+122-122dxLet x2+x=t⇒2x+1dx=dtThen,I=12∫t dt-12x+122 x2+x-18logx+12+x2+x+C=12×23t32-2x+18 x2+x+116log x+12+x2+x+C=13×2+x32-2x+18 x2+x+116log x+12+x2+x+C

 

Page 19.160 Ex.19.25

Q1.

Answer :

∫2x+1x+1x-2 dx Let 2x+1x+1x-2=Ax+1+Bx-2 ….(1)⇒2x+1x+1x-2=Ax-2+Bx+1x+1x-2Then ,2x+1=Ax-2+Bx+1 ….(2)Putting x-2=0 or, x=2 in eq (2) ⇒2×2+1=A×0+B2+1⇒B=53Putting x+1=0 or, x=-1 in eq (2) 2×-1+1+A-1-2+B×0⇒-1=A-3⇒A=13Substituting the values of A and B in eq (1) , we get ∴ 2x+1x+1x-2=13x+1+53x-2∫2x+1dxx+1x-2=13∫1x+1dx+53∫1x-2dx =13 ln x+1+53 ln x-2+C

Q2.

Answer :

∫1xx-2x-4dxLet 1xx-2x-4=Ax+Bx-2+Cx-4⇒1xx-2x-4=Ax-2x-4+Bxx-4+Cx·x-2xx-2x-4⇒1=Ax-2x-4+Bx·x-4+Cx.x-2 …(1)Putting x=0 in eq (1) ⇒1=A0-20-4+B×0+C×0⇒18=APutting x-2=0 or x=2 in eq (1)⇒1=A×0+B22-4+C×2×0⇒B=-14Putting x-4=0 or x=4 in eq (1)⇒1=A×0+B×0+C·44-2⇒C=18∴1xx-2x-4=18x-14x-2+18x-4⇒∫dxxx-2x-4=18∫1xdx-14∫1x-2dx+18∫1x-4dx =18 ln x-14 ln x-2+18 ln x-4+C =18ln x+ln x-4-2 ln x-2+C =18ln xx-4x-22+C

Q3.

Answer :

∫x2+x-1×2+x-6dx=∫x2+x-6+6-1×2+x-6dx=∫x2+x-6×2+x-6dx+5∫1×2+x-6dx=∫dx+5∫1×2+3x-2x-6dx=∫dx+5∫1xx+3-2x+3dx=∫dx+5∫1x-2x+3dx . . . (1)Let1x-2x+3=Ax-2+Bx+3⇒1x-2x+3=Ax+3+Bx-2x-2x+3⇒1=Ax+3+Bx-2 ….(2) Putting x+3=0 or x=-3 in eq (2)⇒1=A×0+B-3-2⇒B=-15Putting x-2=0 or x=2 in eq (2)⇒1=A2+3+B×0⇒A=15

∴1x-2x+3=15x-2-15x+3⇒∫1x-2x+3dx=15∫dxx-2-15∫dxx+3 =15 ln x-2-15 ln x+3+C =15 ln x-2x+3+C . . . (3)From eq (1) & eq (3)∴∫x2+x-1×2+x-6dx=x+55 ln x-2x+3+C =x+ln x-2-ln x+3+C

Q4.

Answer :

∫3+4x-x2x2-x+2x-2dx=∫-x2+4x+3×2+x-2dx-x2+4x+3×2+x-2=-1+5x+1×2+x-2 . . . (1)∴5x+1×2+x-2=5x+1×2+2x-x-2 =5x+1xx+2-1x+2Let5x+1x-1x+2=Ax-1+Bx+2⇒5x+1x-1x+2=Ax+2+Bx-1x-1x+2⇒5x+1=Ax+2+Bx-1 …(2)Putting x+2=0 or x=-2 in eq (2)⇒5x-2+1=A×0+B-2-1⇒B=3Putting x-1=0 or x=1 in eq (2) ⇒5×1+1=A3+B×0⇒A=2∴5x+1x-1x+2=2x-1+3x+2 . . . (3)From (1) & (3)-x2+4x+3×2+x-2=-1+2x-1+3x+2⇒∫-x2+4x+3×2+x-2dx=∫-1 dx+∫2x-1dx+∫3x+2 dx =-x+2 lnx-1+3 lnx+2+C

Q5.

Answer :

∫x2+1×2-1dx=∫x2-1+2×2-1dx=∫dx+2∫1×2-12dx=∫dx+2∫1x-1 x+1dx … 1∴ 1x-1x+1=Ax-1+Bx+1⇒1x-1 x+1=A x+1+Bx-1x-1 x+1⇒1=A x+1 B x-1 ….(2)Putting x+1=0 or x=-1 in eq (2)⇒1=A×0+B -1 -1⇒B=-12Putting x-1=0 or x=1 in eq (2)⇒1=A 1+1+B×0⇒A=12∴ 1x-1x+1=12x-1-12x+1 …(3)From eq (1) & eq (3) ∫x2+1×2-1dx=∫dx+2∫12 x-1-12 x+1dx =∫dx+∫dxx-1-∫dxx+1 =x+ln x-1=-ln x+1+C =x+ln x-1x+1+C

Q6.

Answer :

∫x2 x-1 x-2 x-3dxLetx2x-1 x-2 x-3=Ax-1+Bx-2+Cx-3⇒x2x-1 x-2 x-3=A x-2 x-3+B x-1 x-3+C x-1 x-2x-1 x-2 x-3⇒x2=A x-2 x-3+B x-1 x-3+C x-1 x-2 ….(1)Putting x-1=0 or x=1 in eq (1)⇒1=A 1-2 1-3⇒1=A -1 -2⇒A=12Putting x-2=0 or x=2 in eq (1) ⇒4=B 2-1 2-3⇒B=-4Putting x-3=0 or x=3 in eq (1) ⇒9=C 3-1 3-2⇒C=92∴x2x-1 x-2 x-3=12 x-1-4x-2+92 x-3∫x2 x-1 x-2 x-3dx=12∫1x-1dx-4∫1x-2dx+92∫1x-3dx =12ln x-1-4 ln x-2+92 lnx-3+C

Q7.

Answer :

∫5xx+1 x2-4dxLet5xx+1 x-2 x+2=Ax+1+Bx-2+Cx+2⇒5xx+1 x-2 x+2=A x-2 x+2+B x+1 x+2+C x+1 x-2x+1 x-2 x+2⇒5x=A x-2 x+2+B x+1 x+2+C x+1 x-2 ….(1)Putting x-2=0 or x=2 in eq (1)⇒5×2=B 2+1 2+2⇒B=103×4 =56Putting x+2=0 or x=-2 in eq (1)⇒5×-2=C -2+1 -2-2⇒-10-1×-4 =C⇒C=-52Putting x+1=0 or x=-1 in eq (1) ⇒-5=A -1-2 -1+2⇒-5-3=A⇒A=53∴ 5xx+1 x-2 x+2=53×1x+1+56 x-2- 52 x+2⇒5xx+1 x-2 x+2=56×2x+1+56 x-2-56 3x+2∴ ∫5x x+1 x-2 x+2dx=56∫2x+1 dx+56∫1x-2dx-56∫3x+2 dx =562 ln x+1+ln x-2-3 ln x+2+C =56 ln x+12+ln x-2-ln x+23+C =56 ln x+12 x-2x+23+C

Q8.

Answer :

∫x2+1x x2-1dx=∫x2+1x x-1 x+1dxLetx2+1x x-1 x+1=Ax+Bx-1+Cx+1⇒x2+1x x-1 x+1=A x-1 x+1+B x x+1+C x x-1x x-1 x+1⇒x2+1=A x-1 x+1+B x x+1+C x x-1 ….(1)Putting x-1=0 or x=1 in eq (1) ⇒1+1=A×0+B 1 1+1+C×0⇒B=1Putting x=0 in eq (1) ⇒0+1=A 0-1 0+1⇒A=-1Putting x+1=0 or x=-1 in eq (1) ⇒-12+1=A×0+B×0+C-1 -1-1⇒2=C×2⇒C=1∴x2+1x x2-1=-1x+1x-1+1x+1⇒∫x2+1x x2-1dx=-∫1xdx+∫1x-1dx+∫1x+1dx =-ln x+ln x-1+ln x+1+C =-ln x+ln x2-1+C =ln x2-1x+C

Q9.

Answer :

∫2x-3 x2-1 2x+3dx=∫2x-3 x-1 x+1 2x+3dxLet 2x-3x-1 x+1 2x+3=Ax-1+Bx+1+C2x+3⇒2x-3x-1 x+1 2x+3=A x+1 2x+3+B x+1 2x+3+C x2-1x-1 x+1 2x+3⇒2x-3=A x+1 2x+3+B x-1 2x+3+C x+1 x-1 …(1)Putting x+1=0 or x=-1 in eq (1)⇒-2-3=B -1-1 -2+3⇒-5=B -2 1⇒B=52Putting x-1=0 or x=1 in eq (1)⇒2-3=A 1+1 2+3⇒-1=A 2 5⇒A=-110Putting 2x+3=0 or x=-32in eq (1) ⇒2×-32-3=A×0+B×0+C-32+1 -32-1⇒-6=C -12 -52⇒C=-245∴2x-3x-1 x+1 2x+3=-110 x-1+52 x+1-245 2x+3⇒∫2x-3x-1 x+1 2x+3 dx=-110∫1x-1dx+52∫1x+1dx-245∫12x+3dx =-110 ln x-1+52 ln x+1-245 ln 2x+33+C =-110 ln x-1+52 ln x+1-125 ln 2x+3+C

Q10.

Answer :

∫x3 x-1 x-2x-3dx=∫x3 x-1 x2-5x+6dx=∫x3 x3-5×2+6x-x2+5x-6dx=∫x3 x3-6×2+11x-6dx ∴x3x3-6×2+11x-6=1+6×2+11x+6×2-6×2+11x-6⇒x3x3-6×2+11x-6=1+6×2-11x+6x-1 x-2 x-3∴∫x3x-1 x-2 x-3 dx=∫dx+∫6×2-11x+6x-1 x-2 x-3dx …1

Let6x2-11x+6x-1 x-2 x-3=Ax-1+Bx-2+Cx-3⇒6×2-11x+6x-1 x-2 x-3=A x-2 x-3+B x-1 x-3+C x-1 x-2x-1 x-2 x-3⇒6×2-11x+6=A x-2 x-3+B x-1 x-3+C x-1 x-2 …(2)Putting x-2=0 or x=2 in eq (2) ⇒6×4-22+6=B 2-1 2-3⇒8=B -1⇒B=-8Putting x-3=0 or x=3 in eq (2)⇒6×32-11×3+6=C 3-1 3-2⇒27=C 2 1⇒C=272Putting x-1=0 or x=1 in eq (2) ⇒6×1-11+6=A 1-2 1-3⇒1=A -1 -2⇒A=12∴6×2-11x+6x-1 x-2 x-3=12x-1-8x-2+272x-3 …(3)From eq (2) and eq (3)∴∫x3 dxx-1 x-2 x-3=∫dx+12∫1x-1dx-8∫1x-2dx+272∫1x-3dx =x+12 ln x-1-8 ln x-2+272 ln x-3+C

Q11.

Answer :

We have, I=∫sin 2x dx1+sin x 2+sin x=∫2 sin x cos x dx1+sin x 2+sin xPutting sin x=t⇒cos x dx=dt∴I=∫2t dt1+t 2+t=2∫t dt1+t 2+tLet t1+t 2+t=A1+t+B2+t⇒t1+t 2+t=A 2+t+B 1+t1+t 2+t⇒t=A 2+t+B 1+tPutting 2+t=0⇒t=-2-2=A×0+B -2+1⇒-2=B -1⇒B=2let t+1=0t=-1⇒-1=A -1+2+B×0A=-1∴ I=2∫-1t+1+2t+2dt=2 -log t+1+2 log t+2+C=4 log t+2-2 log t+1+C=log t+24t+12+C=log sin x+24sin x+12+C

Q12.

Answer :

We have,I=∫2x dxx2+1 x2+3Putting x2=t⇒2x dx=dt∴I=∫dtt+1 t+3Let 1t+1 t+3=At+1+Bt+3⇒1t+1 t+3=A t+3+B t+1t+1 t+3⇒1=A t+3+B t+1Putting t+3=0⇒t=-31=A×0+B -3+1⇒B=-12Putting t+1=0⇒t=-11=A -1+3+B -1+1⇒1=A×2+B×0⇒A=12Then,I=12∫dtt+1-12∫dtt+3=12 log t+1-12 log t+3+C=12 log t+1t+3+C=12 log x2+1×2+3+C

Q13.

Answer :

We have,I=∫dxx log x2+log xPutting log x=t⇒1x dx=dt∴I=∫dtt t+2Let 1t t+2=At+Bt+2⇒1t t+2=At+2+Btt t+2⇒1=A t+2+BtPutting t+2=0⇒t=-21=A×0+B -2⇒B=-12Putting t=01=A 0+2+B ×0⇒A=12Then,I=12∫dtt-12∫dtt+2=12 log t-log t+2+C=12 log tt+2+C=12 log log xlogx+2+C

Q14.

Answer :

We have,I=∫dxcos x 5-4 sin x=∫cos x dxcos2x 5-4 sin x=∫cos x dx1-sin2x 5-4 sin x=∫cos x dx1-sin x 1+sin x 5-4 sin xPutting sin x=t⇒cos x dx=dt∴I=∫dt1-t 1+t 5-4tLet 11-t 1+t 5-4t=A1-t+B1+t+C5-4t⇒11-t 1+t 5-4t=A1+t 5-4t+B1-t 5-4t+C1-t 1+t1-t 1+t 5-4t⇒1=A1+t 5-4t+B1-t 5-4t+C1-t 1+tPutting 1+t=0⇒t=-11=B2 5+4B=118Putting 1-t=0⇒t=11=A 2 5-4+B×0+C×0A=12Putting 5-4t=0⇒4t=5⇒t=541=C 1-54 1+54⇒1=C -14 94⇒C=-169∴I=12∫dt1-t+118∫dt1+t-169∫dt5-4t=12 log 1-t-1+118 log 1+t-169× log 5-4t-4+C=118 log 1+t-12 log 1-t+49log 5-4t+C=118 log 1+sin x-12 log 1-sin x+49 log 5-4 sin x+C

Q15.

Answer :

We have,I=∫dxsin x 3+2 cos x=∫sin x dxsin2x 3+2 cos x=∫sin x dx1-cos2x 3+2 cos x=∫sin x dx1-cos x 1+cos x 3+2 cos xPutting cos x=t⇒-sin x dx=dt⇒sin x dx=-dt∴I=∫-dt1-t 1+t 3+2t=∫dtt-1 t+1 3+2tLet 1t-1 t+1 3+2t=At-1+Bt+1+C3+2t⇒1t-1 t+1 3+2t=A t+1 3+2t+B t-1 3+2t+C t+1 t-1t-1 t+1 3+2t⇒1=A t+1 3+2t+B t-1 3+2t+C t+1 t-1Putting t+1=0⇒t=-11=A×0+B -2 3-2+C×0⇒1=B -2⇒B=-12Putting t-1=0⇒t=11=A 2 5+B×0+C×0⇒A=110Putting 3+2t=0⇒t=-321=A×0+B×0+C -32+1 -32-1⇒1=C -12 -52C =45Then,I=110∫dtt-1-12∫dtt+1+45∫dt3+2t=110 log t-1-12 log t+1+45× log 3+2t2+C=110 log t-1-12 log t+1+25log 3+2t+C=110 log cos x-1-12 log cos x+1+25 log 3+2 cos x+C

Q16.

Answer :

We have,I=∫dxsin x +sin 2x =∫dxsin x+2 sin x cos x=∫dxsin x 1+2 cos x=∫sin x dxsin2x 1+2 cos x=∫sin x dx1-cos2x 1+2 cos x=∫sin x dx1-cos x 1+cos x 1+2 cos xPutting cos x=t⇒-sin x dx=dt⇒sin x dx=-dt∴I=∫-dt1-t 1+t 1+2t=∫dtt-1 t+1 1+2tLet 1t-1 t+1 1+2t=At-1+Bt+1+C1+2t⇒1t-1 t+1 1+2t=A t+1 1+2t+B t-1 1+2t+C t-1 t+1t-1 t+1 1+2t⇒1=A t+1 1+2t+B t-1 1+2t+C t-1 t+1Putting t+1=0⇒t=-11=B -1-1 1-2⇒1=B -2 -1⇒B=12Putting t-1=0⇒t=11=A 1+1 1+2⇒1=A23⇒A=16Putting 1+2t=0t=-12⇒1=A×0+B×0+C -12-1 -12+11=C -32 12C=-43Then,I=16∫dtt-1+12∫dtt+1-43∫dt1+2t=16 log t-1+12 log t+1-43×log 1+2t2+C=16 log t-1+12 log t+1-23log 1+2t+C=16 log cos x-1+12 log cos x+1-23 log 1+2 cos x+C

Q16.

Answer :

We have,I=∫dxsin x +sin 2x =∫dxsin x+2 sin x cos x=∫dxsin x 1+2 cos x=∫sin x dxsin2x 1+2 cos x=∫sin x dx1-cos2x 1+2 cos x=∫sin x dx1-cos x 1+cos x 1+2 cos xPutting cos x=t⇒-sin x dx=dt⇒sin x dx=-dt∴I=∫-dt1-t 1+t 1+2t=∫dtt-1 t+1 1+2tLet 1t-1 t+1 1+2t=At-1+Bt+1+C1+2t⇒1t-1 t+1 1+2t=A t+1 1+2t+B t-1 1+2t+C t-1 t+1t-1 t+1 1+2t⇒1=A t+1 1+2t+B t-1 1+2t+C t-1 t+1Putting t+1=0⇒t=-11=B -1-1 1-2⇒1=B -2 -1⇒B=12Putting t-1=0⇒t=11=A 1+1 1+2⇒1=A23⇒A=16Putting 1+2t=0t=-12⇒1=A×0+B×0+C -12-1 -12+11=C -32 12C=-43Then,I=16∫dtt-1+12∫dtt+1-43∫dt1+2t=16 log t-1+12 log t+1-43×log 1+2t2+C=16 log t-1+12 log t+1-23log 1+2t+C=16 log cos x-1+12 log cos x+1-23 log 1+2 cos x+C

Q17.

Answer :

We have,I=∫dxx-1 x+1 x+2Let 1x-1 x+1 x+2=Ax-1+Bx+1+Cx+2⇒1x-1 x+1 x+2=A x+1 x+2+B x-1 x+2+C x-1 x+1x-1 x+1 x+2⇒1=A x+1 x+2+B x-1 x+2+C x-1 x+1Putting x-1=0⇒x=11=A 1+1 1+2+B×0+C×0⇒1=A×6⇒A=16Putting x+1=0⇒x=-11=A×0+B -2 1+C×0⇒B=-12Putting x+2=0⇒x=-21=A×0+B×0+C -2-1 -2+1⇒1=C×3⇒C=13∴I=16∫dxx-1-12∫dxx+1+13∫dxx+2=16 log x-1-12 log x+1+13 log x+2+C=16 log x-1-36 log x+1+26log x+2+C=16 log x-1-3 log x+1+2 log x+2+C=16log x-1 x+22x+13 +C

Q18.

Answer :

We have,I=∫x+1x 1+xex dxI=∫exx+1exx 1+xex dxPut ex=t⇒exx+1dx=dtI=∫dtt 1+t …..1Let,1t 1+t=At +B1+t⇒1=At+1+Bt …..2Putting t=0 in 2, we obtain A=1Putting t=-1 in 2, we obtain B=-1I=∫1t -11+t dtI=logt-logt+1+CI=logtt+1 +CI=logxexxex+1 +C

Q19.

Answer :

We have,I=∫5×2-1 dxx x-1 x+1Let 5×2-1x x-1 x+1=Ax+Bx-1+Cx+1⇒5×2-1x x-1 x+1=A x2-1 +Bx·x+1+C·x· x-1x x-1 x+1⇒5×2-1=A x2-1+B·x x+1+C·x· x-1Putting x=1⇒5-1=A×0+B 1 1+1+C×0⇒4=B 2⇒B=2Putting x=0⇒5×0-1=A 0-1+B×0+C×0⇒-1=A -1⇒A=1Putting x+1=0x=-15-1=A×0+B×0+C -1 -2⇒C=2∴I=∫dxx+2∫dxx-1+2∫dxx+1=log x+2 log x-1+2 log x+1+C=log x+2 log x2-1+C=log xx2-12+C

Q20.

Answer :

We have,I=∫x2+6x-8×3-4xdx=∫x2+6x-8x x2-4dx=∫x2+6x-8x x-2 x+2dxLet x2+6x-8x x-2 x+2=Ax+Bx-2+Cx+2⇒x2+6x-8x x-2 x+2=A x-2 x+2+B x x+2+C x x-2x x-2 x+2⇒x2+6x-8=A x2-4+B x2+2x+C x2-2xPutting x-2=0⇒x=24+6×2-8=A×0+B 4+4⇒8=B×8⇒B=1Putting x=-24-12-8=A×0+B×0+C×8⇒C=-2Putting x=0-8=A -4+B×0+C×0⇒A=2∴I=∫2x+∫dxx-2-2∫dxx+2=2 log x+log x-2-2 log x+2+C=log x2+log x-2-log x+22+C=log x2x-2x+22+C

Q21.

Answer :

We have,I=∫x2+1 dx2x+1 x2-1=∫x2+1 dx2x+1 x-1 x+1Let x2+12x+1 x-1 x+1=A2x+1+Bx-1+Cx+1⇒x2+12x+1 x-1 x+1=A x2-1+B 2x+1 x+1+C 2x+1 x-12x+1 x-1 x+1⇒x2+1=A x2-1+B 2x+1 x+1+C 2x+1 x-1Putting x-1=0⇒x=11+1=A×0+B 2+1 1+1+C×0⇒2=B32⇒B=13Putting x+1=0⇒x=-11+1=A×0+B×0+C -2+1 -1-1⇒2=C -1 -2⇒C=1Putting 2x+1=0⇒x=-12-122+1=A 14-1⇒14+1=A -34⇒54=A -34A=-53∴I=-53∫dx2x+1+13∫dxx-1+∫dxx+1=-53× log 2x+12+13 log x-1+log x+1+C=-56 log 2x+1+13 log x-1+log x+1+C

Q22.

Answer :

We have,I=∫dxx 6 log x2+7 log x+2Putting log x=t⇒1x dx=dt∴I=∫dt6t2+7t+2=∫dt3t+2 2t+1Let 13t+2 2t+1=A3t+2+B2t+1⇒13t+2 2t+1=A 2t+1+B 3t+23t+2 2t+1⇒1=A 2t+1+B 3t+2Putting 2t+1=0⇒t=-121=0+B 3×-12+2⇒1=B 12⇒B=2Putting 3t+2=0⇒t=-231=A 2×-23+1+0⇒1=A -43+1⇒1=A -13⇒A=-3∴I=∫-33t+2+22t+1dt=-3 log 3t+23+2 log 2t+12+C=-log 3t+2+log 2t+1+C=log 2t+13t+2+C=log 2 log x+13 log x+2+C

 

Page 19.161 Ex.19.25

Q23.

Answer :

We have,I=∫dxx xn+1=∫xn-1dxxn-1x xn+1=∫xn-1 dxxn xn+1Putting xn=t⇒n xn-1 dx=dt⇒xn-1dx=dtn∴I=1n∫dtt t+1Let 1t t+1=At+Bt+1⇒1t t+1=A t+1+Btt t+1⇒1=A t+1+BtPutting t+1=0⇒t=-11=A×0+B -1⇒B=-1Putting t=01=A 0+1+B×0⇒A=1Then,I=1n∫dtt-1n∫dtt+1=1n log t-1nlog t+1+C=1n log tt+1+C=1n log xnxn+1+C

Q24.

Answer :

We have,I=∫x dxx2-a2 x2-b2Putting x2=t⇒2x dx=dt⇒x dx=dt2∴I=12∫dtt-a2 t-b2Let 1t-a2 t-b2=At-a2+Bt-b2⇒1t-a2 t-b2=A t-b2+B t-a2t-a2 t-b2⇒1=A t-b2+B t-a2Putting t=b21=A×0+B b2-a2⇒B=1b2-a2Putting t=a21=A a2-b2+B ×0⇒A=1a2-b2I=12∫dtt-a2 t-b2=12 a2-b2∫dtt-a2+12 b2-a2∫dtt-b2=12 a2-b2 log t-a2+12 b2-a2 log t-b2+C=12 a2-b2 log t-a2-log t-b2+C=12 a2-b2 log t-a2t-b2 +C=12 a2-b2 log x2-a2x2-b2+C

Q25.

Answer :

We have,I=∫ax2+bx+cx-a x-b x-c dxLet ax2+bx+cx-a x-b x-c=Ax-a+Bx-b+Cx-c⇒ax2+bx+c=Ax-b x-c+B x-cx-a+Cx-a x-b⇒ax2+bx+c=Ax2-b+cx+bc+Bx2-c+ax+ca+Cx2-a+bx+ab⇒ax2+bx+c=A+B+Cx2-Ab+c+Bc+a+Ca+bx+Abc+Bca+CabEquating the coefficients on both sides, we geta=A+B+C …..1b=-Ab+c+Bc+a+Ca+b …..2c=Abc+Bca+Cab …..3Solving 1, 2 and 3, we getA=a3+ab+ca-ba-cB=ab2+b2+cb-ab-cC=ac2+bc+cc-ac-b∴I=∫a3+ab+ca-ba-c×1x-a+ab2+b2+cb-ab-c×1x-b+ac2+bc+cc-ac-b×1x-c dx=a3+ab+ca-ba-clog x-a+ab2+b2+cb-ab-clog x-b+ac2+bc+cc-ac-blog x-c+K

Q26.

Answer :

We have,I=∫x3+x+1×2-1dx

As Degree of Numerator is greater than Degree of Denominator we divide numerator by denominator

x2-1×3+x+1x x3-x – + 2x+1∴x3+x+1×2-1=x+2x+1×2-1 …..1⇒x3+x+1×2-1=x+2xx2-1+1×2-1Then,I=∫x dx+∫2xx2-1+∫dxx2-12Putting x2-1=t⇒2x dx=dt∴I=∫x dx+∫dtt+∫dxx2-12=x22+log t+12 log x-1x+1+C=x22+log x2-1+12 log x-1x+1+C

Q27.

Answer :

We have,I=∫3x-2 dxx+12 x+3Let 3x-2x+12 x+3=Ax+1+Bx+12+Cx+3⇒3x-2x+12 x+3=A x+1 x+3+B x+3+C x+12x+12 x+3⇒3x-2=A x+1 x+3+B x+3+C x+12⇒3x-2=A x2+x+3x+3+B x+3+C x2+2x+1⇒3x-2=A+C x2+x 4A+B+2C+3A+3B+CEquating the coefficients of like termsA+C=0 …..14A+B+2C=3 …..23A+3B+C=-2 …..3Solving 1, 2 and 3 we getA=114,B=-52 and C=-114∴3x-2x+12 x+3=114 x+1-52 x+12-114 x+3⇒I=114∫dxx+1-52∫x+1-2 dx -114∫dxx+3=114 log x+1-52 x+1-1-1-114log x+3+C=114log x+1x+3+52 x+1+C

Q28.

Answer :

We have,I=∫2x+1 dxx+2 x-32Let 2x+1x+2 x-32=Ax+2+Bx-3+Cx-32⇒2x+1x+2 x-32=A x-32+B x+2 x-3+C x+2x+2 x-32⇒2x+1=A x2-6x+9+B x2-x-6+C x+2⇒2x+1=A+B x2+-6A-B+C x+9A-6B+2CEquating the coefficients of like termsA+B=0 ….. 1-6A-B+C=2 ….. 29A-6B+2C=1 …..3Solving 1, 2 and 3, we getA=-325, B=325 and C=75∴2x+1 dxx+2 x-32=-325 x+2+325 x-3+75 x-32⇒I=-325∫dxx+2+325∫dxx-3+75∫x-3-2 dx=-325 log x+2+325 log x-3+75x-3-1-1+C=-325log x+2+325 log x-3-75 x-3+C

Q29.

Answer :

We have,I=∫x2+1 dxx-22 x+3Let x2+1x-22 x+3=Ax-2+Bx-22+Cx+3⇒x2+1x-22 x+3=A x-2 x+3+B x+3+C x-22x-22 x+3⇒x2+1=A x2-2x+3x-6+B x+3+C x2-4x+4⇒x2+1=A x2+x-6 +B x+3+C x2-4x+4Equating coefficients of like termsA+C=1 ….. 1A+B-4C=0 ….. 2-6A+3B+4C=1 ….. 3Solving 1, 2 and 3, we getA=35, B=1 and C=25∴I=35∫dxx-2+∫dxx-22+25∫dxx+3=35 log x-2+x-2-2+1-2+1+25 log x+3+C=35log x-2-1x-2+25 log x+3+C

Q30.

Answer :

We have,I=∫x dxx-12 x+2Let xx-12 x+2=Ax-1+Bx-12+Cx+2⇒xx-12 x+2=A x-1 x+2+B x+2+C x-12x-12 x+2⇒x=A x2+2x-x-2+B x+2+C x2-2x+1⇒x=A x2+x-2 +B x+2+C x2-2x+1⇒x=A+C x2+A+B-2C x+-2A+2B+CEquating coefficients of like termsA+C=0 …..1A+B-2C=1 …..2-2A+2B+C=0 …..3Solving 1, 2 and 3, we getA=29, B=13 and C=-29∴xx-12 x+2=29 x-1+13 x-12-29 x+2⇒I=29∫dxx-1+13∫dxx-12-29∫dxx+2=29 log x-1+13×-1x-1-29 log x+2+C=29log x-1x+2-13 x-1+C

Q31.

Answer :

We have,I=∫x2 dxx-1 x+12Let x2x-1 x+12=Ax-1+Bx+1+Cx+12⇒x2x-1 x+12=A x+12+B x+1 x-1+C x-1x+12 x-1⇒x2=A x2+2x+1+B x2-1+C x-1⇒x2=A+B x2+x 2A+C +A-B-CEquating coefficients of like termsA+B=1 …..12A+C=0 …..2A-B-C=0 …..3Solving 1, 2 and 3, we getA=14, B=34 and C=-12∴x2x-1 x+12=14 x-1+34 x+1-12 x+12⇒I=14∫dxx-1+34∫dxx+1-12∫dxx+12=14 log x-1+34 log x+1-12×-1x+1+C=14log x-1+34 log x+1+12 x+1+C

Q32.

Answer :

We have,I=∫x2+x-1 dxx+12 x+2Let x2+x-1x+12 x+2=Ax+1+Bx+12+Cx+2⇒x2+x-1x+12 x+1=A x+1 x+2+B x+2+C x+12x+12 x+2⇒x2+x-1=A x2+3x+2+B x+2+C x2+2x+1Equating coefficients of like termsA+C=1 …..13A+B+2C=1 …..22A+2B+C=-1 …..3Solving 1, 2 and 3, we getA=0 B=-1C=1∴x2+x-1x+12 x+2=-1x+12+1x+2⇒I=∫-dxx+12+∫dxx+2=-∫x+1-2dx+∫dxx+2=-x+1-2+1-2+1 +log x+2+C=1x+1+log x+2+C

Q33.

Answer :

We have,I=∫2×2+7x-3 dxx2 2x+1Let 2×2+7x-3×2 2x+1=Ax+Bx2+C2x+1⇒2×2+7x-3×2 2x+1=A x 2x+1+B 2x+1+Cx2x2 2x+1⇒2×2+7x-3=A 2×2+x+B 2x+1+Cx2⇒2×2+7x-3=2A+C x2+A+2Bx+BEquating coefficients of like terms2A+C=2 …..1A+2B=7 …..2B=-3 …..3Solving 1, 2 and 3, we getA=13B=-3C=-24∴2×2+7x-3×2 2x+1=13x-3×2-242x+1⇒I=13∫dxx-3∫x-2 dx-24∫dx2x+1=13 log x+3x-24 log 2x+12+C=13 log x+3x-12 log 2x+1+C

Q34.

Answer :

We have,I=∫5×2+20x+6×3+2×2+x=∫5×2+20x+6 dxx x2+2x+1=∫5×2+20x+6 dxx x+12Let 5×2+20x+6x x+12=Ax+Bx+1+Cx+12⇒5×2+20x+6x x+12=A x+12 +B x x+1+C xx x+12⇒5×2+20x+6=A x2+2x+1+B x2+x+Cx⇒5×2+20x+6=A+B x2+2A+B+C x+AEquating coefficients of like termsA+B=5 …..12A+B+C=20 …..2 A=6 …..3Solving 1, 2 and 3, we getA=6 B=-1C=9∴5×2+20x+6x x+12=6x-1x+1+9x+12⇒I=6∫dxx-∫dxx+1+9∫dxx+12=6 log x-log x+1-9x+1+C

Q35.

Answer :

We have,I=∫18x+2 x2+4 dxLet 18x+2 x2+4=Ax+2+Bx+Cx2+4⇒18x+2 x2+4=A x2+4+Bx+C x+2x+2 x2+4⇒18=Ax2+4A+Bx2+2Bx+Cx +2C⇒18=A+B x2+x 2B+C+4A+2CEquating coefficients of like termsA+B=0 …..12B+C=0 …..24A+2C=18 …..3Solving 1, 2 and 3, we getA=94B=-94C=92∴18x+2 x2+4=94 x+2+-94x+92×2+4⇒18x+2 x2+4=94 x+2-94 xx2+4+92 x2+4⇒∫18 dxx+2 x2+4=94∫dxx+2-94∫x dxx2+4+92∫dxx2+22let x2+4=t⇒2xdx=dt⇒x dx=dt2∴I=94∫dxx+2-98∫dtt+92∫dxx2+22=94 log x+2-98 log t+92×12 tan-1 x2+C’=94 log x+2-98 log x2+4+94 tan-1 x2+C’

Q36.

Answer :

We have,I=∫5 dxx2+1 x+2 Let 5x+2 x2+1=Ax+2+Bx+Cx2+1⇒5x+2 x2+1=A x2+1+Bx+C x+2x+2 x2+1⇒5=A x2+1+Bx2+2Bx+Cx +2C⇒5=A+B x2+2B+C x+A+2CEquating coefficients of like termsA+B=0 …..12B+C=0 …..2A+2C=5 …..3Solving 1, 2 and 3, we getA=1B=-1C=2∴5x+2 x2+1=1x+2+-x+2×2+1⇒∫5 dxx+2 x2+1=∫dxx+2-∫x dxx2+1+2∫dxx2+1let x2+1=t⇒2xdx=dt⇒x dx=dt2∴I=∫dxx+2-12∫dtt+2∫dxx2+12=log x+2-12 log t+2 tan-1x+C’=log x+2-12 log x2+1+2 tan-1x+C’

Q37.

Answer :

We have,I=∫x dxx+1 x2+1 Let xx+1 x2+1=Ax+1+Bx+Cx2+1⇒xx+1 x2+1=A x2+1+Bx+C x+1x+1 x2+1⇒x=A x2+1+Bx2+Bx+Cx+C⇒x=A+B x2+B+C x+A+CEquating coefficients of like termsA+B=0 …..1B+C=1 …..2A+C=0 …..3Solving 1, 2 and 3, we getA=-12B=12C=12∴xx+1 x2+1=-12 x+1+x2+12×2+1⇒∫x dxx+1 x2+1=-12∫dxx+1+12∫x dxx2+1+12∫dxx2+1let x2+1=t⇒2x dx=dt⇒x dx=dt2∴I=-12∫dxx+1+14∫dtt+12∫dxx2+12=-12 log x+1+14 log t+12 tan-1x+C’=-12 log x+1+14 log x2+1+12 tan-1x+C’

Q38.

Answer :

We have,I=∫dx1+x+x2+x3 =∫dx1+x+x2 1+x=∫dxx+1 x2+1Let 1x+1 x2+1=Ax+1+Bx+Cx2+1⇒1x+1 x2+1=A x2+1+Bx+C x+1x+1 x2+1⇒1=A x2+1+Bx2+Bx+Cx+C⇒1=A+B x2+B+C x+A+CEquating coefficients of like termsA+B=0 …..1B+C=0 …..2A+C=1 …..3Solving 1, 2 and 3, we getA=12B=-12C=12∴I=12∫dxx+1+12∫-x+1×2+1 dx=12∫dxx+1-12∫x dxx2+1+12∫dxx2+12let x2+1=t⇒2x dx=dt⇒x dx=dt2∴I=12∫dxx+1-14∫dtt+12∫dxx2+12=12 log x+1-14 log t+12 tan-1 x+C’=12 log x+1-14 log x2+1+12 tan-1 x+C’

Q39.

Answer :

We have,I=∫dxx+12 x2+1 Let 1x+12 x2+1=Ax+1+Bx+12+Cx+Dx2+1⇒1x+12 x2+1=A x+1 x2+1+B x2+1+Cx+D x+12x+12 x2+1⇒1=A x3+x+x2+1+B x2+1+Cx+Dx2+2x+1⇒1=A x3+x2+x+1+B x2+1+Cx3+2Cx2+Cx+Dx2+2Dx+D⇒1=A+C x3+A+B+2C+Dx2+A+C+2D x+A+B+DEquating coefficients of like termsA+C=0 …..1A+B+2C+D=0 …..2A+C+2D=0 …..3A+B+D=1 …..4A=12, B=12, C=-12 and D=0∴1x+12 x2+1=12 x+1+12 x+12-12 ×xx2+1⇒∫dxx+12 x2+1=12∫dxx+1+12∫dxx+12-12∫x dxx2+1Putting x2+1=t⇒2x dx=dt⇒x dx=dt2∴I=12∫dxx+1+12∫dxx+12-14∫dtt=12 log x+1-12 x+1-14 log t+C’=12 log x+1-12 x+1 -14 log x2+1+C’

Q40.

Answer :

We have,I=∫2x dxx3-1 =∫2x dxx-1 x2+x+1Let 2xx-1 x2+x+1=Ax-1+Bx+Cx2+x+1⇒2xx-1 x2+x+1=A x2+x+1+Bx+C x-1x-1 x2+x+1⇒2x=A x2+x+1+Bx2-Bx+Cx-C⇒2x=A+B x2+A-B+C x+A-CEquating coefficients of like termsA+B=0 …..1A-B+C=2 …..2A-C=0 …..3Solving 1, 2 and 3, we getA=23B=-23C=23∴I=23∫dxx-1+23∫-x+1×2+x+1dxLet -x+1=addx x2+x+1+b⇒-x+1=a 2x+1+b⇒-x+1=2a x+a+bEquating coefficients of like terms 2a=-1⇒a=-12Anda+b=1⇒-12+b=1⇒b=32∴I=23∫dxx-1+23∫-12 2x+1+32×2+x+1dx=23∫dxx-1-13∫2x+1×2+x+1 dx+∫dxx2+x+1=23∫dxx-1-13∫2x+1×2+x+1dx+∫dxx2+x+14-14+1=23∫dxx-1-13∫2x+1 dxx2+x+1+∫dxx+122+322let x2+x+1=t⇒2x+1 dx=dtThen,I=23∫dxx-1-13∫dtt+∫dxx+122+322=23 log x-1-13 log t+23 tan-1 x+1232+C’=23 log x-1-13 log x2+x+1+23 tan-1 2x+13+C’

Q41.

Answer :

We have,I=∫dxx2+1 x2+4 Putting x2=tThen, 1×2+1 x2+4 =1t+1 t+4Let 1t+1 t+4=At+1+Bt+4⇒1=A t+4+B t+1Putting t+4=0⇒t=-4∴1=A×0+B -3⇒B=-13Putting t+1=0⇒t=-1∴1=A -1+4+B×0⇒A=13∴1t+1 t+4=13 t+1-13 t+4⇒1×2+1 x2+4=13 x2+1-13 x2+22⇒∫dxx2+1 x2+4=13∫dxx2+12-13∫dxx2+22=13 tan-1x-13×12 tan-1×2+C=13 tan-1x-16 tan-1 x2+C

Q42.

Answer :

We have,I=∫x2 dxx2+1 3×2+4 Putting x2=tThen, x2x2+1 3×2+4 =tt+1 3t+4Let tt+1 3t+4=At+1+B3t+4⇒tt+1 3t+4=A 3t+4+B t+1 t+1 3t+4⇒t=A 3t+4+B t+1Putting t+1=0⇒t=-1∴-1=A -3+4+0⇒A=-1Putting 3t+4=0⇒t=-43∴-43=0+B -43+1⇒-43=B×-13⇒B=4∴tt+1 3t+4=-1t+1+43t+4⇒x2x2+1 3×2+4=-1×2+1+43×2+4⇒x2x2+1 3×2+4=-1×2+1+43 x2+43⇒∫x2 dxx2+1 3×2+4=-∫dxx2+1+43∫dxx2+232=-tan-1 x+43×32 tan-1 3×2+C=-tan-1 x+23 tan-1 3×2+C

Q43.

Answer :

We have,I=∫ x2+1 x2+2×2+3 x2+4Putting x2=tThen,x2+1 x2+2×2+3 x2+4=t+1 t+2t+3 t+4=t2+3t+2t2+7t+12
Degree of numerator is equal to degree of denominator.
We divide numerator by denominator.
1t2+7t+12 t2+3t+2 t2+7t+12 – – – -4t-10
∴t2+3t+2t2+7t+12=1-4t+10t2+7t+12⇒t2+3t+2t2+7t+12=1-4t+10t+3 t+4 …..1Let 4t+10t+3 t+4=At+3+Bt+4⇒4t+10t+3 t+4=At+4+Bt+3t+3 t+4⇒4t+10=At+4+Bt+3Putting t+4=0⇒t=-4∴-16+10=B-1⇒B=6Putting t+3=0⇒t=-3∴-12+10=A-3+4⇒A=-2∴4t+10t+3 t+4=-2t+3+6t+4 …..2From 1 & 2t2+3t+2t2+7t+12=1+2t+3-6t+4∴∫x2+1 x2+2dxx2+3 x2+4=∫dx+2∫dxx2+32-6∫dxx2+22 =x+23tan-1 x3-62tan-1 x2+C =x+23 tan-1 x3-3 tan-1 x2+C

Q44.

Answer :

We have,I=∫ x3-1dxx3+x
Degree of numerator is equal to degree of denominator.
We divide numerator by denominator.
1×3+x x3-1 x3+x – – -x-1 ∴x3-1×3+x=1-x+1×3+x⇒x3-1×3+x=1-x+1xx2+1 …..1Let x+1xx2+1=Ax+Bx+Cx2+1⇒x+1xx2+1=Ax2+1+Bx+Cxxx2+1⇒x+1=Ax2+A+Bx2+Cx⇒x+1=A+Bx2+Cx+A
Equating coefficient of like terms
A + B = 0
C = 1
A = 1
B = –1
∴x+1xx2+1=1x+-x+1×2+1 …..2Using 1 & 2∫ x3-1dxx3+x=∫ 1-1x+xx2+1-1×2+1dx=∫dx-∫dxx+∫x dxx2+1-∫dxx2+1 Putting x2+1=t⇒2x dx=dt⇒x dx=dt2∴I=∫ dx-∫dxx+12∫dtt-∫dxx2+1=x-log x+12log t-tan-1x+C=x-log x+12log x2+1-tan-1x+C

Q45.

Answer :

We have,I=∫ 4×4+3dxx2+2 x2+3 x2+4Putting x2=tThen,4×4+3×2+2 x2+3 x2+4=4t2+3t+2 t+3 t+4Let 4t2+3t+2 t+3 t+4=At+2+Bt+3+Ct+4⇒4t2+3t+2 t+3 t+4=At+3 t+4+Bt+2 t+4+Ct+2 t+3t+2 t+3 t+4⇒4t2+3=At+3 t+4+Bt+2 t+4+Ct+2 t+3Putting t+3=0⇒t=-3∴4×-32+3=B-3+2 -3+4⇒39=B-1⇒B=-39Putting t+2=0⇒t=-2∴4-22+3=A-2+3 -2+4⇒19=A×1×2⇒A=192Let t+4=0⇒t=-4∴4×-42+3=C-4+2 -4+3⇒67=C-2 -1⇒C=672∴4t2+3t+2 t+3 t+4=192t+2-39t+3+672t+4⇒4×4+3×2+2 x2+3 x2+4=192×2+2-39×2+3+672×2+4∴I=192∫dxx2+22-39∫dxx2+32-672∫dxx2+22=192×12tan-1 x2-393tan-1 x3-672×12tan-1 x2+C=1922 tan-1 x2-393tan-1 x3-674tan-1 x2+C

Q46.

Answer :

We have,I=∫ dxxx4+1=∫x3 dxx4 x4+1Putting x4=t⇒4×3 dx=dt⇒x3 dx=dt4∴I=14∫dttt+1Let 1tt+1=At+Bt+1⇒1tt+1=At+1+Bttt+1⇒1=At+1+BtPutting t+1=0⇒t=-1∴1=A×0+B-1⇒B=-1Putting t=0∴1=A1+B×0⇒A=1∴ I=14∫dtt-14∫dtt+1=14log t-14log t+1+C=14log tt+1+C=14log x4x4+1+C

Q47.

Answer :

We have,I=∫1x x5+1 dx=∫ x4dxx5x5+1Putting x5=t⇒5x4dx=dt⇒x4dx=dt5∴I=15∫dttt+1 …..(1)Let 1tt+1=At+Bt+1 …..(2)⇒1tt+1=At+1+Bttt+1⇒1=At+1+Bt …..(3) Putting t=0 in (3)⇒1=A0+1+B×0⇒A=1Putting t+1=0 in (3)⇒t=-1∴1=A×0+B-1⇒B=-1∴I=15∫dtt-∫dtt+1 From (1) & (2)=15log t-log t+1+C=15log tt+1+C=15log x5x5+1+C

Q48.

Answer :

We have,I=∫ 3 dx1-x 1+x2=3∫dx1-x 1+x2Let 11-x 1+x2=A1-x+Bx+Cx2+1⇒11-x x2+1=Ax2+1+Bx+C 1-x1-x x2+1⇒1=Ax2+A+Bx-Bx2+C-Cx⇒1=A-Bx2+B-Cx+A+CEquating coefficients of like terms.A-B=0 …..1B-C=0 …..2A+C=1 …..3Solving 1, 2 and 3, we getA=12, B=12, C=12∴11-x x2+1=121-x+x2+12×2+1∫ 3 dx1-x x2+1=32∫dx1-x+32∫x dxx2+1+32∫dxx2+1Putting x2+1=t⇒x dx=dt2∴I=32∫dx1-x+34∫dtt+32∫dxx2+1=32log 1-x-1+34log t+32×tan-1x+C=-32log 1-x+34log 1+x2+32tan-1x+C=-34×2 log 1-x+34log 1+x2+342 tan-1 x+C=34log 1+x2-log 1-x2+342 tan-1 x+C=34log 1+x21-x2+2 tan-1 x+C

Q49.

Answer :

We have, I=∫cos x1-sin x3 2+sin x dxLet, sinx=t⇒cosx dx=dtNow, integration becomes,I=∫dt1-t3 2+t =-∫dtt-13 t+2 Let, 1t-13 t+2=At-1+Bt-12+Ct-13+D t+2 …..1⇒1=At-12t+2+Bt-1t+2+Ct+2+Dt-13 …..2

Putting t=1 in 2, we get1=3C⇒C=13Putting t=-2 in 2, we get1=D-2-13⇒1=-27D⇒D=-127Putting t=0 in 2, we get1=2A-2B+2C-D⇒1=2A-2B+23+127⇒2A-2B=827⇒A-B=427Putting t=2 in 2, we get1=4A+4B+4C+D⇒1=4A+4B+43-127⇒A+B=-227Now, A-B=427 and A+B=-227 ⇒A=127 and B=-19
Substituting the values of A, B, C and D in 1, we get1t-13 t+2=127t-1-19t-12+13t-13+-1 27t+2Now, integration becomes I=-∫127t-1-19t-12+13t-13+-1 27t+2dt =-127log t-1+19t-1-16t-12-127log t+2+C =-127log sin x-1-19sin x-1+16sin x-12+127log sin x+2+C =-127log 1-sin x+191-sin x+161-sin x2+127log 2+sin x+C

Q50.

Answer :

We have,I=∫ x4 dxx-1 x2+1=∫ x4-1+1x-1 x2+1dx=∫ x4-1dxx-1 x2+1+∫dxx-1 x2+1=∫x2-1 x2+1 dxx-1 x2+1+∫dxx-1 x2+1=∫ x-1 x+1dxx-1+∫dxx-1 x2+1=∫x+1dx+∫dxx-1 x2+1 …..1Let 1x-1 x2+1=Ax-1+Bx+Cx2+1⇒1x-1 x2+1=Ax2+1+Bx+C x-1x-1 x2+1⇒1=Ax2+A+Bx2-Bx+Cx-C⇒1=A+Bx2+C-Bx+A-CEquating coefficients of like termsA+B=0 …..1C-B=0 …..2A-C=1 …..3Solving 1, 2 and 3, we getB=-12, A=12, C=-12∴1x-1 x2+1=12x-1+-x2-12×2+1⇒1x-1 x2+1=12x-1-12xx2+1-12×2+1 …..2From 1 & 2I=∫x+1dx+12∫dxx-1-12∫x dxx2+1-12∫dxx2+1Putting x2+1=t⇒2x dx=dt⇒x dx=dt2∴I=∫x+1dx+12∫dxx-1-14∫dtt-12∫dxx2+1=x22+x+12log x-1-14log t-12tan-1x+C=x22+x+12log x-1-14log x2+1-12tan-1x+C

Q51.

Answer :

We have,I=∫ cos x dx1-sin x 2-sin xPutting sin x=t⇒cos x dx=dt∴I=∫dt1-t 2-t=∫dtt-1 t-2Let 1t-1 t-2=At-1+Bt-2⇒1t-1 t-2=At-2+Bt-1t-1 t-2⇒1=At-2+Bt-1Putting t-1=0⇒t=1∴1=A1-2+B×0⇒A=-1Putting t-2=0⇒t=2∴1=A×0+B2-1⇒B=1∴I=∫-dtt-1+∫dtt-2=-log t-1+log t-2+C=logt-2t-1+C=log sin x-2sin x-1+C=log 2-sin x1-sin x+C

Q52.

Answer :

We have,I=∫ 2x+1dxx-2 x-3Let 2x+1x-2 x-3=Ax-2+Bx-3⇒2x+1x-2 x-3=Ax-3+Bx-2x-2 x-3⇒2x+1=Ax-3+Bx-2Putting x-3=0⇒x=3∴7=A×0+B×3-2⇒B=7Putting x-2=0⇒x=2∴5=A-1⇒A=-5∴I=-5∫dxx-2+7∫dxx-3=-5 log x-2+7 log x-3+C=log x-37-logx-25+C=log x-37x-25+C

Q53.

Answer :

We have,I=∫ dxx2+1 x2+2Putting x2=tThen,1×2+1 x2+2=1t+1 t+2Let 1t+1 t+2=At+1+Bt+2⇒1t+1 t+2=At+2+Bt+1t+1 t+2⇒1=At+2+Bt+1Putting t+2=0⇒t=-2∴1=A×0+B-1⇒B=-1Putting t+1=0⇒t=-1∴1=A-1+2+B×0⇒A=1∴1t+1 t+2=1t+1-1t+2⇒1×2+1 x2+2=1×2+1-1×2+22∴I=∫ dxx2+12-∫dxx2+22=tan-1 x-12tan-1 x2+C

Q54.

Answer :

We have,I=∫ dxxx4-1=∫ x3 dxx4 x4-1Putting x4=t⇒4×3 dx=dt⇒x3 dx=dt4∴I=14∫dttt-1Let 1tt-1=At+Bt-1⇒1tt-1=At-1+B ttt-1⇒1=At-1+BtPutting t-1=0⇒t=1∴1=A×0+B1⇒B=1Putting t=0∴1=A0-1+B×0⇒A=-1∴I=-14∫dtt+14∫dtt-1=-14log t+14log t-1+C=14log t-1t+C=14log x4-1×4+C

Q55.

Answer :

We have,I=∫dxx4-1=∫dxx2-1 x2+1=∫dxx-1 x+1 x2+1Let 1x-1 x+1 x2+1=Ax-1+Bx+1+Cx+Dx2+1⇒1x-1 x+1 x2+1=Ax2+1 x+1+Bx-1 x2+1 Cx+D x-1 x+1x-1 x+1 x2+1⇒1=Ax2+1 x+1+B x-1 x2+1+Cx+D x2-1⇒1=Ax3+x2+x+1+Bx3+x-x2-1+Cx3-Cx+Dx2-D⇒1=A+B+C x3+x2A-B+D+xA+B-C+A-B-DEquating the coefficients of like terms.A+B+C=0 …..1A-B+D=0 …..2A+B-C=0 …..3A-B-D=1 …..4Solving these four equations we getA=14, B=-14, C=0, D=-12∴1x-1 x+1 x2+1=14x-1-14x+1-12×2+1⇒I=14∫ dxx-1-14∫dxx+1-12∫dxx2+1=14log x-1 -14log x+1-12tan-1 x+C’=14log x-1x+1-12tan-1 x+C’

Q56.

Answer :

We have,I=∫3x+5dxx3-x2-x+1=∫3x+5dxx2x-1-1x-1=∫3x+5dxx2-1 x-1=∫3x+5dxx-1 x+1 x-1=∫3x+5dxx-12 x+1Let 3x+5x-12 x+1=Ax+1+Bx-1+Cx-12⇒3x+5x-12 x+1=Ax-12+Bx+1 x-1+Cx+1x+1 x-12⇒3x+5=Ax2-2x+1+Bx2-1+Cx+C⇒3x+5=A+Bx2+-2A+Cx+A-B+CEquating coefficient of like termsA+B=0 …..1-2A+C=3 …..2A-B+C=5 …..3Solving these three equations we getA=12B=-12C=4∴3x+5x-12 x+1=12x+1-12x-1+4x-12⇒I=12∫dxx+1-12∫dxx-1+4∫x-1-2 dx=12log x+1-12log x-1-4x-1+C’=12log x+1x-1-4x-1+C’

Q57.

Answer :

We have,I=∫x2+x+1x+12 x+2dxLet x2+x+1x+12 x+2=Ax+1+Bx+12+Cx+2⇒x2+x+1x+12 x+2=Ax+1 x+2+Bx+2+Cx+12x+12 x+2⇒x2+x+1=Ax2+x+2x+2+Bx+2B+Cx2+2x+1⇒x2+x+1=A+Cx2+3A+B+2Cx+2A+2B+CEquating coefficient of like terms.A+C=1 …..13A+B+2C=1 …..22A+2B+C=1 …..3Solving these three equations we getA=-2B=1C=3Hence, x2+x+1x+12 x+2=-2x+1+1x+12+3x+2∴I=-2∫dxx+1+∫dx+12+3∫dxx+2=-2 log x+1-1x+1+3 log x+2+C

 

Page 19.169 Ex.19.26

Q1.

Answer :

We have,I=∫ x2+1dxx4+x2+1Dividing numerator and denominator by x2, we getI=∫ 1+1x2dxx2+1+1×2=∫ 1+1x2dxx2+1×2-2+3=∫ 1+1x2dxx-1×2+3Putting x-1x=t⇒1+1x2dx=dt∴I=∫ dtt2+3=∫dtt2+32=13tan-1 t3+C=13tan-1 x-1×3+C=13 tan-1 x2-13 x+C

Q2.

Answer :

We have,I=∫cot θ dθPutting cot θ=t2⇒-cosec2 θ dθ=2t dt⇒dθ=-2t dtcosec2 θ⇒dθ=-2t dt1+cot2 θ⇒dθ=-2t dt1+t4∴I=∫ t-2t dt1+t4=-∫2t21+t4dt=-∫t2+1+t2-1t4+1dt=-∫t2+1t4+1dt-∫t2-1dtt4+1Dividing numerator and denominator by t2I=-∫1+1t2t2+1t2dt-∫1-1t2t2+1t2dt=-∫1+1t2dtt2+1t2-2+2-∫1-1t2dtt2+1t2+2-2=-∫1+1t2dtt-1t2+22-∫1-1t2dtt+1t2-22Putting t-1t=p⇒1+1t2dt=dpPutting t+1t=q⇒1-1t2dt=dqI=-∫ dpp2+22-∫dqq2-22=-12tan-1 p2-122log q-2q+2+C=-12tan-1 t-1t2-122log t+1t-21+1t+2+C=-12 tan-1 t2-12 t-122log t2+1-2tt2+1+2t+C=-12tan-1 cot θ-12cot θ-122log cot θ+1-2 cot θcot θ+1+2 cot θ+C

Q3.

Answer :

We have,I=∫ x2+9×4+81dxDividing numerator and denominator by x2I=∫1+9x2dxx2+81×2=∫1+9x2dxx2+9×2-2×x×9x+2×x×9x=∫1+9x2dxx-9×2+182Putting x-9x=t⇒1+9x2dx=dt∴I=∫dtt2+182=∫dtt2+322=132tan-1 t32+C=132tan-1 x-9×32+C=132tan-1 x2-932x+C

Q4.

Answer :

We have,I=∫ dxx4+x2+1=12∫ 2 dxx4+x2+1⇒12∫x2+1-x2-1×4+x2+1dx⇒12∫x2+1×4+x2+1dx-12∫x2-1×4+x2+1dxDividing numerator and denominator by x2I=12∫1+1x2x2+1+1x2dx-12∫1-1x2x2+1+1x2dx=12∫1+1x2x2+1×2-2+3dx-12∫1-1x2dxx2+1×2+2-1=12∫1+1x2dxx-1×2+32-12∫1-1x2dxx+1×2-12Putting x-1x=t⇒1+1x2dx=dtPutting x+1x=p⇒1-1x2dx=dp∴I=12∫dtt2+32-12∫dpp2-12=12×13tan-1 t3-12×12×1log p-1p+1+C=123tan-1 x-1×3-14log x+1x-1x+1x+1+C=123tan-1 x2-1×3-14log x2-x+1×2+x+1+C

Q5.

Answer :

We have,I=∫x2-3x+1×4+x2+1dx=∫x2+1dxx4+x2+1-3∫x dxx4+x2+1 …..1=I1-3I2 where I1=∫x2+1dxx4+x2+1, I2=∫x dxx4+x2+1I1=∫x2+1×4+x2+1dxDividing numerator & denominator by x2I1=∫1+1x2dxx2+1×2+1=∫1+1x2dxx2+1×2-2+3=∫1+1x2dxx-1×2+32Let x-1x=t⇒1+1x2dx=dt∴I1=∫dtt2+32I1=13tan-1 t3+C1I1=13tan-1 x-1×3+C1 …..2I2=∫x dxx4+x2+1Putting x2=t⇒2x dx=dt⇒x dx=dt2∴I2=12∫dtt2+t+1=12∫dtt2+t+14+34=12∫dtt+122+322=132×12tan-1 t+1232+C2=13tan-12t+13+C2I2=13tan-1 2×2+13+C2 …3From equating 1, 2 and 3 we haveI=13tan-1 x-1×3+C1-3×13tan-1 2×2+13+C2=13tan-1 x2-13x-3tan-1 2×2+13+C where C=C1+3C2

Q6.

Answer :

We have,I=∫x2+1×4-x2+1dxDividing numerator and denominator by x2I=∫1+1x2x2+1×2-1dx=∫1+1x2dxx2+1×2-2+1=∫1+1x2dxx-1×2+1Putting x-1x=t⇒1+1x2dx=dt∴I=∫dtt2+12=tan-1t+C=tan-1x-1x+C=tan-1 x2-1x+C

Q7.

Answer :

We have,I=∫ x2-1×4+1dxDividing numerator and denominator by x2=∫1-1x2x2+1x2dx=∫1-1x2dxx2+1×2+2-2=∫1-1x2dxx+1×2-22Putting x+1x=t⇒1-1x2dx=dt∴I=∫dtt2-22=122log t-2t+2+C=122log x+1x-2x+1x+2+C=122log x2-2x+1×2+2x+1+C

Q8.

Answer :

We have,I=∫ x2+1×4+7×2+1dxDividing numerator and denominator by x2I=∫1+1x2x2+7+1x2dx=∫1+1x2dxx2+1×2-2+9⇒∫1+1x2dxx-1×2+32Putting x-1x=t⇒1+1x2dx=dt∴I=∫dtt2+32=13tan-1 t3+C=13tan-1 x-1×3+C=13tan-1 x2-13x+C

Q9.

Answer :

We have,I=∫x-12dxx4+x2+1=∫x2-2x+1×4+x2+1dx=∫x2+1×4+x2+1dx-∫2x dxx4+x2+1=I1-I2 where,I1=∫x2+1dxx4+x2+1I2=∫ 2x dxx4+x2+1Now,I1=∫ x2+1×4+x2+1dxDividing numerator and denominator by x2I1=∫1+1x2x2+1×2+1dxI1=∫1+1x2dxx2+1×2-2+3I1=∫1+1x2dxx-1×2+32Putting x-1x=t⇒1+1x2dx=dt∴I1=∫ dtt2+32=13tan-1 t3+C1=13tan-1 x-1×3+C1=13tan-1 x2-13x+C1AndI2=∫2x dxx4+x2+1Putting x2=t⇒2x dx=dtI2=∫ dtt2+t+1=∫dtt2+t+122-122+1=∫dtt+122+322=23tan-1 t+1232+C2=23tan-1 2t+13+C2∴I=13tan-1 x2-13x-23tan-1 2×2+13+C

Q10.

Answer :

We have,I=∫ dxx4+3×2+1=12∫ 2 dxx4+3×2+1=12∫x2+1-x2-1×4+3×2+1dx=12∫x2+1×4+3×2+1dx-12∫x2-1×4+3×2+1dxDividing numerator and denominator by x2=12∫1+1x2x2+1×2+3dx-12∫1-1x2dxx2+1×2+3=12∫1+1x2x2+1×2-2+5dx-12∫1-1x2dxx2+1×2+2+1=12∫1+1x2dxx-1×2+52-12∫1-1x2dxx+1×2+12Putting x-1x=t⇒1+1x2dx=dtPutting x+1x=p⇒1-1x2dx=dp∴I=12∫dtt2+52-12∫dpp2+12=125tan-1 t5-12tan-1 p+C=125tan-1 x-1×5-12tan-1 x+1x+C=125tan-1 x2-15x-12tan-1 x2+1x+C

 

Page 19.175 Ex.19.27

Q1.

Answer :

We have,I=∫ dxx-1 x+2Putting x+2=t2⇒dx=2t dt∴I=∫2t dtt2-2-1t=∫ 2 dtt2-32=2×123log t-3t+3+C=13log x+2-3x+2+3+C

Q2.

Answer :

We have,I=∫ dxx-1 2x+3Putting 2x+3=t2⇒x=t2-32Diff both sidesdx=t dt∴I=∫ t dtt2-32-1t=∫2 dtt2-3-2=2dtt2-5=2∫dtt2-52=2×125log t-5t+5+C=15log 2x+3-52x+3+5+C

Q3.

Answer :

We have,I=∫ x+1x-1 x+2dxPutting x+2=t2⇒x=t2-2Diff both sidesdx=2t dtI=∫ t2-2+12t dtt2-2-1t=2∫ t2-1t2-3dt=2∫t2-3+2t2-3dt=2∫ t2-3t2-3dt+4∫dtt2-3=2∫dt+4∫dtt2-32=2t+4×123log t-3t+3+C=2x+2+23log x+2-3x+2+3+C

Q4.

Answer :

We have,I=∫ x2x-1 x+2dxPutting x+2=t2x=t2-2Diff both sidesdx=2t dtI=∫ t2-22t2-2-1t2 t dt=2∫ t2-22dtt2-3=2∫ t4-4t2+4t2-3dtDividing numerator by denominator, we get t2-1t2-3 t4-4t2+4 t4-3t2 – + -t2+4 -t2+3 + – 1 ∴I=2∫t2-1+1t2-3dt =2∫ t2 dt-2∫dt+2∫dtt2-32=2t33-2t+2×123log t-3t+3+C=23x+23-2x+2+13log x+2-3x+2+3+C=23x+232-2x+2+13log x+2-3x+2+3+C

Q5.

Answer :

We have,I=∫ x dxx-3 x+1Putting x+1=t2⇒x=t2-1Diff both sidesdx=2t dt∴I=∫ t2-12t dtt2-1-3t=2∫ t2-1t2-4dt=2∫t2-4+3t2-4dt=2∫t2-4t2-4dt+6∫ dtt2-22=2∫ dt+6∫dtt2-22=2t+6×12×2log t-2t+2+C=2x+1+32log t-2t+2+C=2x+1+32log x+1-2x+1+2+C

Q6.

Answer :

We have,I=∫ dxx2+1 xPutting x=t2dx=2t dt∴I=∫ 2t dtt22+1t=2∫ dtt4+1=∫ t2+1-t2-1t4+1dt=∫t2+1t4+1dt-∫t2-1t4+1dtDividing numerator & denominator by t2I=∫1+1t2t2+1t2dt-∫ 1-1t2dtt2+1t2=∫ 1+1t2dtt2+1t2-2+2-∫ 1-1t2dtt2+1t2+2-2=∫ 1+1t2dtt-1t2+22-∫ 1-1t2dtt+1t2-22Putting t-1t=p⇒1+1t2dt=dpPutting t+1t=q⇒1-1t2dt=dq∴I=∫dpp2+22-∫dqq2-22=12tan-1 p2-122log q-2q+2+C=12tan-1 t-1t2-122log t+1t-2t+1t+2+C=12tan-1 t2-12t-122log t2-2t+1t2+2t+1+C=12tan-1 x-12x-122log x-2x+1x+2x+1+C

Q7.

Answer :

We have,I=∫ x dxx2+2x+2 x+1=∫ x dxx+12+1 x+1Putting x+1=t2⇒x=t2-1Diff both sidesdx = 2t dt∴I=∫ t2-12t dtt22+1 t=2∫ t2-1dtt4+1Dividing numerator and denominator by t2I=21-1t2t2+1t2dt

=2∫1-1t2dtt2+1t2+2-2=2∫ 1-1t2dtt+1t2-22Putting t+1t=p⇒1-1t2dt=dpI=2∫ dpp2-22=2×122log p-2p+2+C=12log p-2P+2+C=12log t+1t-2t+1t+2+C=12log t2-2t+1t2+2t+1+C=12log x+1-2x+1+1x+1+2x+1+1+C=12log x+2-2x+1x+2+2x+1+C

Q8.

Answer :

We have,I=∫ dxx-1 x2+1Putting x-1=1t⇒dx=-1t2dt∴I=∫-1t2dt1t 1+1t2+1=∫ -1tdt1+1t2+2t+1=∫ -1tdtt2+1+2t+t2t=∫ -dt2t2+2t+1=-12 ∫ dtt2+t+12=-12∫ dtt2+t+14-14+12=-12 ∫ dtt+122+122=-12log t+12+t+122+14+C where t=1x-1

Q9.

Answer :

We have,I=∫ dxx+1 x2+x+1Putting x+1=1t⇒dx=-1t2dt∴I=∫ -1t2dt1t1t-12+-1+11t=∫ -1t2dt1t1t2-+1+2t1t=∫ -1tdtt2+t-2t+1t=-∫ dtt2-t+1=-∫dtt2-t+14-14+1=-∫dtt-122+322=-log t-12+t-122+322+C=-log t-12+t2-t+1+C=-log 1x+1-12+1x+12-1x+1+1+C=-log 1x+1-12+x+12-x+1+1x+1+C=-log 1x+1-12+x2+x+1x+1+C

Q10.

Answer :

We have,I=∫ dxx2-1 x2+1Putting x=1t⇒dx=-1t2dt∴I=∫ -1t2dt1t2-1 1t2+1=∫ -1t2 dt1-t2t2×1+t2t=∫ -t dt1-t2 1+t2Putting 1+t2=u2⇒t2=u2-1⇒2t dt=2u du⇒t dt=u duI=-∫u du1-u2+1u=-∫ du2-u2=-∫ du22-u2=-122log u+2u-2+C=-122log 1+t2+21+t2-2+C=-122log 1+1×2+21+1×2-2+C=-122log x2+1+2xx2+1-2x+C

Q11.

Answer :

We have,I=∫ x dxx2+4 x2+1Putting x2=t⇒ 2x dx=dt⇒x dx=dt2∴I=12∫ dtt+4 t+1Again Putting t+1=p2⇒t=p2-1⇒dt=2p dpI=12∫ 2p dpp2-1+4p=∫ dpp2+3=∫dpp2+32=13tan-1 p3+C=13tan-1 t+13+C=13 tan-1 x2+13+C

Q12.

Answer :

We have,I=∫ dx1+x2 1-x2Putting x=1t⇒dx=-1t2dt∴I=∫ -1t2dt1+1t2 1-1t2=∫ -1t2dtt2+1t2 t2-1t=-∫ t dtt2+1 t2-1Again Putting t2-1=u2⇒2t dt=2u du⇒t dt=u du∴I=-∫ u duu2+2u=-∫ duu2+22=-12tan-1 u2+C=-12 tan-1 t2-12+C=-12tan-1 1×2-12+C=-12tan-1 1-x22x2+C

Q13.

Answer :

We have,I=∫dx2x2+3 x2-4Putting x=1t⇒dx=-1t2dt∴I=∫-1t2dt2t2+3 1t2-4=∫-1t2 dt2+3t2t2×1-4t2t=-∫t dt2+3t2 1-4t2Again Putting 1-4t2=u2⇒-8t dt=2u du⇒t dt=-u4 du∴I=14∫u du2+3 1-u24 u=14∫4 du8+3-3u2=∫du11-3u2=13∫du113-u2=13∫du1132-u2=13×12×113 log 113+u113-u+C=1233 log 11+3 u11-3 u+C=1233 log 11+3 1-4t211-3 1-4t2+C=1233 log 11+3-12t211-3-12t2+C=1233 log 11+3-12×211-3-12×2+C=1233 log 11x+3×2-1211x-3×2-12+C

Q14.

Answer :

We have,I=∫x dxx2+4 x2+9Putting x2=t⇒2x dx= dt⇒x dx=dt2∴I=12∫dtt+4 t+9Again Putting t+9=u2⇒dt=2u du∴I=12∫2u duu2-9+4 u=∫duu2-5=∫duu2-52=125 log u-5u+5+C=125 log t+9-5t+9+5+C=125 log x2+9- 5×2+9+ 5+C

 

Page 19.176 (Very Short Answers)

Q1.

Answer :

Let I=∫1+cot xx+log sin xdxLet x +log sin x=t⇒1+1sin x×cos x dx=dt⇒1+cot xdx=dt∴I=∫dtt =log t+C =log x+log sin x+C

Q2.

Answer :

∫e3 log x.x4 dx=∫ elog x3·x4 dx ∵alogx=logxa=∫ x3·x4 dx ∵elog m=m=∫x7·dx=x88+C

Q3.

Answer :

Let I=∫x2.sin x3 dx
Let x3 = t
⇒ 3x2dx = dt
⇒x2 dx=dt3∴I=13∫ sin t dt =13-cos t+C =-13cos x3+C ∵ t=x3

Q4.

Answer :

Let I=∫ tan3 x . sec2 x dx
Let tan x = t
⇒ sec2x dx = dt
∴I= ∫ t3 . dt
=t44+C=tan4 x4+C ∵ t=tan x

Q5.

Answer :

Let I=∫ ex (sin x + cos x) dx
Let ex sin x = t
⇒ (ex . sin x + ex cos x) dx = dt
∴ I=∫dt =t+C = exsin x+C ∵t=ex sinx

Q6.

Answer :

Let I=∫ tan6 x . sec2 x dx
Let tan x = t
sec2 x dx = dt
∴I=∫ t6 . dt
=t 77+C=tan7 x7+C ∵t=tan x

Q7.

Answer :

Let I=∫ cos x3+2 sin xdxLet 3+2 sin x=t⇒2 cos x dx=dt⇒cos x dx=dt2∴I=12∫dtt =∫12 log t+C =12log 3+2 sin x+C ∵t=3+2 sinx

Q8.
Answer :

Let I=∫ ex sec x(1 + tan x) dx
=∫ ex (sec x + sec x tan x) dx
Let ex sec x = t
⇒ (ex sec x + ex sec x tan x)dx = dt
⇒ ex sec x (1 + tan x) dx = dt
∴I=∫ dt
= t + C
= ex sec x + C ∵t=exsec x

Q9.

Answer :

Let I=∫ log xnx dx =∫ n log xxdx ∵log xa=a logxLet log x=t⇒1xdx=dt∴I=n ∫ t dt =n.t22+C =n.log x22+C ∵t=log x

Q10.

Answer :

Let I=∫log xnxdxLet log x=t⇒1xdx=dt∴I=∫ tn dt =tn+1n+1+C =log xn+1n+1+C ∵t=log x

Q11.

Answer :

Let I=∫ elog sin x . cos x dx
= ∫ sin x × cos x dx ∵elog a=a
Let sin x = t
⇒ cos x dx = dt
∴I=∫ t . dt
=t22+C=sin2 x2+C ∵t= sin x

Q12.

Answer :

Let I=∫ sin3 x . cos x dx
Let sin x = t
⇒ cos x dx = dt
∴ I= ∫ t3 . dt
=t44+C=sin4 x4+C ∵t=sin x

Q13.

Answer :

Let I=∫cos4x .sin x dx
Let cos x = t
⇒ –sin x dx = dt
⇒ sin x dx = –dt
∴ I= –∫ t4 dt
=-t55+C=-cos5 x5+C ∵t= cos x

Q14.

Answer :

Let I=∫tan x . sec3x dx
=∫sec2 x . sec x tan x dx
Let sec x = t
⇒ sec x tan x dx = dt
∴I= ∫ t2 dt
=t33+C=sec3 x3+C ∵x=sec x

Q15.

Answer :

Let I=∫dx1+exDividing numerator & denominator by ex⇒I=∫1exdx1ex+1 =∫e-x dxe-x +1Let e-x+1=t-e-x dx=dt⇒e-x dx=-dt∴I=∫-dtt =-log t+C =-log 1+ex+C ∵t=1+ex

Q16.

Answer :

Let I=∫dx1+2exDividing numerator & denominator by ex⇒I=∫1exdx1ex+2 =∫e-x dxe-x+2Let e-x+2=t⇒-e-x dx=dt⇒e-x dx=-dt∴I=-∫dtt =-log t+C =-log e-x+2+C ∵t=e-x+2

Q17.

Answer :

Let I=∫tan-1 x31+x2dxLet tan-1 x=t⇒11+x2dx=dt∴I=∫ t3.dt =t44+C =tan-1 x44+C ∵t=tan-1 x

Q18.

Answer :

Let I=∫sec2 x dx5+tan x4Let 5+tan x=t⇒ sec2 x dx=dt∴I=∫dtt4 =∫ t-4 dt =t-4+1-4+1+C =-13t3+C =-13 5t+tan x3+C ∵t=5+tan x

Q19.

Answer :

∫ sin x+cos x1+sin 2xdx⇒∫ sin x+cos xdxsin2 x+cos2 x+2 sin x cos x⇒∫ sin x+cos xdxsin x+cos x2⇒∫ dx⇒x+C

Q20.

Answer :

∫loge x dx
= ∫ 1II.loge xI dx
=loge x∫1 dx-∫ddxloge x∫1 dxdx
= loge x ∫1 . dx – ∫ 1x×x.dx
= loge x × x – ∫ dx
= x loge x – x + C
= x loge x – x + C
= x (loge x – 1) + C

Q21.
Answer :

∫ ax . ex dx
= ∫ (ae)x dx
=aexln ae+C

Q22.

Answer :

Let I=∫ e2x2+ln xdx=∫ e2x2×eln xdx=∫ e2x2. x dxLet 2×2=t⇒4x dx=dt⇒x dx=dt4∴I=14∫ et dt =14 et+C =14e2x2+C ∵t=2×2

Q23.

Answer :

ex loge a+ea loge xdx⇒∫ elog ax+elog xa dx=∫ ax+xadx=axlog a+xa+1a+1+C

Q24.

Answer :

Let I=∫ cos xsin x ·log sin xdx⇒∫ cot xlog sin xdxLet log sin x=t⇒cot x dx=dt∴I=∫ dtt =log t+C =log log sin x+C

Q25.

Answer :

Let I=∫ sin 2x dxa2 sin2+b2 cos2 xLet a2 sin2 x+b2 cos2 x=t⇒a22 sin x cos x+b22 cos x×-sin xdx=dt⇒a2-b2 sin 2x.dx=dt⇒sin 2x dx=dta2-b2∴I=1a2-b2∫dtt =1a2-b2log t+C =1a2-b2log a2 sin2x+b2 cos2 x+C ∵t=a2 sin2 x+b2 cos2 x

Q26.

Answer :

Let I=∫ ax dx3+axLet 3+ax=t⇒ax.log a dx=dt⇒ax dx=dtlog a∴I=1log a∫dtt =1log alog t+C =1log alog 3+ax+C ∵ t=3+ax

Q27.

Answer :

Let I=∫ 1+log x3+x log xdxLet 3+x log x=t⇒0+x.1x+log xdx=dt⇒1+log xdx=dt∴I=∫ dtt =log t+C =log 3+x log x+C ∵t=3+x log x

Q28.

Answer :

Let I=∫ sin xcos3 xdxLet cos x=t⇒-sin x dx=dt⇒sin x dx=-dt∴I=-∫ dtt3 =-∫ t-3 dt =-t-3+1-3+1+C =12t2+C =12 cos2 x+C ∵t=cos x =12 sec2 x+C

Q29.

Answer :

Let I = ∫sin x+cos x dx1-sin 2x =∫sin x+cos x dxsin2x+cos2x-2 sin x cos x =∫sin x+cos x dxsin x-cos x2 =∫sin x+cos x dxsin x-cos x =±∫sin x+cos xsin x-cos xdxLet sin x-cos x=t⇒cos x+sin xdx=dt∴ I=±∫dtt =±ln t+C =±ln sin x-cos x+C ∵ t=sin x-cos x

 

Page 19.177 (Very Short Answers)

Q30.

Answer :

Let I=∫ dxxlog xn =∫ log x-n dxxLet log x=t⇒1xdx=dt∴I=∫ t-n.dt =t-n+1-n+1+C =log x-n+1-n+1+C ∵t=log x

Q31.

Answer :

Let I=∫ eax.sin bx dx =sin bx∫eaxdx-∫ddxsin bx∫eaxdxdx =sin bx×eaxa-∫cos bx×b.eaxa =sin bx×eaxa-ba∫eax.cos bx dx =sin bx×eaxa-baI1 …1∴I1=∫ eax ×cos bxdx =cos bx∫eaxdx-∫ddxcos bx∫eaxdxdx =cos bx×eaxa+∫b.sin bx×eaxadx =cos bx.eaxa+baI ….2From 1 & 2∴I=sin bx.eaxa-ba cos bx.eaxa+baI⇒I =sin bx.eaxa-ba2 cos bx eax-b2a2I⇒I+b2a2I=sin bx.eaxa-b cos bx eaxa2⇒a2+b2I=a sin bx-bcos bxeax⇒I=a sin bx-bcos bx eaxa2+b2+C

Q32.

Answer :

Let I=∫ eax.cos bx dx =cos bx∫eaxdx-∫ddxcos bx∫eaxdxdx =cos bx×eaxa-∫-sin bx×b.eaxa =cos bx×eaxa+ba∫eax.sin bx dx =cos bx×eaxa+baI1 …1∴I1=∫ eax ×sin bxdx =sin bx∫eaxdx-∫ddxsin bx∫eaxdxdx =sin bx×eaxa-∫b.cos bx×eaxadx =sin bx.eaxa-baI ….2From 1 & 2∴I=cos bx.eaxa+ba sin bx.eaxa-baI⇒I =cos bx.eaxa+ba2 sin bx eax-b2a2I⇒I+b2a2I=cos bx.eaxa+b sin bx eaxa2⇒a2+b2I=a cos bx+b sin bxeax⇒I=a cos bx+bsin bx eaxa2+b2+C

Q33.

Answer :

Let I =∫ ex 1x-1x2dxAs we know that ∫ ex fx+f’xdx=ex fx+C∴I=exx+C

Q34.

Answer :

Let I =∫ eax a fx+f’xdxLet eax.fx=t⇒eax.a fx+eax.f’xdx=dt∴I=∫ dt =t+C =eax.fx+C ∵t=eax.fx

Q35.

Answer :

∫ 4-x2 dx=∫ 22-x2dx=x222-x2+222sin-1×2+C ∵ a2-x2=x2a2-x2-a22sin-1xa+C=x24-x2+2 sin-1 x2+C

Q36.

Answer :

∫ 9+x2 dx=∫ 32+x2 dx ∵ a2+x2=x2x2+a2+a22ln x+x2+a2=x29+x2+92ln x+9+x2+C

Q37.

Answer :

∫ x2-9 dx=∫ x2-32 dx=x2x2-32-322ln x+x2-3+C ∵ x2-a2=x2x2-a2-a22ln x+x2+a2+C=x2x2-9-92ln x+x2-9+C

Q38.

Answer :

Let I=∫ x2 dx1+x3Putting 1+x3=t⇒3×2 dx=dt⇒x2 dx=dt3∴I=13∫ dtt =13ln t+C =13ln 1+x3+C ∵ t=1+x3

Q39.

Answer :

Let I=∫x2+4xx3+6×2+5 dxLet x3+6×2+5=t⇒3×2+12x dx=dt⇒x2+4x dx=dt3Putting x3+6×2+5=t and x2+4x dx=dt3∴I=13∫dtt =13 ln t+C =13ln x3+6×2+5+C

Q40.

Answer :

Let I =∫sec2xx dxLet x=t⇒dx2x=dt⇒dxx=2 dtPutting x=t and dxx=2 dt∴I=2∫sec2+dt =2 tan t+C =2 tan x+C ∵t=x

Q41.

Answer :

Let I=∫sinxx dxLet x=t⇒12xdx=dt⇒dxx=2 dtPutting x=t and dxx=2 dt , we get ∴I=2∫sin t dt =-2 cos t+C ∵ t=x =-2 cos x+C

Q42.

Answer :

Let I=∫cosxx dxPutting x=t⇒12xdx=dt⇒dxx=2 dt∴ I=2∫cos t dt =2 sin t+C , where t=x =2 sin x+C

Q43.

Answer :

Let ∫1+log x2x dxPutting 1+log x=t⇒1x dx=dt∴I=∫t2·dt =t33+C =1+log x33+C ∵ t=1+log x

Q44.

Answer :

∫sec2 7-4x dx=tan 7-4x-4+C ∵∫sec2 x=tan x+C

Q45.

Answer :

Let I=∫log xx dx& let log x=t⇒1x dx=dt∴I=∫t·dt =t22+C =log x22+C ∵t=log x

Q46.

Answer :

∫2x dx=2xln 2+C ∵∫ax dx=axln a+C

Q47.

Answer :

∫1-sin xcos2x dx=∫1cos2x-sin xcos2xdx ∫1cos2x-sin xcos x×1cos x dx=∫sec2x-sec x tan x dx=tan x-sec x+C

Q48.

Answer :

∫x3-1×2 dx=∫x3x2-1x2dx=∫x-x-2dx=x22-x-2+1-2+1+C=x22+1x+C

Q49.

Answer :

∫x3-x2+x-1x-1 dx=∫x2 x-1+1x-1x-1dx=∫x2+1 x-1x-1dx=∫x2+1 dx=x33+x+C

Q50.

Answer :

Let I=∫etan-1×1+x2 dxLet tan-1x=t⇒dx1+x2=dt∴I=∫etdt =et+C =etan-1x+C

Q51.

Answer :

Let I=∫dx1-x2Let x=sin θ⇒dx=cos θ∴ I=∫cos θ cos θdθ =∫dθ =θ+C =sin-1x+C ∵x=sin θ

Q52.

Answer :

∫sec x sec x+tan x dx=∫sec2x+sec x tan x dx=tan x+sec x+C

Q53.

Answer :

∫1×2+16=∫dxx2+42=14tan-1 x4+C

 

Page 19.178 (Multiple Choice Questions)

Q1.

Answer :

(b) 14tan-1 x22

Let I=∫x4+x4dx =∫x dx22+x22Putting x2=t⇒2x dx=dt⇒x dx=dt2∴I=12∫dt22+t2 =12×12 tan-1 t2+C ∵∫1a2+x2=1atan-1xa =14 tan-1 x22+C ∵t =x2

Q2.

Answer :

(d) none of these

∫1cos x+ 3 sin xdx=12∫dxcos x×12+sin x×32=12∫dxcos x·cosπ3+sin x·sinπ3=12∫dxcos x-π3=12∫sec x-π3dx=12ln tan π4+12x-π3+C=12ln tan π4+x2-π6+C=12ln tan x2+π12+C

 

Page 19.179 (Multiple Choice Questions)

Q3.

Answer :

(a) 12 log (sec x2 + tan x2) + C

Let I=∫x sec x2 dxPutting x2=t⇒2x dx=dt⇒x dx=dt2∴ I=12∫sec t·dt =12 log sec t+tan t+C =12 log sec x2+tan x2+C ∵ t= x2

Q4.

Answer :

(a) A = 23, B = 53
∫15+4 sin xdx=A tan-1 B tan x2+43+C ….(1)Considering the LHS of eq (1)Putting sin x=2 tan x21+tan2 x2⇒∫15+8 tan x21+tan2 x2dx⇒∫1+tan2 x25 1+tan2 x2+8 tan x2dx⇒∫sec2 x25 tan2 x2+8 tan x2+5 dx …(2) Let tan x2=t⇒sec2 x2×12 dx=dt⇒sec2 x2 dx=2dt∴ Putting tan x2=t and sec2 x2 dx=2dt we get, ∫2dt5t2+8t+5⇒25∫dtt2+85t+1⇒25∫dtt2+85t+452-452+1⇒25∫dtt+452+1-1625⇒25∫dtt+452+352⇒25×53 tan-1 t+4535+C⇒23 tan-1 5t+43+C⇒23 tan-1 53 tan x2+43+C ∵ t= tan x2 …(3)Comparing eq (3) with the RHS of eq (1) we get , ∴ A=23, B=53

Q5.

Answer :

(a) xsin x + C

Let I=∫xsin x sin xx+cos x·log xdxPutting xsin x=t⇒ln xsin x=ln t⇒sin x·ln x=ln t⇒sin x×1x+cos x ln xdx=1tdt∴I=∫t·dtt =t+C =xsin x+C ∵ t= xsin x

Q6.

Answer :

(b) tan-1 loge x+C

We have to integrate 11+logex2 with respect to log ex Let I=∫d loge x1+loge x2Putting loge x=td loge x=dt∴ I=∫dt1+t2 =tan-1 t+C =tan-1 loge x+C ∵ t=logex

Q7.

Answer :

(c) 116

If ∫cos 8x+1tan 2x-cot 2xdx =a cos 8x+C …(1) Considering the LHS of eq (1)∫cos 8x+1tan 2x-cot 2xdx⇒∫2 cos24xsin 2xcos 2x-cos 2xsin 2xdx⇒∫2 cos2 4xsin2 2x-cos2 2x×sin 2x cos 2x⇒∫-cos2 4x×2 sin 2x·cos 2xcos2 2x-sin2 2xdx⇒∫-cos2 4x×sin 4xcos 4xdx ∵cos 2x= cos2x-sin2x⇒12∫-2 sin 4x cos 4x dx ⇒-1 2∫sin 8x dx⇒-12- cos 8×8+C=116cos 8x+C ….(2) Comparing RHS of eq (1) with the eq (2)∴ a=116

Q8.

Answer :

(a) −1/2
If ∫sin8x-cos8x1-2 sin2x cos2xdx=a sin 2x+C ….(1)Considering LHS of eq (1) ⇒∫sin4x-cos4x sin4x+cos4x1-2 sin2xcos2x⇒∫sin2x-cos2x sin2x+cos2x·sin4x+cos4x dxsin2x+cos2x2-2 sin2x cos2x⇒∫sin2x-cos2x·sin4x+cos4xdxsin4x+cos4x+2 sin2x cos2x-2 sin2x cos2x⇒-∫cos2x-sin2x×sin4x+cos4x dxsin4x+cos4x⇒-∫cos 2x dx ∵cos2x-sin2x=cos 2x …(2)Comparing the RHS of eq (1) with eq (2) we get , a=-12

Q9.

Answer :

∫x-1I e-xII dx=x-1∫e-x dx-∫ddxx-1∫e-x dxdx=x-1·e-x -1-∫1·e-x×-1 dx=-x-1 e-x+∫e-x dx=1-x e-x+e-x-1+C⇒1-x-1 e-x+C=-x e-x+C

Q10.

Answer :

(a) -1loge 2

If∫21xx2dx=k·21x+C ….(1) Let 1x=t⇒-1x2dx=dt⇒dxx2=-dtPutting 1x=t and dxx2=-dt in LHS of eq (1) , we get -∫2t·dt⇒-2tln 2+C⇒-21xln 2+C …(2) Comparing RHS of eq (1) with eq (2) we get , ∴ k=-1ln 2 or -1loge2

Q11.

Answer :

Disclaimer : Generally here book is taking loge x as log x . So we are writing ln x or loge x instead log x only .
(d) 12 [x + ln (sin x + cos x)] + C

Let I=∫11+tan xdx =∫11+sin xcos xdx =∫cos x cos x+sin xdx =12∫2 cos x cos x +sin xdx =12∫cos x+sin x+cos x-sin xcos x+sin xdx =12∫cos x +sin xcos x+sin xdx+12∫cos x-sin xcos x+sin xdx =12∫dx+12∫cos x-sin xcos x+ sin xdxPutting sin x+cos x=t⇒cos x-sin x dx=dt∴ I=12∫dx+12∫dtt =x2+12ln t+C =x2+12 ln cos x+sin x+C ∵ t=sin x+cos x =12x+ln sin x+ cos x+C

Q12.

Answer :

(d) none of these

∫x3 dxx=x, x≥0-x, x<0Case 1:When x≥0 ∴∫x3 dx=∫x3 dx=x44+CCase 2:x<0∫x3 dx=-∫x3 dx=-x44+C

Q13.

Answer :

(d) 2 sin x+C

Let I=∫cos xxdxPutting x=t⇒12xdx=dt⇒dxx=2dt∴ I=2∫cos t·dt =2 sin t+C =2 sin x+C ∵ t=x

Q14.

Answer :

(b) −ex cot x + C

Let I=∫ex1-cot x+cot2xdx =∫excosec2x-cot xdxAs we know that ∫efx+f’xx=exfx+C∴ I=-ex cot x+C

 

Page 19.180 (Multiple Choice Questions)

Q15.

Answer :

(b) tan7 x7+C

Let I=∫sin6x cos8xdx =∫sin6xcos6x×1cos2xdx =∫tan6x·sec2x dxPutting tan x=t⇒sec2x dx=dt∴I=∫t6·dt =t77+C =tan7x7+C ∵ t= tan x

Q16.

Answer :

(a) 16tan-116tanx2+C

Let I=∫dx7+5 cos xPutting cos x =1-tan2 x21+tan2 x2∴I=∫dx7+5×1-tan2 x21+tan2 x2 =∫1+tan2 x2 dx71+tan2 x2+5-5 tan2 x2 =∫sec2 x2 dx2 tan2 x2+12 =12∫sec2x2dxtan2x2+62Let tan x2=t⇒12 sec2 x2 dx=dt⇒sec2 x2 dx=2 dt∴I=12∫2 dtt2+62 =16 tan-1 t6+C ∵∫1a2+x2=1atan-1xa+C =16 tan-1 tan x26+C ∵ t= tan x2

Q17.

Answer :

(c) log1-cotx2+C
Disclaimer : Here in answer log1-cotx2+C refers to loge1- cotx2+C or ln 1-cotx2+C

Let I=∫dx1-cos x-sin x =∫dx1-1-tan2 x21+tan2 x2-2 tan x21+tan2 x2 =∫1+tan2 x2 dx1+tan2 x2-1-tan2 x2-2 tan x2 =∫sec2 x2 dx2 tan2 x2-2 tan x2 =12∫sec2 x2 dxtan2 x2-tan x2Putting tan x2=t⇒12sec2 x2 dx=dt⇒sec2 x2 dx=2dt∴I=12∫2dtt2-t =∫dtt2-t+122-122 =∫dtt-122-122 =12×12 ln t-12-12t-12+12+C ∵ ∫dxx2-a2=12alnx-ax+a+C =ln t-1t+C =ln 1-1t+C =ln 1-1tan x2+C ∵ t= tan x2 =ln 1-cot x2+C

Q18.

Answer :

(a) exx+4+C

Let I=∫x+3x+42ex dx⇒∫x+4-1x+42 ex dx⇒∫1x+4-1x+42 ex dxAs, we know that ∫exfx+f’x dx=exfx+C∴ I=exx+4+C

Q19.

Answer :

(c) -12 3tan-12 cos x3+C

Let I=∫sin x 3+4 cos2xdxPutting cos x=t⇒-sin x dx=dt∴I=∫-dt3+4t2 =14∫-dtt2+322 =-14×132 tan-1 t×23+C ∵∫1×2+a2=1atan-1xa+C =-123 tan-1 2 t3+C =-123 tan-1 2 cos x3+C ∵ t=cos x

Q20.

Answer :

(b) -ex cotx2+C

Let I =∫ex1-sin x1-cos xdx⇒∫ex11-cos x-sin x1-cos xdx⇒∫ex 12 sin2 x2-2 sin x2 cos x22 sin2 x2dx⇒∫ex 12 cosec2 x2-cot x2dxAs, we know that ∫exfx+f’x dx=exfx+C∴ I=-ex cot x2+C

Q21.

Answer :

(a) -e-xex+e-x+C

Let I =∫2 dxex+e-x2 =∫2 dxex+1ex2 =2∫e2x dxe2x+12Let e2x+1=t⇒e2x·2 dx=dt⇒e2x·dx=dt2∴I=2×12∫dtt2 =-1t+C =-1e2x+1+C ∵ t=e2x+1

Dividing numerator and denominator by ex
⇒I=-1exex+1ex =-e-xex+e-x+C

Q22.

Answer :

(c) tan (xex) + C

Let I=∫ex1+xcos2 xexdxPutting xex=t⇒1·ex+x exdx=dt⇒ex1+xdx=dt∴I=∫dtcos2 t =∫sec2t dt =tan t+C =tan x ex+C ∵ t= xex

 

Page 19.181 (Multiple Choice Questions)

Q23.

Answer :

(c) 13tan3 x+C

Let I =∫sin2x dxcos4x =∫sin2xcos2x×1cos2xdx =∫tan2x·sec2x dxLet tan x=t⇒sec2x dx=dt ∴I=∫t2·dt =t33+C =tan3x3+C ∵ t=tan x

Q24.

Answer :

(a) ax+1xloge a

fx=1-1×2·ax+1x∴∫fxdx=∫1-1×2·ax+1xdxLet x+1x=t⇒1-1x2dx=dt∴∫fxdx=∫at·dt =atloge a+C =ax+1xloge a+C ∵t =x+1x

Q25.

Answer :

(d) log (1 + log x)

Let I=∫dxx+x log x⇒∫dxx 1+log xPutting 1+log x=t⇒1x dx=dt∴ I=∫dtt =ln t+C =ln 1+log x+C

Q26.

Answer :

(d) sin-1 x-x 1-x+C

Let I =∫x1-xdxPutting x=sin θ⇒x=sin2θ⇒dx=2 sin θ cos θ dθ⇒dx=sin 2θ dθ∴ I=∫sin2θ1-sin2θ×sin 2θ·dθ =∫sin θcos θ×2 sin θ·cos θ dθ =∫2 sin2θ·dθ =∫1-cos 2θdθ =θ-sin 2θ2+C =θ-2 sin θ cos θ2+C =θ-sin θ 1-sin2θ+C =sin-1 x-x 1-x+C ∵ θ=sin-1x =sin-1 x-x1-x+C

Q27.

Answer :

(a) ex f (x) + C

Let I =∫exfx+f’xdxPutting exfx=t⇒ex·fx+exf’xdx=dt∴I=∫dt =t+C =exfx+C ∵t=exfx

Q28.

Answer :

(d) ± log (sin x − cos x) + C

Let I = ∫sin x+cos x dx1-sin 2x =∫sin x+cos x dxsin2x+cos2x-2 sin x cos x =∫sin x+cos x dxsin x-cos x2 =∫sin x+cos x dxsin x-cos x =±∫sin x+cos xsin x-cos xdxLet sin x-cos x=t⇒cos x+sin xdx=dt∴ I=±∫dtt =±ln t+C =±ln sin x-cos x+C ∵ t=sin x-cos x

Q29.

Answer :

(a) sin x + C

∫xI·sin xII dx=-x cos x+α ⇒x∫sin x dx-∫ddxx∫sin x dxdx=-x cos x+α⇒x -cos x-∫1·-cos xdx=-x cos x+α⇒-x cos x+∫cos x dx=-x cos x+α⇒-x cos x +sin x+C=-x cos x+α∴ α=sin x+C

Q30.

Answer :

(c) x − tan x + C

∫cos 2x-1cos 2x+1dx=∫1-2 sin2x-12 cos2x-1+1dx=-∫tan2x dx=-∫sec2x-1dx=∫1-sec2xdx=x-tan x+C

 

Page 19.182 (Revision Exercise)

Q1.

Answer :

∫1x+1+xdxRationalising the denominator, =∫x+1-xx+1+x x+1-xdx=∫x+1-xx+1-xdx=∫x+1-x dx=∫x+112-x12dx=x+112+112+1-x12+112+1+C=23 x+132-23 x32+C=23x+132- x32+C

Q2.

Answer :

∫1-x41-xdx=∫1-x2 1+x21-xdx=∫1-x 1+x 1+x21-xdx=∫1+x 1+x2dx=∫1+x2+x+x3dx=x+x33+x22+x44+C

Q3.

Answer :

Let ∫x+2x+13dxPutting x+1=t⇒x=t-1⇒dx=dt∴I=∫t-1+2t3dt =∫1t2+1t3dt =∫t-2+t-3dt =t-2+1-2+1+t-3+1-3+1+C =-1t-2t2+C =-1x+1-12x+12+C ∵ t=x+1

Q4.

Answer :

Let I=∫8x+134x+7dxPutting 4x+7=t⇒x=t-74⇒4dx=dt⇒dx=dt4∴ I=14∫8 t-74+13tdt =14∫2t-14+13tdt =14∫2t-1tdt =14∫2ttdt-14∫dtt =12∫t12dt-14∫t-12dt =12t12+112+1-14t-12+1-12+1+C =12×23t32-24 t12+C =13 t32-24t12+C =13 4x+732-12 4x+712+C ∵t=4x+7 =13 4x+732-4x+7+C

Q5.

Answer :

∫1+x+x2x2 1+xdx⇒∫1+xx2 1+xdx+∫x2x2 1+xdx⇒∫dxx2+∫dx1+x⇒∫x-2dx+∫11+xdx⇒x-2+1-2+1+ln 1+x+C⇒-1x+ln 1+x+C

Q6.

Answer :

∫2x+3x26xdx=∫2×2+3×2+2·2x·3x6xdx=∫2x22x·3x+3x22x·3x+2·2x·3x2x·3xdx⇒∫23x+32x+2dx⇒23xln 23+32xln 32+2x+C ∵∫axdx=axln a

Q7.

Answer :

∫sin x1+sin xdxRationalising the denominator ⇒∫sin x1+ sin x×1-sin x1-sin xdx⇒∫sin x-sin2x1-sin2xdx⇒∫sin xcos2x-tan2xdx⇒∫sin xcos x×1cos x-sec2x-1dx⇒∫sec x tan x-sec2x+1dx⇒sec x-tan x+x+C

Q8.

Answer :

∫x4+x 2-1×2+1dx⇒∫x4+x2x2+1dx-∫1×2+1dx⇒∫x2 x2+1×2+1dx-∫1×2+1dx⇒∫x2 dx-∫1×2+1dx⇒x33-tan-1 x+C ∵∫1×2+a2dx=1atan-1xa+C

Q9.

Answer :

∫sec2x·cos2 2xdx=∫sec2 x×2 cos2x-12dx=∫sec2x 4 cos4x-4 cos2x+1dx⇒∫4 cos2x-4+sec2xdx=4∫cos2x dx+∫sec2x dx-4∫dx⇒4∫1+cos 2x2dx+∫sec2x-4∫dx⇒2 x+sin 2×2+tan x-4x+C⇒sin 2x+tan x-2x+C

Q10.

Answer :

∫cosec2x·cos22x dx⇒∫cosec2x 1-2 sin2x2dx⇒∫cosec2x 1+4 sin4x-4 sin2x dx⇒∫cosec2x+4 sin2x-4 dx⇒∫cosec2x dx+4∫1-cos 2x2dx-4∫dx⇒-cot x+2 x-sin 2×2-4x+C⇒-cot x+2x-sin 2x-4x+C⇒-cot x-sin 2x -2x+C

Q11.

Answer :

∫sin4 2x dx⇒∫sin2 2×2 dx⇒∫1-cos 4x22dx⇒14∫1-cos 4×2⇒14∫1+cos2 4x-2 cos 4xdx⇒14∫1+1+cos 8×2-2 cos 4xdx⇒14∫32+cos 8×2-2 cos 4xdx⇒143×2+sin 8×16-2 sin 4×4+C⇒3×8+sin 8×64-sin 4×8+C

Q12.

Answer :

∫cos3 3x dx As we know that cos 3A=4 cos3A-3 cos A ⇒cos 3A+3 cos A4=cos3A⇒∫cos 9x+3 cos 3x4dx⇒14∫cos 9x dx+34∫cos 3x dx⇒14 sin 9×9+34sin 3×3+C⇒sin 9×36+sin 3×4+C⇒1363 sin 3x-4 sin3 3x +sin 3×4+C ∵sin 3x=3 sin x-4 sin3x⇒sin 3×12+sin 3×4-19 sin3 3x+C⇒sin 3×3-sin3 3×9+C

Q13.

Answer :

Let I=∫sin 2xa2+b2 sin2xdxPutting a+b2 sin2x=t⇒b2 2 sin x cos x dx=dt⇒b2×sin 2x dx=dt∴I=1b2∫dtt =1b2ln t+C =1b2ln a2+b2 sin2x+C ∵ t= a+b2 sin2x

Q14.

Answer :

Let I=∫1sin-1x·1-x2dxPutting sin-1 x=t⇒dx1-x2=dt∴ I=∫dtt =ln t+C =ln sin-1x+C ∵ t=sin-1x

Q15.

Answer :

Let I=∫sin-1 x31-x2dxPutting sin-1x=t⇒dx1-x2=dt∴ I=∫t3·dt =t44+C =sin-1 x44+C ∵t= sin-1x

Q16.

Answer :

∫1ex+1dx …(1)
Multiplying numerator and Denominator of eq (1) by ex

⇒∫ex·dxex ex+1Putting ex=t⇒ex dx=dt⇒∫dtt t+1∴1t t+1=At+Bt+11t t+1=A t+1+B tt t+1 …(2)⇒1=A t+1+ B tPutting t+1=0 or, t=-1 in eq (2) we get , ⇒1=A×0+B -1⇒B=-1Now,putting t=0 in eq (2) we get , ⇒1=A 0+1+B×0⇒A=1Putting the values of A and B in eq (2) we get , 1t t+1=1t-1t+1∴∫dtt t+1=∫dtt-∫dtt+1 =ln t-ln t+1+C =ln tt+1+C =ln exex+1+C =ln ex-ln ex+1+C =x-ln ex+1+C

Q17.

Answer :

We have,I=∫ex-1ex+1dx=∫2ex-ex+1ex+1dx=∫2exex+1dx-∫dxPutting ex+1=t⇒exdx=dt∴I=∫2tdt-∫dx=2 log t-x+C=2 log ex+1-x+C=2 log ex+1-x+C

Q18.

Answer :

Let I =∫1ex+e-xdx =∫dxex+1ex =∫ex dxe2x+1 =∫ex dxex2+1Putting ex=t⇒ex dx=dt∴ I=∫dtt2+1 =tan-1t +C ∵ ∫dta2+x2=1atan-1xa+C =tan-1 ex+C ∵t=ex

Q19.

Answer :

Let I=∫cos7x sin xdx =∫cos6x·cos x dxsin x =∫cos2x3·cos xsin xdx =∫1-sin2x3·cos xsin xdxLet sin x=t⇒cos x dx =dt∴ I=∫1-t23tdt =∫1-t6-3t2+3t4tdt =∫1t-t5-3t+3t3dt =ln t-t66-3t22+3t44+C =ln sin x-sin6x6-3 sin2 x2+34 sin4x+C ∵ t=sin x

Q20.

Answer :

∫sin x·sin 2x·sin 3x dx=12∫2 sin 2x·sin x sin 3x dx=12∫cos 2x-x- cos 2x+x sin 3x dx ∵ 2sinAsinB=cos (A-B)-cos (A+B)⇒=12∫cos x-cos 3x sin 3x dx=12∫sin 3x·cos x dx-12∫sin 3x·cos 3x dx=14∫2 sin 3x·cosx dx-14∫2 sin 3x·cos 3x dx =14∫sin 4x+sin 2xdx-14∫sin 6x dx ∵2sin Acos B=sinA+B+sinA-B=14-cos 4×4-cos 2×2-14-cos 6×6+C=-cos 4×16-cos 2×8+cos 6×24+C

Q21.

Answer :

∫cos x·cos 2x·cos 3x dx⇒12∫2 cos 2x·cos x cos 3x dx⇒12∫cos 2x+x+cos 2x-x cos 3x dx ∵2cos Acos B=cos A+B+cosA-B⇒12∫cos3x+cos x cos 3x dx⇒12∫cos2 3x dx+12∫cos 3x·cos x dx⇒12∫1+cos 6x2dx+14∫2 cos 3x·cos x dx ∵cos 2x= cos2 x-1 ⇒14x+sin 6×6+14∫cos 4x+cos 2xdx⇒14x+sin 6×6+14sin 4×4+sin 2×2+C⇒x4+sin 6×24+sin 4×16+sin 2×8+C

Q22.

Answer :

Let I=∫sin x+cos xsin 2 xdxPutting sin x-cos x=t⇒cos x+sin xdx=dtAlso sin x-cos x2=t2⇒sin2x+cos2x-2 sin x cos x=t2⇒1-t2=sin 2x∴I=∫dt1-t2 =sin-1 t+C ∫dta2-x2=sin-1xa+C =sin-1 sin x-cos x+C ∵ t=sin x-cos x

Q23.

Answer :

Let I=∫sin x-cos xsin 2x dxPutting sin x+cos x=t⇒cos x-sin x dx=dt⇒sin x-cos x dx=-dtAlso sin x+cos x=tSquaring both sides, sin x+cos x2=t2⇒sin2x+cos2x+2 sin x cos x =t2⇒1+sin 2x=t2⇒sin 2x=t2-1∴I=∫-dtt2-1 =-ln t+t2-1+C ∵ ∫dtx2-a2=lnx+x2-a2+C =-ln sin x+cos x+sin x+cos x2-1+C ∵t=sin x+cos x =-ln sin x+cos x+sin2x+cos2x+2 sin cos x-1+C =-ln sin x+cos x+sin 2 x+C

Q24.

Answer :

∫1sin x-a·sin x-bdx=1sin b-a∫sin b-asin x-a·sin x-b dx=1sin b-a∫sin x-a-x-bsin x-a·sin x-b dx=1sin b-a∫sin x-a·cos x-b-cos x-a sin x-bsin x-a·sin x-b dx=1sin b-a ∫sin x-a·cos x-bsin x-a·sin x-b – cos x-a sin x-b sin x-a sin x-b dx=1sin b-a∫cot x-b-cot x-a dx=1sin b-a∫cot x-b dx-∫cot x-a dx=1sin b-aln sin x-b-ln sin x-a+C=1sin b-aln sin x-bsin x-a +C=-1sin a-blnsin x-bsin x-a +C=1sin a-b ln sin x-asin x-b+C

Q25.

Answer :

∫1cos x-a·cos x-bdx=1sin a-b∫sin a-bcos x-a·cos x-b dx=1sin a-b∫sin x-b-x-acos x-a·cos x-b dx=1sin a-b∫sin x-b·cos x-a-cos x-b·sin x-acos x-a·cos x-b=1sin a-b∫sin x-b·cos x-acos x-a·cos x-b-cos x-b·sin x-acos x-a·cos x-b dx=1sin a-b∫tan x-b-tan x-a dx=1sin a-b∫tan x-b dx-∫tan x-a dx=1sin a-bln sec x-b-ln sec x-a +C=1sin a-bln cos x-a-ln cos x-b +C=1sin a-bln cos x-acos x-b +C

Q26.

Answer :

We have,I=∫sinx1+sinx dxI=∫2 sinx2cosx2sin2x2+cos2x2+2 sinx2cosx2 dxI=∫2 sinx2cosx2 sinx2+cosx22 dxI=∫2 sinx2cosx2 sinx2+cosx2 dxI=∫1+2sinx2 cosx2-1sinx+cosx dxI=∫sin2x2+cos2x2+2sinx2 cosx2-1sinx+cosx dxI=∫sinx2+cosx22-1sinx2+cosx2 dxI=∫sinx2+cosx22sinx2+cosx2 dx-∫1sinx2+cosx2 dxI=∫sinx2+cosx2 dx-∫1sinx2+cosx2 dxI=2-cosx2+sinx2+C1-12∫112sinx2+cosx2 dxI=2-cosx2+sinx2+C1-12∫1sinx2 cosπ4+cosx2 sinπ4 dxI=2-cosx2+sinx2+C1-12∫1sinx2+π4 dxI=2-cosx2+sinx2+C1-12∫cosecx2+π4 dxI=2-cosx2+sinx2-2logtanx4+π8+C

Q27.

Answer :

Let I=∫sin xcos 2 x dx =∫sin x2 cos2x-1 dx ∵cos 2x=2cos2x-1 Putting cos x=t⇒-sin x dx=dt⇒sin x dx=-dt∴I=∫-dt2t2-1 =12∫-dtt2-12 =-12∫dtt2-122 =-12×12×12 ln t-12t+12+C ∵∫1×2-a2=12alnx-ax+a+C =-122 ln 2t-12t+1+C =-122 ln 2 cosx-12 cos x+1+C ∵t= cos x =122 ln 2 cos x+12 cos x-1+C

Q28.

Answer :

Let I =∫tan3 x dx=∫tan x·tan2x dx=∫tan x sec2x-1dx=∫tan x·sec2x dx-∫tan x dxPutting tan x=t in the Ist integral⇒sec2x dx=dt∴I=∫t·dt-∫tan x dx =t22-ln sec x+C =tan2x2-ln sec x+C ∵ t= tan x

Q29.

Answer :

Let I= ∫tan4x dx =∫tan2x·tan2x dx =∫sec2x-1 tan2x dx =∫sec2x·tan2x dx-∫tan2x dx =∫tan2x·sec2x-∫sec2x-1 dxPutting tan x=t in the Ist integral⇒sec2x dx=dt∴ I=∫t2·dt-∫sec2x-1 dx =t33-tan x+x+C =tan3x3-tan x+x+C ∵ t=tan x

Q30.

Answer :

Let I=∫tan5 x dx =∫tan3x·tan2x dx =∫tan3x sec2x-1 dx =∫tan3x·sec2x dx-∫tan3x dx =∫tan3x·sec2x dx-∫tan x·tan2x dx =∫tan3x·sec2x dx-∫tan x·sec2x-1 dx =∫tan3x·sec2x dx-∫tanx·sec2x dx+∫tan x dxPutting tan x=t in the Ist and IInd integral. ⇒sec2x dx=dt∴ I=∫t3·dt-∫t·dt+∫tan x dx =t44-t22+ln sec x+C =tan4x4-tan2x2+ln sec x+C ∵ t= tan x

Q31.

Answer :

Let I=∫cot4x dx =∫cot2x·cot2x dx =∫cot2 x·cosec2x-1 dx =∫cot2x·cosec2x dx-∫cot2x dx =∫cot2x·cosec2x dx-∫cosec2x-1 dxPutting cot x=t in the Ist integral⇒-cosec2x dx=dt∴ I=-∫t2 dt-∫cosec2x-1 dx =-t33+cot x+x+C =-cot3x3+cot x+x+C ∵t= cot x

Q32.

Answer :

Let I=∫cot5x dx =∫cot2x·cot3x dx =∫cosec2x-1 cot3x dx =∫cot3x·cosec2x dx-∫cot3x dx =∫cot3x·cosec2x dx-∫cot x·cot2x dx =∫cot3x·cosec2x dx-∫cot x cosec2x-1 dx =∫cot3x·cosec2x dx-∫cot x·cosec2x dx+∫cot x dxPutting cot x=t in the Ist and IInd integral ⇒-cosec2x dx=dt⇒cosec2x dx=-dt∴I=-∫t3 dt+∫t·dt+∫cot x dx =-t44+t22+ln sin x+C =-cot4x4+cot2x2+ln sin x+C ∵ t=cot x

Q33.

Answer :

∫x2x-13dx=∫x2-1+1x-13dx=∫x-1 x+1x-13+1x-13dx=∫x+1x-12+1x-13dx=∫x-1+2x-12+1x-13dx=∫1x-1+2x-12+1x-13dx=∫1x-1dx+2∫x-1-2 dx+∫x-1-3 dx=ln x-1+2 x-1-2+1-2+1+x-1-3+1-3+1+C=ln x-1 -2x-1-x-1-22+C=ln x-1 -2x-1-12 x-12+C

Q34.

Answer :

Let I=∫x2x+3 dxPutting 2x+3=t⇒x=t-32⇒2dx=dt⇒dx=dt2∴ I=12∫t-32 t dt =14∫t-3 t dt =14∫t32-3t12dt =14t32+132+1-3 t12+112+1+C =14×25 t52-34×23 t32+C =110 t52-2t32+C =110 2x+352-12 2x+332+C ∵ t=2x+3 =1102x+352-12 2x+332+C

Q35.

Answer :

Let I=∫x31+x22dx =∫x2×x1+x22dxPutting 1+x2=t ⇒x2=t-1⇒2x dx=dt⇒x dx=dt2∴ I=12∫t-1t2dt =12∫1t-1t2dt =12∫dtt-12∫t-2 dt =12 ln t-12t-2+1-2+1+C =12 ln t+12t+C =12 ln 1+x2+12 1+x2+C ∵ t= 1+x2

Q36.

Answer :

Let I=∫x·sin5 x2·cos x2 dxPutting sin x2=t⇒cos x2×2x dx=dt⇒cos x2·x dx=dt2∴ I=12∫t5·dt =12 t66+C =t612+C =sin6 x212+C ∵ t= sin x2

Q37.

Answer :

Let I=∫sin3x·cos4x dx =∫sin2x·sin x·cos4x dx =∫1-cos2x·cos4x·sin x dx =∫cos4x-cos6x·sin x dxPutting cos x=t⇒-sin x dx=dt⇒sin x dx=-dt∴I=-∫t4-t6dt =∫t6-t4dt =t77-t55+C =cos7x7-cos5x5+C ∵ t= cos x

Q38.

Answer :

Let I=∫sin5x dx =∫sin4x·sin x dx =∫sin2x2 sin x dx =∫1-cos2x2 sin x dx =∫cos4x-2 cos2x+1 sin x dxPutting cos x=t⇒-sin x dx=dt⇒sin x dx=-dt∴ I=-∫t4-2t2+1 dt =-∫t4 dt+2∫t2 dt-∫dt =-t55+2t33-t+C =-cos5x5+23 cos3x-cos x+C ∵ t=cos x

Q39.

Answer :

Let I=∫cos5 x dx =∫cos4x·cosx dx =∫cos2x2 cos x dx =∫1-sin2x2 cos x dxPutting sin x=t⇒cos x dx=dt∴ I=∫1-t22·dt =∫t4-2t2+1 dt =∫t4·dt-2∫t2 dt+∫dt =t55-2×t2+12+1+t+C =t55-23 t3+t+C =sin5x5-23 sin3x+sin x+C ∵t= sin x

Q40.

Answer :

Let I=∫sin x·cos3x dx =∫sin x·cos2x·cos x dx =∫sin x 1-sin2x·cos x dxPutting sin x=t⇒cos x dx=dt∴ I=∫t 1-t2·dt =∫t12 dt-∫t12·t2 dt =∫t12dt-∫t52dt =t3232-t7272+C =23t32-27 t72+C =23 sin32x-27 sin72x+C ∵ t= sin x

Q41.

Answer :

Let I=∫sin 2xsin4x +cos4xdx =∫2 sin x ·cos x dxsin4x+cos4xDividing numerator and denominator by cos4x⇒∫2 sin x·cos xcos4 xdx1+tan4x⇒∫2 tan x·sec2x dx1+tan2x2Putting tan2x=t⇒2 tan x·sec2x dx∴ I=∫dt1+t2 =tan-1 t+C =tan-1 tan2x+C ∵ t= tan 2x

Q42.

Answer :

Let I=∫1×2-a2dxPutting x= a sec θ⇒dx=a secθ tanθ dθ∴ I=∫a secθ tanθ dθa2 sec2θ-a2 =∫a secθ·tanθ dθa·tanθ =∫secθ dθ =ln secθ+tanθ+C =ln secθ+sec2θ-1+C =ln xa+xa2-1+C =ln x+x2-a2a+C =ln x+x2-a2-ln a+C =ln x+x2-a2+C’where C’=C-ln a

Q43.

Answer :

Let I=∫dxx2-a2Putting x= a tan θ⇒dx=a sec2θ dθ∴ I=∫a·sec2θ dθa2 tan2θ+a2 =∫a sec2θ·dθa1+tan2θ =∫sec2θ·dθsecθ =∫secθ·dθ =∫secθ·dθ =ln secθ+tanθ+C =ln secθ+sec2θ-1+C =ln xa+x2a2-1+C =ln x+x2-a2-ln a+C =ln x+x2-a2+C’where C’=C-ln a

Q44.

Answer :

Let I=∫dx4x2+4x+1+4 =∫dx2x2+2×2x+1+22 =∫dx2x+12+22Putting 2x+1=t⇒2 dx=dt⇒dx=dt2∴ I=12∫dtt2+22 =12×12 tan-1 t2+C =14 tan-1 2x+12+C ∵ t=2x+1

Q45.

Answer :

∫1×2+4x-5dx=∫1×2+4x+4-4-5dx=∫1×2+4x+4-32dx=∫1x+22-32dx=12×3 ln x+2-3x+2+3+C ∵∫1×2-a2dx=12aln x-ax+a+C=16 ln x-1x+5+C

Q46.

Answer :

We have,I=∫11-x-4x2dx=14∫114–x2x4dx=14∫114-x2+x4dx=14∫114-x2++182-182x4dx=14∫114-x+182+164dx=14∫114+-x+182164dx=14∫116+164-x+182dx=14∫11782-x+182dx=14×12×178 ln 178+x+18178-x-18+C ∵∫1a2-x2dx=12alna+xa-x+C=117 ln 17+18+x17-18-x+C

Q47.

Answer :

∫13×2+13x-10dx=13∫1×2+133x-103dx=13∫1×2+13 x3+1362-1362-103dx=13∫1x+1362-16936-103dx=13∫1x+1362-169-12036dx=13∫1x+1362-1762dx=13×12×176 ln x+136-176x+136+176 ∵∫1×2-a2dx=12aln x-ax+a+C=117 ln x-23x+5+C=117 ln 3x-23x+15+C

Q48.

Answer :

Let I=∫sin x cos2x-2 cos x-3dxPutting cos x=t⇒-sin x dx=dt⇒sin x dx=-dt∴ I=-∫dtt2-2t-3 =-∫dtt2-2t+1-4 =-∫dtt-12-22 =-ln t-1+t-12-4+C ∵ ∫1×2-a2dx=lnx+x2-a2+C =-ln cos x-1+cos2x-2 cos x-3+C ∵t=cos x

Q49.

Answer :

Let I=∫cosec x-1 dx =∫1sin x-1 dx =∫1-sin xsin x dx =∫1-sin x 1+sin xsin x 1+sin xdx =∫1-sin2xsin2x+sin xdx =∫cos xsin2x+sin xdxPutting sin x=t⇒cos x dx=dt∴I=∫dtt2+t =∫dtt2+t+122-122 =∫dtt+122-122 =ln t+12+t+122-122+C ∵ ∫1×2-a2dx=ln x+x2-a2+C =ln t+12+t2+t+C =ln sin x+12+sin2x+sin x+C ∵ t= sin x

Q50.

Answer :

Let I=∫13-2x-x2dx =∫13-x2+2x+1-1dx =∫14-x+12dxPutting x+1=t⇒dx=dt∴ I=∫dt22-t2 =sin-1 t2+C ∵∫ 1a2-x2dx=sin-1xa+C =sin-1 x+12+C ∵ t = x+1

Q51.

Answer :

Let I=∫x+1×2+4x+5dx& let x+1= Addxx2+4x+5+B⇒x+1=A 2x+4+B⇒x+1=2Ax+4A+BEquating the coefficients of like terms2A=1⇒A=12& 4A+B=1⇒4×12+B=1⇒B=-1∴x+1=12 2x+4-1∴I=∫122x+4-1×2+4x+5dx =12∫2x+4×2+4x+5dx-∫1×2+4x+5dxPutting x2+4x+5=t⇒2x+4 dx=dt∴ I=12∫1tdt-∫1×2+4x+4+1dx =12∫dtt-∫1x+22+12dx =12 ln t-tan-1 x+21+C ∵∫1×2+a2dx=1atan-1xa+C =12 ln x2+4x+5-tan-1 x+2+C ∵ t=x2+4x+5

Q52.

Answer :

We have,I=∫5x+7x-5x-4 dx=∫5x+7×2-9x+20 dxLet 5x+7=A ddx x2-9x+20+B⇒5x+7=A 2x-9+BEquating Coefficients of like terms2A=5⇒A=52And-9A+B=7⇒-9×52+B=7⇒B=7+452⇒B=592∴I=∫52 2x-9+592×2-9x+20 dx=52∫2x-9 dxx2-9x+20+592∫dxx2-9x+20Putting x2-9x+20=t⇒2x-9 dx=dtI=52∫dtt+592∫dxx2-9x+922-922+20=52∫t-12 dt+592∫dxx-922-81+804=52 t-12+1-12+1+592 ∫dxx-922-122=52×2t+592 log x-92+x-922-122+C=5t+592 log x-92+x2-9x+20+C=5×2-9x+20+592 log x-92+x2-9x+20+C

Q53.

Answer :

Let I=∫1+xxdx =∫1+xx×1+x1+xdx =∫1+xx2+xdxLet x+1= Addxx2+x+B⇒x+1=A 2x+1+B⇒x+1=2Ax+A+BEquating the coefficients of like terms2A=1⇒A=12& A+B=1⇒12+B=1∴B=12∴ I=∫x+1×2+xdx =∫12 2x+1+12×2+xdx =12∫2x+1×2+xdx+12∫1×2+xdx

Putting x2+x=t⇒2x+1 dx=dt∴ I=12∫1tdt+12∫1×2+x+122-122dx =12∫1tdt+12∫1x+122-122dx =12∫t-12dt+12∫1x+122-122dx =12×2 t+12 ln x+12+x+122-14+C ∵∫1×2-a2dx=ln x+x2-a2+C =t+12 ln x+12+x2+x+C =x2+x+12 ln x+12+x2+x+C ∵ t=x2+x

Q54

Answer :

Let I=∫1-xxdx =∫1-x·1-xx·1-x dx =∫1-xx-x2dxLet 1-x= Addxx-x2+B⇒1-x=A 1-2x+B⇒1-x=-2A x+A+BEquating coefficients of like terms-2A=-1⇒A=12& A+B=1⇒12+B=1∴B=12∴ I=∫12 1-2x+12x-x2dx =12∫1-2xx-x2dx+12∫1x-x2+122-122dx =12∫1-2x x-x2dx+12∫1122-x2-x+122dx =12∫1-2x x-x2dx+12∫1122-x-122dx

Putting x-x2=t in the first integral⇒1-2x dx=dt∴ I=12∫1tdt+12∫1122-x-122dx =12∫t-12dt+12∫dx122-x-122 =12×2 t12 +12×sin-1 x-1212+C ∵ ∫1a2-x2dx=sin-1xa+C =t+12 sin-1 2x-1+C =x-x2+12 sin-1 2x-1+C ∵ t= x-x2

Q55.

Answer :

We have,I=∫a-x1-ax dxI=1a∫1+a-1-ax1-ax dxI=1a∫1-ax1-ax dx+1a∫a-11-ax dxI=1a∫ dx+a-1a∫11-ax dxI=1ax+a-1a∫11-ax dxLet,I1=∫11-ax dxPut ax=z2⇒adx=2zdzI1=1a∫2z1-z dzI1=1a∫2z-2+21-z dzI1=1a∫2z-21-z dz+1a∫21-z dzI1=-2a∫1-z1-z dz+1a∫21-z dzI1=-2a∫ dz+1a∫21-z dzI1=-2az-2alog1-z+C1I1=-2axa-2alog1-ax+C1I=1ax+a-1a-2axa-2alog1-ax+C

Note: The answer in indefinite integration may vary depending on the integral constant.

Q56.

Answer :

Let I=∫1sin x-2 cos x 2 sin x+cos xdx
Dividing numerator and denominator by cos2x we get ,
I= ∫1cos2xtan x-2 2 tan x+1dx =∫sec2xtan x-2 2 tan x+1 dxPutting tan x =t⇒sec2x dx=dt∴ I=∫1t-2 2t+1dt =∫12t2+t-4t-2dt =∫12t2-3t-2dt = 12∫1t2-3t2-1dt =12∫1t2-32t+342-342-1dt =12∫1t-342-916-1dt =12∫1t-342-542dt =12×12×54 ln t-34-54t-34+54+C ∵∫1×2-a2dx=12alnx-ax+a+C =15 ln t-2t+12+C =15 ln 2 t-22t+1+C =15 ln 2 tan x-22 tan x +1+C ∵t=tan x =15 ln tan x-22 tan x+1+15 ln 2+C =15 ln tan x-22 tan x+1+C’where C’=C+15 ln 2

Q57.

Answer :

Let I=∫14 sin2x+4 sin x·cos x+5 cos2xdx

Dividing numerator and denominator by cos2x we get
I=∫sec2x 4 tan2x+4 tan x+5dxPutting tan x =t⇒sec2x dx=dt∴ I=∫dt4t2+4t+5 =14∫dtt2+t+54 =14∫dtt2+t+14-14+54 =14∫dtt+122+12 =14× tan-1 t+12+C ∵∫1×2+a2dx=1atan-1xa+C =14 tan-1 2t+12+C =14 tan-1 2 tan x+12+C ∵ t= tan x =14 tan-1 tan x+12+C

 

Page 19.183 (Revision Exercise)

Q58.

Answer :

Let I=∫1a+b tan xdx =∫1a+b sin xcos xdx =∫cos x·a cos x+b sin xdxLet cos x=A ddx a cos x+b sin x+B a cos x+b sin x⇒cos x=A -a sin x+b cos x+B a cos x+ b sin x1·cos x=Ab+B·a cos x +sin x-A·a+B·bEquating coefficients of like terms A·b+B·a=1 … 1-A·a+B·b=0 … 2Multiplying equation 1 by a and eq 2 by b and then adding them A·ab+B·a2=a-A·a·b+Bb2=0⇒B=aa2+b2Substituting the value of B in eq 1⇒A·b+a2a2+b2=1⇒A·b=1-a2a2+b2⇒A=ba2+b2∴ I=ba2+b2∫-a sin x+b cos xa cos x+b sin xdx+aa2+b2∫a cos x+b sin xa cos x+b sin xdx =ba2+b2∫-a sin x+b cos xa cos x +b sin xdx+aa2+b2∫dxPutting a cos x +b sin x =t in the Ist integral⇒-a sin x+b cos xdx=dt∴ I=ba2+b2∫dtt+aa2+b2∫dx =ba2+b2 ln t+axa2+b2+C =ba2+b2 ln a cos x+b sin x+axa2+b2+C ∵ t=a cos x +b sin x

Q59.

Answer :

Let I=∫1sin2x+sin 2xdx =∫1sin2x+2 sin x·cos xdx

Dividing numerator and denominator by cos2x, we get
I= ∫1cos2xtan2x+2 tan xdx =∫sec2xtan2x+2 tan x dxPutting tan x =t⇒sec2x dx=dt∴ I=∫1t2+2tdt =∫1t2+2t+1-1dt =∫1t+12-12dt =12 ln t+1-1t+1+1+C =12 ln tt+2+C =12 ln tan xtan x+2+C ∵ t= tan x

Q60.

Answer :

∫sin x+2 cos x2 sin x+cos xdxLet sin x+2 cos x=A ddx 2 sin x+cos x+B 2 sin x+cos x⇒sin x+2 cos x=A 2 cos x-sin x+2 B sin x+B cos x⇒sin x+2 cos x=2 A+B cos x +2 B-A sin xEquating coefficients of like terms⇒2 A+B=2 … 1⇒-A+2B=1 … 2Multiplying eq 2 by 2 and adding it to eq 1 we get,5 B=4⇒B=45Putting B=45 in eq 1 we get,2 A+45=2⇒A=35∴∫sin x+2 cos x2 sin x+cos xdx= ∫35 2 cos x-sin x2 sin x+cos xdx+45∫2 sin x+ cos x2 sin x+cos xdx =35∫2 cos x-sin x2 sin x+cos xdx+45∫dxPutting 2 sin x+cos x=t⇒2 cos x-sin x dx=dt∴ I=35∫dtt+45∫dx =35 ln t+4×5+C =35 ln 2 sin x+cos x+4×5+C ∵ t= 2 sin x + cos x

Q61.

Answer :

Let I=∫x3x8+22dx =∫x3x42+22dxPutting x4=t⇒4x3dx=dt⇒x3·dx=dt4∴ I=14∫1t2+22dt =14 ln t+t2+4+C =14 ln x4+x8+4+C ∵t= x4

Q62.

Answer :

Let I=∫12-3·cos 2xdx =∫12-3 2 cos2x-1dx =∫12-6 cos2x+3dx =∫15-6 cos2xdx
Dividing numerator and denominator by cos2x, we get
I=∫sec2x 5 sec2x-6dx =∫sec2x 5 1+tan2x-6dx =∫sec2x 5 tan2x-1dxPutting tan x =t⇒sec2x dx=dt∴ I=∫15t2-1dt =15∫1t2-152dt =15×12×15 ln t-15t+15+C ∵∫1×2-a2dx=12alnx-ax+a+C =125 ln 5t-15t+1+C =125 ln 5 tan x-15 tan x+1+C ∵ t= tan x

Q63.

Answer :

Let I=∫cos x 14-cos2xdx =∫cos x 14-1-sin2xdx =∫cos x sin2x-34dx =∫cos x sin2x-322dxPutting sin x=t⇒cos x dx=dt∴ I=∫1t2-322dt =12×32 ln t-32t+32+C =13 ln 2t-32t+3+C =13 ln 2 sin x-32 sin x+3+C ∵ t=sin x

Q64.

Answer :

Let I=∫11+2 cos xdx Putting cos x=1-tan2x21+tan2 x2∴ I=∫11+2 1-tan2 x21+tan2x2dx =∫1+tan2 x2 1+tan2 x2+2-2 tan2 x2dx =∫sec2 x2 3-tan2 x2dxPutting tanx2=t⇒12sec2 x2 dx=dt⇒sec2 x2·dx=2dt∴ I=∫23-t2 dt =2∫132-t2dt =2×123 ln 3+t3+t+C ∵∫1a2-x2dx=12alna+xa-x+C =13 ln 3+tanx23-tan x2+C ∵ t= tan x2

Q65.

Answer :

Let I=∫11-2 sin x dx Putting sin x=2 tan x21+tan2 x2∴ I=∫11-2 2 tan x21+tan2x2dx =∫1+tan2 x21+tan2 x2-4 tan x2 dx =∫sec2 x2 1+tan2 x2-4 tan x2dxPutting tan x2=t⇒12 sec2 x2 dx=dt⇒sec2 x2·dx=2dt∴ I=∫2 t2-4t+1dt =2∫1t2-4t+4-4+1dt =2∫1t-22-32dt =2×123 ln t-2-3t-2+3+C ∵ ∫1×2-a2dx=12alnx-ax+a+C =13 ln tanx2-2-3tanx2-2+3+C ∵ t= tan x2

Q66.

Answer :

Let I=∫1sin x 2+3 cos xdx =∫sin x sin2x 2+3 cos xdx =∫sin x1-cos2x 2+3 cos x dx =∫sin x1-cos x 1+cos x 2+3 cos x dxPutting cos x=t⇒-sin x dx=dt∴I=∫-11-t 1+t 2+3tdt =∫1t-1 t+1 3t+2dtLet1t-1 t+1 3t+2=At-1+Bt+1+C3t+2⇒1t-1 t+1 3t+2=A t+1 3t+2+B t-1 3t+2+C t+1 t-1t-1 t+1 3t+2⇒1=A t+1 3t+2+B t-1 3t+2+C t+1 t-1Putting t+1=0 or t=-1⇒1=A×0+B -1 -1 3×-1+2+C×0∴B=12Now, putting t-1=0 or t=1⇒1=A 1+1 3+2+B×0+C×0∴A=110Now, putting 3t+2=0 or t=-2 3⇒1=A×0+B×0+C -23+1 -23-1⇒1=C 13 -53∴ C=-95∴ I=∫110 t-1dt+12∫1t+1dt-95∫13t+2dt =110 ln t-1+12 ln t+1-95 ln 3t+23+C =110 ln t-1+12 log t+1-35 ln 3t+2+C =110+ln cos x-1+12 ln cos x+1 -35 ln 3 cos x+2+C ∵ t= cos x

Q67.

Answer :

Let I=∫1sin x+sin 2xdx =∫1sin x+2 sin x cos xdx =∫1sin x 1+2 cos xdx =∫sin x sin2x 1+2 cos xdx =∫sin x 1-cos2x 1+2 cos xdx =∫sin x dx1-cos x 1+cos x 1+2 cos xPutting cos x=t⇒-sin x dx=dt⇒sin x dx=-dt

∴ I=-∫11-t 1+t 1+2tdt =∫1t-1 t+1 2t+1dt∴1t-1 t+1 2t+1=At-1+Bt+1+C2t+1⇒1=A t+1 2t+1+B t-1 2t+1+C t-1 t+1Putting t+1=0 or t=-1⇒1=A×0+B -1 -1 -2+1+C×0⇒1=B 2∴B=12Now, putting t-1=0 or t=1⇒1=A 2 3+B×0+C×0∴A=16Now, putting 2t+1=0 or t=-12⇒1=A×0+B×0+C -12-1 -12+1⇒1=C -32 12∴C=-43∴I =16∫1t-1dt+12∫1t+1dt-43∫12t+1dt =16 ln t-1+12 log t+1-43 ln 2t+12+C =16 ln t-1+12 ln t+1-23 ln 2t+1+C =16ln cos x-1+12 ln cos x+1 -23 ln 2 cos x+1+C ∵ t= cos x

Q68.

Answer :

We have,I=∫dxsin4x+cos4x
Dividing numerator and denominator by cos4x
I=∫sec4x dxtan4x+1=∫sec2x sec2x dxtan4x+1=∫1+tan2x sec2x dxtan4x+1Putting tan x=t⇒sec2x dx=dt∴I=∫1+t2 dtt4+1=∫1t2+1 dtt2+1t2=∫1+1t2t-1t2+2dtPutting t-1t=p⇒1+1t2dt=dp∴I=∫1p2+22dp=12 tan-1p2+C=12 tan-1t-1t2+C=12 tan-1 t2-12 t+C=12 tan-1 tan2x-12 tan x+C=12 tan-1-2×1-tan2x2 tan x+C=12 tan-1-2tan 2x+C=12 tan-1-2 cot 2x+C

Q69.

Answer :

Let I=∫15-4 sin xdxPutting sin x=2 tan x21+tan2 x2∴ I=∫15-4 ×2 tan x21+tan2 x2dx =∫1+tan2 x2 5 1+tan2 x2-8 tan x2dx =∫sec2 x2 5 tan2 x2-8 tan x2+5dxPutting tan x2=t⇒12 sec2 x2 dx=dt

⇒sec2 x2 dx=2 dt∴ I=2∫15t2-8t+5dt =25∫1t2-85t+1dt =25∫1t2-8t5+452-452+1dt =25∫1t-452-1625+1dt =25∫1t-452+352dt =25×53 tan-1 t-4535+C ∵ ∫1×2+a2dx=1atan-1xa+C =23 tan-1 5t-43+C =23 tan-1 5 tan x2-43+C ∵ t = tan x2

Q70.

Answer :

Let I= ∫sec4x dx =∫sec2x·sec2x dx =∫1+tan2x·sec2x dxPutting tan x=t⇒sec2x dx=dt∴I=∫1+t2 dt =∫dt+∫t2dt =t+t33+C =tan x+13tan3x+C ∵ t= tan x

Q71.

Answer :

Let I= ∫cosec4 2x dx =∫cosec2 2x·cosec2 2x dx =∫1+cot2 2x·cosec2 2x dxPutting cot 2x=t⇒-cosec2 2x·2 dx=dt⇒cosec2 2x·dx=-dt2∴ I=-12∫1+t2·dt =-12 t+t33+C =-12cot 2x+16cot3 2x+C ∵ t= cot 2x

Q72.

Answer :

Let I=∫1+sin x sin x 1+cos xdxPutting sin x=2 tan x21+ tan2 x2and cos x=1-tan2 x21+tan2 x2∴ I=∫1+2 tan x21+tan2 x2 2 tan x21+tan2 x2 1+1-tan2 x21+tan2 x2dx =∫1+tan2 x2+2 tan x2 1+tan2 x2 2 tan x2 1+tan2 x2+1-tan2 x2dx =14∫1+tan2 x2+2 tan x2 sec2 x2tan x2 dxPutting tan x2=t⇒12 sec2 x2 dx=dt⇒sec2 x2 dx=2dt∴ I=14∫1+t2+2t·2 dtt =12∫1t+t+2 dt =12 ln t+t22+2t+C =12 ln tan x2+tan2 x22+2 tan x2+C ∵ t= tan x2 =12 ln tan x2+14tan2x

Q73.

Answer :

Let I=∫12+cos xdxPutting cos x =1-tan2 x21+tan2 x2∴ I=∫12+1-tan2 x21+tan2 x2dx =∫1+tan2 x2 2 1+tan2 x2+1-tan2 x2dx =∫sec2 x2 2+2 tan2 x2+1-tan2 x2dx =sec2 x2 3+tan2 x2dxPutting tan x2=t⇒12 sec2 x2 dx=dt⇒sec2 x2 dx=2 dt∴ I=∫23+t2 dt =2∫1t2+32dt =23 tan-1 t3+C =23 tan-1 tan x23+C ∵ t= tan x2

Q74.

Answer :

Let I=∫a+xxdx =∫a+x a+xx a+x =∫a+xx2+axdx =a∫1×2+axdx+∫x x2+axdx =a∫1×2+ax+a22-a22dx+∫x x2+axdx =a∫1x+a22-a22dx+12∫2x x2+axdx =a∫1x+a22-a22dx+12∫2x+a-ax2+axdx =a∫1x+a22-a22dx+12∫2x+a x2+axdx-a2∫1×2+axdx =a2∫1x+a22-a22dx+12∫2x+a x2+ax dxPutting x2+ax=t in the Ist integral ⇒2x+a dx=dt∴ I=a2∫1x+a22-a22dx+12∫1tdt =a2 ln x+a2+x2+ax+12×2t+C ∵∫1×2-a2dx=lnx+x2-a2+C =a2 ln x+a2+x2+ax+x2+ax+C ∵t=x2+ax

Q75.

Answer :

∫6x+5 dx6+x-2x2Let 6x+5= Addx6+x-2×2+B⇒6x+5=A -4x+1+B⇒6x+5=-4A x+A+BEquating coefficients of like terms-4A=6⇒A=-32 & A+B=5⇒-32+B=5⇒B=5+32⇒B=132Then, 6x+5=-32 -4x+1+132∴∫6x+5 6+x-2x2dx=∫-32-4x+1+1326+x-2x2dx =-32∫-4x+16+x-2×2 dx+132∫16+x-2x2dxPutting 6+x-2×2=t in the Ist integral⇒-4x+1 dx=dt∴ ∫6x+5 6+x-2x2dx=-32∫1tdt+132×2∫13+x2-x2dx =-32∫t-12·dt+1322∫13+x2-x2-142+142dx =-32∫t-12·dt+1322∫13+116-x-142dx =-32∫t-12·dt+1322∫1742-x-142dx =-3 t12+1322×sin-1 x-1474+C ∵∫1a2-x2dx=sin-1 xa+C =-3 6+x-2×2+1322×sin-1 x-1474+C =-36+x-2×2+1322 sin-1 4x-17+C

Q76.

Answer :

Let I=∫sin5x cos4xdx =∫sin4x.sin xcos4xdx =∫sin2x2·sin x cos4xdx =∫1-cos2x2.sin xcos4xdx =∫1+cos4x-2cos2xcos4x sin x dxPutting cos x=t⇒-sin x dx=dt∴ I=-∫1+t4-2t2 dtt4 =-∫t-4 dt-∫dt+2∫t-2 dt =-t-4+1-4+1-t+2 t-2+1-2+1+C =13t3-t-2t+C =13 cos3x-cos x-2cos x+C ∵ t= cos x

Q77.

Answer :

Let I=∫cos5x dxsin x =∫cos4x·cos x dxsin x =∫cos2x2·cos x dxsin x =∫1-sin2x2 cos x dxsin x =∫1+sin4x-2 sin2xsin x cos x dxPutting sin x=t⇒cos x dx=dt∴ I=∫1+t4-2t2tdt =∫dtt+∫t3 dt-2∫t dt =ln t+t44-2t22+C =ln t+t44-t2+C =ln sin x+14sin4x-sin2x+C ∵ t= sin x

Q78.

Answer :

Let I=∫sin6x·cos xdx =∫sin6x·cos xcos2xdx =∫sin6x1-sin2xcos x dxPutting sin x=t⇒cos x dx=dt∴ I=∫t61-t2dt =∫t6-1+11-t2 dt =∫t23-131-t2dt+∫11-t2dt =∫t2-1 1+t2+t41-t2+∫11-t2dt =-∫t4+t2+1dt+∫11-t2dt =-t55+t33+t+12 ln 1+t1-t+C =-15sin5x-13sin3x-sin x+12 ln 1+sin x1-sin x+C ∵ t= sin x

Q79.

Answer :

Let I=∫sin2xcos6xdx =∫sin2xcos2x·cos4xdx =∫tan2x·sec4x dx =∫tan2x sec2x·sec2x dx =∫tan2x 1+tan2x sec2x dxPutting tan x=t⇒sec2x dx=dt∴ I=∫t2 1+t2dt =∫t2+t4dt =t33+t55+C =13tan3x+15tan5x+C ∵ t= tan x

Q80.

Answer :

Let I=∫sec6x dx =∫sec4x·sec2x dx =∫sec2x2·sec2x dx =∫1+tan2x2 sec2x dxPutting tan x=t⇒sec2x dx=dt∴ I=∫ 1+t22·dt =∫1+t4+2t2dt =∫dt+∫t4dt+2∫t2 dt =t+t55+2t33+C =tan x+15tan5 x+23 tan3x+C ∵ t= tan x

Q81.

Answer :

Let I=∫tan5x·sec3x dx =∫tan4x·sec2x·sec x tan x dx =∫sec2x-12·sec2x·sec x tan x dxPutting sec x=t⇒sec x tan x dx=dt∴ I=∫ t2-12·t2·dt =∫t4-2t2+1t2 dt =∫t6-2t4+t2 dt =t77-2t55+t33+C =17sec7x-25sec5x+13sec3x+C ∵t= sec x

Q82.

Answer :

Let I= ∫tan3x·sec4x dx =∫tan3x·sec2x·sec2x dx =∫tan3x 1+tan2x·sec2x dx =∫tan3x+tan5x sec2x dxPutting tan x=t⇒sec2x dx=dt∴ I=∫ t3+t5 dt =t44+t66+C =tan4x4+ tan6x6+C ∵ t= tan x

Q83.

Answer :

We have,I=∫1secx+cosecx dxI=∫11cosx+1sinx dxI=12∫2sinx cosxsinx+cosx dxI=12∫1+2sinx cosx-1sinx+cosx dxI=12∫sin2x+cos2x+2sinx cosx-1sinx+cosx dxI=12∫sinx+cosx2-1sinx+cosx dxI=12∫sinx+cosx2sinx+cosx dx-12∫1sinx+cosx dxI=12∫sinx+cosx dx-12∫1sinx+cosx dxI=12-cosx+sinx+C1-122∫112sinx+cosx dxI=12-cosx+sinx+C1-122∫1sinx cosπ4+cosx sinπ4 dxI=12-cosx+sinx+C1-122∫1sinx+π4 dxI=12-cosx+sinx+C1-122∫cosecx+π4 dxI=12-cosx+sinx-122logtanx2+π8+C

Q84.

Answer :
Let I=∫1·IIa2+x2Idx =a2+x2 ∫1 dx-∫ddxa2+x2 ∫1 dxdx =a2+x2·x-∫1×2×2 a2+x2·x dx =a2+x2·x-∫x2+a2-a2a2+x2dx =xa2+x2-∫a2+x2 dx+a2∫1a2+x2dx =xa2+x2-I+a2∫1a2+x2dx∴2I=xa2+x2+a2 ln x+x2+a2⇒I=x2 a2+x2+a22 ln x+x2+a2+C

Q85.

Answer :

Let I=∫1·IIx2-a2Idx =x2-a2∫1 dx-∫ddxx2-a2∫1 dxdx =x2-a2·x-∫1×2×2 x2-a2·x dx =x2-a2·x-∫x2-a2+a2x2-a2dx =x2-a2·x-∫x2-a2 dx-a2∫dxx2-a2 =xx2-a2-I-a2∫dxx2-a2∴ 2I=xx2-a2-a2 ln x+x2-a2⇒I=x2 x2-a2-a22 ln x+x2-a2+C

Q86.

Answer :

Let I=∫a2-x2 dx =∫1·IIa2-x2Idx =a2-x2∫1 dx-∫ddxa2-x2∫1dxdx =a2-x2·x+∫1×2×2 a2-x2·x dx =a2-x2·x+∫x2-a2+a2a2-x2 dx =xa2-x2-∫a2-x2 dx+a2∫1a2-x2dx =xa2-x2-I+a2∫1a2-x2dx∴2I=xa2-x2+a2 ∫1a2-x2dx⇒I=x2 a2-x2+a22 sin-1 xa+C

Q87.

Answer :

∫3×2+4x+1 dx=3∫x2+43x+13 dx=3∫x2+43x+232-232+13 dx=3∫x+232-49+13 dx=3∫x+232-132 dx=3 12x+23x+232-132 -12×132ln x+23+x+232-132 +C ∵∫ x2-a2 dx=12xx2-a2-12a2ln x+x2-a2+C=163x+23×2+4x+1-318ln x+23+x2+43x+13 +C

Q88.

Answer :

∫1+2x-3x2dx=3∫13+23x-x2dx=3∫13-x2-23xdx=3∫13-x2-23x+132-132dx=3∫13+19-x-132dx=3∫49-x-132dx=3∫232-x-132dx=3 x-132 232-x-132+2322 sin-1 x-1323+C ∵∫a2-x2dx=x2a2-x2+12a2sin-1xa+C=3x-16 1+2x-3×2+239sin-1 3x-12+C

Q89.

Answer :

Let I=∫x1+x-x2dx& let x= Addx1+x-x2+B⇒x=A -2x+1+BBy equating the coefficients of like terms we get,x=-2A x⇒A=-12& A+B=0⇒B=12By substituting the values of A and B in eq (1) we get,I=∫-12 -2x+1+12 1+x-x2 dx =-12∫-2x+1 1+x-x2dx+12 1+x-x2dxPutting 1+x-x2=t⇒-2x+1 dx=dt∴ I=-12∫t·dt+12∫1+x-x2 dx =-12∫t dt+12∫1-x2-x dx =-12∫t12·dt+12∫1-x2-x+14-14dx =-12t12+112+1+12∫1-x-122+14dx =-12×23t32+12∫522-x-122dx =-1 3 t32+12x-122 522-x-122+5222 sin-1 x-1252+C ∵ ∫a2-x2dx=x2a2-x2+12a2sin-1 xa+C =-131+x-x232+122x-14 1+x-x2+58 sin-1 2x-15+C =-1+x-x21+x-x23+2x-18 1+x-x2+516 sin-1 2x-15+C =1+x-x2 -1+x-x23+2x-18+516 sin-1 2x-15+C =1+x-x2 -8-8x+8×2+6x-324+516 sin-1 2x-15+C =1+x-x2 8×2-2x-1124+516 sin-1 2x-15+C

Q90.

Answer :

Let I=∫2x+3 4×2+5x+6 dx& let 2x+3=Addx4x2+5x+6+B⇒2x+3=A 8x+5+B …(1)By equating coefficients of like terms we get,2x=8A x⇒A=14& 5A+B=3⇒54+B=3⇒B=3-54 =74Thus, by substituting the values of A and B in eq (1) we getI=∫ 2x+3 4×2+5x+6 dx =∫148x+5+74 4×2+5x+6 dx =14∫8x+5 4×2+5x+6 dx+74 ∫4×2+5x+6 dxPutting 4×2+5x+6=t in the first integral⇒8x+5 dx=dt∴ I=14∫t·dt+7×24∫x2+5×4+32 dx =14∫t12·dt+72∫x2-5×4+582-582+32dx =14 t12+112+1+72∫x+582-2564+32dx =14×23t32+72∫x+582+-25+9664 =16 t32+72∫x+582+7182 =1 6 4×2+5x+632+72x+582x+582+7182+7164×2 ln x+58+x+582+7182+C ∵∫a2+x2dx=12xa2+x2+12a2lnx+x2+a2+C =16 4×2+5x+632+72 8x+516 x2+54x+32+71×72×128 ln x+58+x2+54x+32+C =16 4×2+5x+632+7×2 8x+54×16 x2+54x+32+497256 ln x+58+x2+54x+32+C =16 4×2+5x+6 4×2+5x+6+764 8x+5 4×2+5x+6+497256 ln x+56+x2+54x+32 +C =4×2+5x+6 4×2+5x+66+764 8x+5+497256 ln x+58+x2+54x+32+C =4×2+5x+6 128×2+328x+297192+ln x+58+x2+54x+32+ C

Q91.

Answer :

Let I=∫1+x2·cos 2x·dx =∫cos 2x dx+∫x2·cos 2x dx =sin 2×2+I1 where I1=∫x2 cos 2x dx … 1I1=∫x2I cos 2xII dx = x2∫cos 2x dx-∫ddxx2∫ cos 2x dxdx =x2·sin 2×2-∫2x×sin 2×2 dx =x2·sin 2×2-∫xI·sin 2xII dx =x2·sin 2×2-x∫ sin 2x dx-∫ddxx∫sin 2x dxdx =x2·sin 2×2-x-cos 2×2-∫1·-cos 2×2 dx =x2·sin 2×2+x·cos 2×2-sin 2×4 … 2From 1 and 2∴I=sin 2×2+x2 sin 2×2+x cos 2×2-sin 2×4+C =x2+1 sin 2×2+x cos 2×2-sin 2×4+C

Q92.

Answer :

∫log10 x dx=∫loge xloge 10 dx=1loge 10∫1II·log xI dx=1loge 10loge x∫1 dx-∫ddxloge x∫1 dxdx=1loge 10loge x·x-∫1x×x dx=1loge 10x loge x-x+C=1loge10×x loge x-1+C=x loge x-1·log10e+C

Q93.

Answer :

Let I=∫log log x dxxPutting log x=t⇒1x dx=dt∴ I=∫1II·log t·dIt =log t∫1 dt-∫ddtlog t∫1 dtdt =log t·t-∫1t×t dt =log t·t-∫dt =log t·t-t+C =t log t-1+C =log x log log x-1+C

Q94.

Answer :

∫xI·sec22x dxII=x∫sec22x dx-∫ddxx∫sec2 2x dxdx=x tan 2×2-∫1·tan 2×2 dx=x tan 2×2-12 ln sec 2×2+C=x tan 2×2-14 ln sec 2x+C

Q95.

Answer :

∫x·sin3x dx =∫x·143 sin x-sin 3x dx sin3A-143 sin A-sin 3A=34∫xI·sin xII dx-14∫x·sin 3x dx=34x∫sin x dx-∫ddxx∫sin x dxdx-14x∫sin 3x dx-∫ddxx∫sin 3x dxdx=34x -cos x-∫1·-cos xdx-14x -cos 3×3-∫1·-cos 3x3dx=-3×4 cos x+34 sin x+x cos 3×12-sin 3×36+C=14-3x cos x+3sin x+x cos 3×3-sin 3×9+C

Q96.

Answer :

∫x+12I exII dx=x+12∫ex dx-∫ddxx+12∫exdxdx=x+12·ex-∫2 x+1·ex dx=x+12 ex-2∫xI exII dx-2∫ex dx=x+12 ex-2 x·ex-∫1·ex dx-2ex=x+12 ex-2x ex+2ex-2ex+C=x+12-2x ex+C=x2+1 ex+C

Q97.

Answer :

Let I=∫1II·log x+x2+a2I dx =log x+x2+a2∫1 dx-∫ddxlog x+x2+a2∫1dx =log x+x2+a2·x-∫1x+x2+a2×1+1×2x2x2+a2·x·dx =log x+x2+a2·x-∫xx2+a2dxPutting x2+a2=t in the second integral⇒2x dx=dt⇒x dx=dt2∴ I=x·log x+x2+a2-12∫1tdt =x·log x+x2+a2-12∫t-12dt =x·log x+x2+a2-12 t-12+1-12+1+C =x·log x+x2+a2-t+C =x·log x+x2+a2-x2-a2+C ∵ t=x2+a2

Q98.

Answer :

∫log xx3dx=∫1x3II log xI dx=log x∫1x3dx-∫ddxlog x∫1x3dxdx=log x∫x-3 dx-∫1x×x-3+1-3+1dx=log x x-3+1-3+1+12∫1x3dx=log x -12×2+12∫x-3 dx=log x -12×2+12 x-3+1-3+1+C=log x -12×2-14×2+C=-14×2 2 log x+1+C

Q99.

Answer :

Let I=∫log 1-xx2dx =∫1x2II log 1-xI dx =log 1-x∫x-2 dx-∫-11-x×x-2+1-2+1 dx =log 1-x x-2+1-2+1+∫-11-x xdx =log 1-x ×-1x+∫1×2-xdx =-log 1-xx+∫1×2-x+122-122dx =-log 1-x x+∫1x-122-122dx =-log 1-xx+12×12 log x-12-12x-12+12+C =-log 1-xx+log x-1x+C =-log 1-xx+log x-1-log x+C =-log 1-xx+log 1-x-log x+C =1-1x log 1-x-log x+C

Q100.

Answer :

∫x3II·log x2I·dx=log x2∫x3 dx-∫2 log xx×x44 dx=log x2×x44-12∫log xI·x3II dx=log x2×x44-12log x∫x3 dx-∫ddxlog x∫x3dxdx=log x2×x44-12 log x·x44-∫1x×x44dx=log x2×x44-12 log x·x44-14∫x3 dx=log x2×x44-12 log x·x44-x416+C=log x2×x44-log x·x48+x432+C

Q101.

Answer :

We have,I=∫dxx 1+xn=∫xn-1 dxxn-1 x1 1+xn=∫xn-1 dxxn 1+xnPutting xn=t⇒n xn-1 dx=dt⇒xn-1 dx=dtn∴I=1n∫dtt 1+tlet 1+t=p2⇒dt=2p dp∴I=1n∫2p dpp2-1 p=2n∫dpp2-12=2n×12 log p-1p+1+C=1n log 1+t-11+t+1+C=1n log 1+xn-11+xn+1+C

Q102.

Answer :

We have,I=∫x21-x dxLet, 1-x=t2Differentiating both sides we get-dx=2t dtNow, integration becomes,I=-∫1-t22t 2tdt=-2∫1-t22dt=-2∫1-2t2+t4 dt=-2t-2t33+t55+C=-215t3t4-10t2+15+C=-2151-x31-x2-101-x+15+C=-2151-x31-2x+x2-101-x+15+C=-2151-x3x2-6x+3-10+10x+15+C=-2151-x3x2+4x+8+C

Q103.

Answer :

We have,I=∫x5 dx1+x3=∫x3x2 dx1+x3Putting x3=t⇒3×2 dx=dt⇒x2 dx=dt3∴I=13∫t dt1+t=13∫1+t-11+t dt=13∫1+t-11+t dt=13 1+t3232-1+t-12+1-12+1+C=29 1+t32-23 1+t12+C=29 1+x332-23 1+x312+C=29 1+x3121+x3-3+C=29 1+x3 x3-2+C

Q104.

Answer :

We have,I=∫1+x21-x2 dx=∫2-1-x21-x2 dx=2∫11-x2 dx-∫1-x21-x2 dx=2∫11-x2 dx-∫1-x2 dx=2 sin-1x-x21-x2+12sin-1x+C=2 sin-1x-x21-x2-12sin-1x+C=32 sin-1x-x21-x2+C

Q105.

Answer :

We have,I=∫x1-x1+x dx⇒I=∫x1-x1-x1+x1-x dx⇒I=∫x1-x1-x2 dx⇒I=∫x-x21-x2 dx⇒I=∫x-x2-1+11-x2 dx⇒I=∫-x2+11-x2 dx+∫x-11-x2 dx⇒I=∫1-x2 dx+∫x1-x2 dx-∫11-x2 dx⇒I=x21-x2+12sin-1x+C1-1-x2+C2-sin-1x+C3 ∵ ∫x1-x2 dx=-1-x2+C2⇒I=1-x2x2-1-12sin-1x+C

Q106.

Answer :

We have,I=∫dxx 1+x3=∫x2dxx31+x3putting x3=t⇒3×2 dx=dt⇒x2dx=dt3∴I=13∫dtt1+tlet 1+t=p2⇒dt=2p dpI=13∫2p dpp2-1×p=23∫dpp2-1=23×12 log p-1p+1+C=13log p-1p+1+C=13log 1+t-11+t+1+C=13log 1+x3-11+x3+1+C

Q107.

Answer :

We have,I=∫sin x+cos xsin4 x+cos4 x dx=∫sin x+cos xsin2 x+cos2 x2-2sin2 x cos2 x dx=∫sin x+cos x1-2sin2 x cos2 x dx=∫sin x+cos x1-122sin x cos x2 dx=∫sin x+cos x1-12sin22xdx

Putting sin x-cos x=t …..1⇒sin x-cos x2=t2⇒sin2x+cos2x-2sin x cos x=t2⇒1-2sin x cos x=t2⇒sin 2x=1-t2Differentiating 1, we getcos x+sin xdx=dt∴I=∫11-121-t22 dt=∫22-1-t22 dt=∫222-1-t22 dt=2∫12+1-t22-1+t2 dt

=222∫12+1-t2+12-1+t2 dt=12∫12+1-t2 dt+12∫12-1+t2 dt=12∫12+12-t2 dt+12∫12-12+t2 dt=12×122+1log2+1+t2+1-t+12×12+1tan-1t2+1+C=12122+1log2+1+t2+1-t+12+1tan-1t2+1+C, where t=sin x-cos x

Q108.

Answer :

We have,I=∫ x2tan-1 x dxConsidering tan-1 x as first function and x2 as second functionI=tan-1xx33-∫11+x2×x33dx=tan-1xx33-13∫x3dx1+x2=tan-1 xx33-13∫x2x1+x2dxPutting 1+x2=t⇒x2=t-1⇒2x dx=dt⇒x dx=dt2∴I=tan-1xx33-16∫t-1tdt=x33tan-1x-16∫dt+16∫dtt=x33tan-1x-16t+16log t+C=x33tan-1x-161+x2+16log 1+x2+C=x33tan-1x-x26+16log x2+1+C’ Where C’=C-16

Q109.

Answer :

We have,I=∫ tan-1 x dxPutting x=tan θ⇒x=tan2 θ⇒dx=2 tan θ sec2 θ dθ∴I=∫ tan-1tan θ 2tan θ sec2 θ dθ=2 ∫ θi tan θ sec2 θii dθ=2θ×tan2 θ2-∫1tan2 θ dθ2 ∵∫ tan θ sec2 θ dθ= tan2 θ2=2θtan2θ2-12∫sec2θ-1dθ=θ tan2 θ-2×tan θ2+2×θ2+C=tan-1x×x-x+tan-1 x+C=x+1tan-1 x -x+C

Q110.

Answer :

We have,I=∫ sin-1 x dxPutting x=sin θ⇒x=sin2 θ⇒dx=2 sin θ cos θ dθ⇒dx=sin2θdθ∴I=∫ θ sin 2θdθ=θ-cos 2θ2-∫1-cos 2θ2dθ=-θ cos 2θ2+12∫cos 2θdθ=-θ cos 2θ 2+12sin 2θ2+C=-sin-1 x 1-2 sin2 θ2+122 sin θ cos θ2+C=-sin x1-2×2+sin θ1-sin2 θ2+C=-sin-1 x 1-2×2+x 1-x2+C=-12sin-1 x 1-2x+12x-x2+C

Q111.

Answer :

We have,I=∫sec-1 x dxPutting x=sec θ⇒x=sec2 θ⇒dx=2 sec θ sec θ tan θ dθ =2 sec2 θ tan θ dθ∴I=2∫θ sec2 θ tan θ dθ=2 ∫ θtan θ sec2 θ dθConsidering θ as first fucction and tan θ sec2 θ as second functionI=2θtan2 θ2-∫1tan2 θ2dθ ∵∫tan θ sec2 θ dθ=tan2 θ2=θ tan2 θ-∫sec2 θ-1dθ=θ tan2θ-tan θ+θ+C=θ1+tan2 θ-tan θ+C=θ sec2 θ-sec2 θ-1+C=sec-1x x-x-1+C=x sec-1x -x-1+C

Q112.

Answer :

We have,I=∫ tan-11-x1+x dxPutting x=cos θ⇒dx=-sin θ dθ∴I=∫ tan-1 1-cos θ1+cos θ -sin θ dθ=∫ tan-1 2 sin2 θ22 cos2 θ2 -sin θdθ=∫ tan-1 tan θ2 -sin θdθ=-12∫θ sin θ dθConsidering θ as first function and sin θ as second functionI=-12θ-cos θ-∫1-cos θdθ=-12θ-cos θ+∫cos θdθ=-12-θ cos θ+sin θ+C=-12-θ cos θ+1-cos2 θ+C=-12-cos-1x ×x+1-x2+C=12x cos-1x-1-x2+C

Q113.

Answer :

We have,I=∫ sin-1 xa+x dxPutting x=a tan2 θ⇒tan θ=xa⇒dx=a2 tan θ sec2 θ dθ∴I=∫ sin-1 a tan2 θa+a tan2 θ 2a tan θ sec2 θdθ=∫ sin-1 tan2 θsec2 θ 2a tan θ sec2 θ dθ=2a ∫ sin-1 sin θ tan θ sec2 θ dθ=2a ∫ θ tan θ sec2 θ dθConsidering θ as first function and tan θ sec2 θ as second functionI=2a θtan2θ2-∫1tan2 θ2dθ=aθ tan2 θ-∫sec2 θ-1dθ=aθ tan2 θ-tan θ+θ+C=aθ×1+tan2 θ-tan θ+C=atan-1xa 1+xa-xa+C=x+atan-1xa-ax+C

Q114.

Answer :

We have,I=∫ sin-1 3x-4x3dxPutting x=sin θ⇒θ=sin-1 x⇒dx=cos θ dθ∴I=∫ sin-1 3 sin θ-4 sin3 θ cos θ dθ=∫ sin-1 sin 3θ cos θ dθ=3∫ θI cos θII dθ=3 θ sin θ-∫1 sin θ dθ=3θ sin θ+cos θ+C=3θ sin θ+1-sin2 θ+C=3 sin-1 x ×x+1-x2+C=3 x sin-1x+1-x2+C

Q115.

Answer :

We have,I=∫sin-1 x3 dxLet, sin-1x=t⇒sin t=x⇒cos t=1-x2Differentiating both sides we getcos t dt=dxNow, integral becomesI=∫sin-1 x3 dx=∫t3 cos t dt=t3sin t-∫3t2 sin t dt Using by parts=t3sin t-3∫t2 sin t dt =t3sin t-3-t2 cos t -∫-2t cos t dt =t3sin t+3t2 cos t-6∫t cos t dt =t3 sin t+3t2 cos t-6tsin t -∫sin t dt =t3 sin t+3t2 cos t-6t sin t+cos t +C=sin-1×3 x+3sin-1×2 1-x2-6sin-1x x-61-x2 +C=xsin-1xsin-1×2-6+3sin-1×2-21-x2 +C

Q116.

Answer :

We have,I=∫ cos-1 1-2x2dxPutting x=sin θ⇒dx=cos θ dθ∴I=∫ cos-11-2 sin2θ cos θ dθ=∫cos-1 cos 2θ cos θ dθ=2∫ θI cos θII dθ=2θ sin θ-∫1 sin θ dθ=2θ sin θ+cos θ+C=2sin-1x×x+1-x2+C=2x sin-1x+1-x2+C

Q117.

Answer :

We have,I=∫x sin-1×1-x232 dxPutting sin-1 x=θ⇒x=sinθ⇒dx=cosθ dθ∴I=∫sinθ θ cosθ dθ1-sin2θ32=∫θ sinθ cosθ dθcos2θ32=∫θsinθcos2θ dθ=∫θ Isec θ tanθII dθ=θ×secθ-∫1×secθ dθ=θ×secθ-∫secθ dθ=θ×secθ-log secθ+tanθ+C=θcosθ-log 1cosθ+sinθcosθ+C=θ1-sin2θ-log 1+sinθcosθ+C=θ1-sin2θ-log 1+sinθ1-sin2θ+C=θ1-sin2θ-log 1+sinθ1-sinθ+C=sin-1×1-x2-log 1+x1-x+C=sin-1×1-x2-12 log 1+x1-x+C

Q118.

Answer :

We have,I=∫ e2x 1+sin 2×1+cos 2xdx=∫ e2x 11+cos 2x+sin 2×1+cos 2xdx=∫ e2x 12 cos2 x+2 sin x cos x2 cos2 xdx=∫ e2xsec2 x2+tan xdxLet e2x tan x=t⇒e2xsec2x+2e2xtan xdx=dt=e2xsec2x2+e2xtan xdx=dt2∴I=∫ dt2=t2+C=e2x tan x2+C

Q119.

Answer :

We have,I=∫1-sin x1+cos xe-x2 dx=∫cos2 x2+sin2 x2-2 sin x2 cos x21+cos xe-x2dx=∫cos x2-sin x22e-x22 cos2 x2 dx=∫cos x2-sin x22 cos2 x2e-x2dx=12∫sec x2-tan x2 sec x2e-x2dxLet e-x2sec x2=t⇒e-x2 sec x2 tan x2×12-e-x2 sec x22 dx=dt⇒12sec x2 tan x2-sec x2e-x2dx=dt∴I=-∫dt=-t+C=-e-x2sec x2+C

Q120.

Answer :

We have,I=∫ex 1-x21+x22 dx=∫ex 1+x2-2×1+x22 dx=∫ex 1+x21+x22-2×1+x22 dx=∫ex 11+x2-2×1+x22 dx=ex1+x2+C ∵∫exfx+f’x dx=exfx+Cwhere, fx=11+x2⇒f’x=-2×1+x22

Q121.

Answer :

We have,I=∫em tan-1 x1+x232dxPutting tan-1x=t⇒x=tan t⇒11+x2 dx=dt⇒dx=1+x2dt⇒dx=1+tan2tdt∴I=∫emt1+tan2 t321+tan2tdt=∫emtdt1+tan2 t=∫eIImtcosI t dt=cos temtm-∫-sin temtm dt=cos temtm+1m∫emtsin t dt=cos temtm+1m I1 …..1Where,I1=∫eIImtsin tI dt=sintemtm-∫costemtmdtI1=sin temtm-1mI …..2from 1 and 2I=cos temtm+1m sin temtm-1mI⇒I=cos temtm+sin t emtm2-1m2 I⇒I+Im2=emt m cos t+sin tm2⇒I=emt m cos t+sin t1+m2+C⇒I=emt1+m2 cos tm1+m2+sin t11+m2+CLet m1+m2=cos θThen, sinθ=11+m2⇒cotθ=m⇒θ=cot-1m∴I=emt1+m2 cos t cos θ+sint sin θ+C=emt1+m2 cos t-θ+C=emt1+m2 cos tan-1x-cot-1m+C

Q122.

Answer :

We have,I=∫x2x-13 x+1 dxLet x2x-13 x+1=Ax-1+Bx-12+Cx-13+Dx+1 …..1⇒x2=Ax-12x+1+Bx-1x+1+C x+1+Dx-13 …..2Putting x=1 in 2, we get1=2C⇒C=12Putting x=-1 in 2, we get1=-8D⇒D=-18

Putting x=2 in 2, we get4=3A+3B+3C+D⇒4=3A+3B+32-18⇒3A+3B=4-32+18⇒3A+3B=32-12+18⇒3A+3B=218⇒A+B=78And putting x=0 in 2, we get0=A-B+C-D⇒0=A-B+12+18 ∵C=12, D=18⇒A-B=-58
Here, A+B=78 and A-B=-58⇒A=18 and B=34Therefore, 1 becomes,x2x-13 x+1=18x-1+34x-12+12x-13-18x+1Now, integral becomesI=∫18x-1+34x-12+12x-13-18x+1dx=18log x-1-34x-1-14x-12-18log x+1+C=18log x-1x+1-34x-1-14x-12+C

Q123.

Answer :

We have,I=∫x dxx3-1=∫x dxx-1 x2+x+1Let xx-1 x2+x+1=Ax-1+Bx+Cx2+x+1⇒xx-1 x2+x+1=A x2+x+1+Bx+C x-1x-1 x2+x+1⇒x=A x2+x+1+Bx2-Bx+Cx-C⇒x=A+B x2+A-B+C x+A-CEquating Coefficient of like termsA+B=0 …..1A-B+C=1 …..2A-C=0 …..3Solving 1, 2 and 3, we getA=13B=-13C=13∴xx-1 x2+x+1=13 x-1+-13x+13×2+x+1=13 x-1+13 -x+1×2+x+1=13 x-1-13 x-1×2+x+1=13 x-1-16 2x-2×2+x+1=13 x-1-16 2x+1×2+x+1-16×-3×2+x+1=13 x-1-16 2x+1×2+x+1+12×1×2+x+1∴I=13∫dxx-1-16∫2x+1 dxx2+x+1+12∫dxx2+x+14-14+1Putting x2+x+1=t⇒2x+1 dx=dt∴I=13 log x-1-16 log t+12∫dxx+122+322=13 log x-1-16 log x2+x+1+1223 tan-1 x+1232+C=13 log x-1-16 log x2+x+1+13 tan-1 2x+13+C

 

Page 19.184 (Revision Exercise)

Q124.

Answer :

We have,I=∫dx1+x+x2+x3=∫dx1+x+x2 1+x=∫ dx1+x 1+x2Let 1x+1 1+x2=Ax+1+Bx+Cx2+1⇒1x+1 x2+1=A x2+1+Bx+C x+1x+1 x2+1⇒1=A x2+1+Bx2+Bx+Cx+C⇒1=A+B x2+B+C x+A+CEquating Coefficient of like termsA+B=0 …..1B+C=0 …..2A+C=1 …..3Solving 1, 2 and 3, we get,A=12B=-12C=12∴1x+1 x2+1=12 x+1+-x2+12×2+1⇒1x+1 x2+1=12 x+1-12 xx2+1+12 x2+1∴I=12∫dxx+1-12∫x dxx2+1+12∫dxx2+1Putting x2+1=t⇒2x dx=dt⇒x dx=dt2∴I=12∫dxx+1-14∫dtt+12∫dxx2+1=12 log x+1-14 log t+12 tan-1x+C=12 log x+1-14 log x2+1+12 tan-1 x+C=12 log x+1-12 log x2+1+12 tan-1 x+C=12 log x+1×2+1+12 tan-1 x+C

Q125.

Answer :

We have,I=∫dxx2+2 x2+5Putting x2=t∴1×2+2 x2+5=1t+2 t+5Let 1t+2 t+5=At+2+Bt+5⇒1t+2 t+5=A t+5+B t+2t+2 t+5⇒1=A t+5+B t+2Putting t=-5∴1=B -5+2⇒B=-13Putting t=-2∴1=A -2+5+B×0⇒A=13∴I=13∫dxx2+2-13∫dxx2+5=13∫dxx2+22-13∫dxx2+52=132 tan-1 x2-135 tan-1 x5+C

Q126.

Answer :

We have,I=∫x2-2×5-x dx=∫x2-2x x4-1dx=∫x x2-2×2 x2-1 x2+1dxPutting x2=t⇒2x dx=dt⇒x dx=dt2∴I=12∫t-2t t-1 t+1 dtLet t-2t t-1 t+1=At+Bt-1+Ct+1⇒t-2t t-1 t+1=A t-1 t+1+Bt t+1+Ct·t-1t t-1 t+1⇒t-2=A t-1 t+1+B t t+1+C t t-1Putting t=1∴1-2=B×2⇒B=-12Putting t=0∴-2=A -1⇒A=2Putting t=-1∴-3=C -1 -2⇒C=-32∴I=22∫dtt-12×2∫dtt-1-32×2∫dt+1=log t-14 log t-1-34 log t+1+C=log x2-14 log x2-1-34 log x2+1+C=2 log x-14 log x2-1-34 log x2+1+C

Q127.

Answer :

We have,I=∫1-x1+x dxPutting x=cosθ⇒x=cos2θ⇒dx=-2 cosθ sinθ dθ⇒dx=-sin2θ dθ∴I=∫1-cosθ1+cosθ -sin 2θ dθ=∫2 sin2 θ22 cos2 θ2 -2 sinθ cosθ dθ=∫sin θ2cos θ2 -2×2 sin θ2 cos θ2cosθ dθ=-4∫sin2 θ2×cosθ dθ=-4∫1-cosθ2 cosθ dθ=-2∫cosθ-cos2θ dθ=-2∫cosθ-1+cos 2θ2dθ=-2∫cos θ dθ+∫1+cos 2θ dθ=-2sin θ+θ+sin 2θ2+C=-2 1-cos2θ+θ+2 sinθ cosθ2+C=-2 1-cos2θ+θ+sinθ cosθ+C=-21-x+cos-1x+1-xx+C=-21-x+cos-1x+x1-x+C

Q128.

Answer :

We have,I=∫x2+x+1x+12x+2 dxLet x2+x+1x+12x+2=Ax+1+Bx+12+Cx+2 …..1⇒x2+x+1=Ax+1x+2+Bx+2+Cx+12 …..2Putting x=-1 in 2, we get B=1Putting x=-2 in 2, we get C=3Putting x=0 in 2, we get1=2A+2B+C⇒1=2A+2+3⇒-4=2A⇒A=-2Now, 1 becomesx2+x+1x+12x+2=-2x+1+1x+12+3x+2Therefore, integral becomesI=∫-2x+1+1x+12+3x+2dx=-2 log x+1-1x+1+3 log x+2+C

Q129.

Answer :

We have,I=∫sin 4x-21-cos 4x e2x dx=∫2 sin 2x cos 2x-22 sin2 2x e2x dx=∫cot 2x-cosec2 2xe2x dxLet e2x cot 2x=t⇒2e2xcot 2x+e2x-cosec2 2x×2 dx=dt⇒e2xcot 2x-cosec2 2x dx=dt2∴I=12∫dt=t2+C=12 e2xcot 2x+C

Q130.

Answer :

We have,I=∫log log x+1log x2dxPutting log x=t⇒x=et⇒dx=et dt∴I=∫log t+1t2et dt=∫log t+1t-1t+1t2et=∫log t+1tet+∫-1t+1t2et dt=etlog t+et -1t+C ∵∫ex fx+f’x dx=ex fx+C=et log t-1t+C=elog x log log x-1log x+C=xlog log x-1log x+C

Q131.

Answer :

We have,I=∫sin x+cos x dx9+16 sin 2xLet sin x-cos x=t …..1Diff both sidescos x+sin x dx=dtSquaring both sides of 1, we getsin x-cos x2=t2⇒sin2x+cos2x-2 sin x cos x=t2⇒1-t2=2 sin x cos x⇒1-t2=sin 2x∴I=∫dt9+16 1-t2=∫dt25-16 t2=116∫dt2516-t2=116∫dt542-t2=116×12×54 log 54+t54-t+C=140 log 5+4 sin x-cos x5-4 sin x-cos x+C

Q132.

Answer :

We have,I=∫sinx-αsinx+αdx⇒I=∫sinx-αsinx-αsinx+αsinx-αdx⇒I=∫sinx-αsinx+αsinx-αdx⇒I=∫sinx cosα-cosx sinαsin2x-sin2αdx⇒I=∫sinx cosαcos2α-cos2xdx-∫cosx sinαsin2x-sin2αdx⇒I=∫sinx cosαcos2α-cos2xdx-∫cosx sinαsin2x-sin2αdx⇒I=I1-I2where,I1=∫sinx cosαcos2α-cos2xdxI2=∫cosx sinαsin2x-sin2αdxI1=∫sinx cosαcos2α-cos2xdxPutting cosx=t and -sinxdx=dt, we get⇒I1=-∫ cosαcos2α-t2dx⇒I1=-cosα sin-1tcosα+C1⇒I1=-cosα sin-1cosxcosα+C1I2=∫cosx sinαsin2x-sin2αdxPutting sinx=t and cosdx=dt, we get⇒I2=∫ sinαt2-sin2αdt⇒I2=sinα logt+t2-a2+C2⇒I2=sinα logsinx+sin2-a2+C2I=I1-I2I=-cosα sin-1cosxcosα+C1-sinα logsinx+sin2-a2+C2I=-cosα sin-1cosxcosα-sinα logsinx+sin2-a2+C

Q133.

Answer :

We have,I=∫exx3-x+2×2+12 dx=∫exx3+x2-x2-2x+x+2×2+12 dx=∫exx3+x2-x2-2x+x+2×2+12 dx=∫exx3+x2+x+1-x2-2x+1×2+12 dx=∫exx3+x2+x+1×2+12+-x2-2x+1×2+12 dx=∫exx2+1x+1×2+12+-x2-2x+1×2+12 dx=∫exx+1×2+1+-x2-2x+1×2+12 dxAs we know ∫exfx+f’xdx=exfx+CHere,ddxx+1×2+1=-x2-2x+1×2+12Therefore, integral becomesI=exx+1×2+1+C

Q134.

Answer :
We have,I=∫x2xsinx+cosx2 dx⇒I=∫x2cosxxsinx+cosx2cosx dx⇒I=∫xcosxxsinx+cosx2xcosx dx⇒I=xcosx∫xcosxxsinx+cosx2 dx-∫ddxxcosx∫xcosxxsinx+cosx2 Putting xsinx+cosx=t and xcosx dx=dt, we get⇒I=xcosx-1xsinx+cosx -∫cosx+sinxcos2x-1xsinx+cosx  dx⇒I=-xcosxxsinx+cosx+∫sec2x dx⇒I=-xcosxxsinx+cosx+tanx⇒I=-xcosxxsinx+cosx+sinxcosx⇒I=-x+sinxxsinx+cosxcosxxsinx+cosx⇒I=-x+xsin2x+sinxcosxcosxxsinx+cosx⇒I=-x1-sin2x+sinxcosxcosxxsinx+cosx⇒I=-xcosx+sinxcosxcosxxsinx+cosx⇒I=-xcosx+sinxx sinx+cosx

Q135.

Answer :

We have,I=∫cos 2x sin xdx=∫1-tan2x1+tan2x×1sin x dx=∫1-tan2xsec x sin x dx=∫1-tan2xtan xdxPutting 1-tan2x=t2Diff both sides w.r.t x-2 tan x sec2x=2t dtdx⇒dx=-2t dt2 tan x sec2x∴I=∫t×-2t dt2 tan2x sec2x=∫-t2 dt1-t2 1+tan2x=∫-t2 dt1-t2 2-t2Let t2=pThen t2 1-t2 2-t2=p1-p 2-pAnd let p1-p 2-p=A1-p+B2-p⇒p1-p 2-p=A 2-p +B 1-p1-p 2-p⇒p=A 2-p+B 1-pPutting p=2∴2=A×0+B 1-2⇒B=-2Putting p=1∴1=A 2-1+B×0⇒A=1∴ p1-p 2-p=11-p-22-p∴I=-∫dt1-t2+2∫dt2-t2=-∫dt12-t2+2∫dt22-t2=-12 log 1+t1-t+2×122 log 2+t2-t+C=-12 log 1+1-tan2x1-1-tan2x+12 log 2+1-tan2x2-1-tan2x+C=-12 log 1+1-sin2xcos2x1-1-sin2xcos2x+12 log 2+1-sin2xcos2x2-1-sin2xcos2x+C=-12 log cos x+cos2x-sin2x cos x-cos2x-sin2x+12 log 2 cos x+cos2-sin2x2 cos x-cos2-sin2x+C=-12 log cos x+cos 2x cos x-cos 2x+12 log 2 cos x+cos 2×2 cos x-cos 2x+C=-12 log cos x+cos 2x cos x-cos 2x+12 log 2 cos x+cos 2×2 cos x+cos 2×2 cos x-cos 2×2 cos x+cos 2x+C=12 log cos x-cos 2x cos x+cos 2x+12 log 2 cos x+cos 2×22 cos2x-cos 2x+C=12 log cos x-cos 2x cos x+cos 2x+12 log 2 cos x+cos 2×21+C=12 log cos x-cos 2x cos x+cos 2x+12×2 log 2 cos x+cos 2x+C=2 log 2 cos x+cos 2x+12 log cos x-cos 2x cos x+cos 2x+C

Q136.

Answer :

We have,I=∫dxsin x+sec x=∫dxsin x+1cos x=∫cos x dxsin x cos x+1=12∫2 cos x dxsin x cos x+1=12∫cos x+sin xsin x cos x+1 dx+12∫cos x-sin xsin x cos x+1 dxLet sin x-cos x=t …..1⇒sin x-cos x2=t2⇒sin2x+cos2x-2sin x cos x=t2⇒1-t22=sin x cos xDiff both sides of 1cos x+sin x dx=dtLet sin x+cos x=p …..2⇒sin x+cos x2=p2⇒1+2sin x cos x=p2⇒sin cos x=p2-12Diff both sides of 2cos x-sin x dx=dp∴I=12∫dt1-t22+1+12∫dpp2-12+1=12∫2 dt3-t2+12∫2 dpp2+1=∫dt32-t2+∫dpp2+12=123 log 3+t3-t+tan-1p+C=123 log 3+sin x-cos x3-sin x+cos x+tan-1 sin x+cos x+C

Q137.

Answer :

We have I=∫sin xsin 4x dx=∫sin x dx2 sin 2x·cos 2x=∫sin x dx2×2 sin x·cos x·cos 2x=14∫dxcos x·cos 2x=14∫dxcos x2 cos2x-1=14∫cos x·dxcos2x·2 cos2x-1=14∫cos x dx1-sin2x 1-2 sin2xLet sin x=t⇒cos x dx=dt∴I=14∫dt1-t2 1-2t2Let11-t2 1-2t2=A1-t2+B1-2t2Putting t2=p11-p 1-2p=A1-p+B1-2p …..(1)1=A 1-2p+B 1-p …..(2)Let 1-2p=0⇒p=12Substituting p=12in (2)∴1=A×0+B×12⇒B=2Let 1-p=0⇒p=1Substituting p=1 in (2)1=A 1-2+B×0⇒A=-1Therefore,(1) becomes 11-p 1-2p=-11-p+21-2p⇒11-t2 1-2t2=-11-t2+21-2t2 ∵ t2=p …..(3)As I=14∫dt1-t2 1-2t2Therefore, from (3) I=-14∫dt1-t2+24∫dt1-2t2=-14∫dt12-t2+12×12∫dt12-t2=-14∫dt1-t2+14∫dt122-t2=-14×12 log 1+t1-t+14×12 12 log 12+t12-t+C=-18 log 1+sin x1-sin x+142 log 1+2 sin x1-2 sin x+C Since, t= sin x

Q138.

Answer :

We have,I=∫dxx4+x2+1=12∫2 dxx4+x2+1=12∫x2+1-x2-1×4+x2+1dx=12∫x2+1×4+x2+1 dx-12∫x2-1×4+x2+1 dxDividing numerator and Denominator by x2I=12∫1+1×2 dxx2+1+1×2-12∫1-1×2 dxx2+1+1×2=12∫1+1×2 dxx2+1×2-2+3-12∫1-1×2 dxx2+1×2+2-1=12∫1+1×2 dxx-1×2+32-12∫1-1×2 dxx+1×2-1Putting x-1x=t⇒1+1×2 dx=dtPutting x+1x=p⇒1-1×2 dx=dp∴I=12∫dtt2+ 32-12∫dpp2-12=12×13 tan-1t3-12×12×1 log p-1p+1+C=123 tan-1x-1×3-14 log x+1x-1x+1x+1+C=123 tan-1×2-13 x-14 log x2-x+1×2+x+1+C=123 tan-1×2-13 x+14 log x2+x+1×2-x+1+C

Q139.

Answer :

We have,I=∫ex-1 dxPutting ex-1=t⇒ex dx=dt⇒dx=dtex⇒dx=dtt+1∴I=∫ tt+1dtPutting t=p⇒12t dt=dp⇒dtt=2dp⇒dt=2t dp=2p dp∴I=∫p×2p dpp2+1=2∫p2+1-1p2+1 dp=2∫dp-2∫dpp2+1=2p-2×tan-1p+C=2t-2×tan-1t+C=2ex-1-2 tan-1ex-1+C=2ex-1-tan-1ex-1+C

Q140.

Answer :

We have,I=∫cot x+cot3x1+cot3x dx=∫cot x 1+cot2x1+cot3xdx=∫cot x cosec2x1+cot3x dxPutting cot x=t⇒-cosec2x dx=dt⇒cosec2x dx=-dt∴I=-∫t dt1+t3=-∫t dt1+t t2-t+1Let t1+t t2-t+1=At+1+Bt+Ct2-t+1⇒t1+t t2-t+1=A t2-t+1+Bt+C t+1t+1 t2-t+1⇒t=A t2-t+1+Bt2+Bt+Ct+C⇒t=A+B t2+B+C-A t+A+CEquating Coefficients of like termsA+B=0 …..1B+C-A=1 …..2A+C=0 …..3Solving 1, 2 and 3, we getA=-13B=13C=13∴t1+t t2-t+1=-13 t+1+13 t+1t2-t+1⇒t1+t t2-t+1=-13 t+1+16 2t+2t2-t+1⇒t1+t t2-t+1=-13 t+1+16 2t-1+3t2-t+1∴I=–13∫dtt+1+16∫2t-1t2-t+1 dt+12∫dtt2-t+1=+13∫dtt+1-16∫2t-1t2-t+1 dt-12∫dtt2-t+14-14+1=13∫dtt+1-16∫2t-1 dtt2-t+1-12∫dtt-122+322let t2-t+1=p⇒2t-1 dt=dp∴I=13∫dtt+1-16∫dpp-12∫dtt-122+322=13 log t+1-16 log p-12×23 tan-1 t-1232+C=13 log t+1-16 log p-13 tan-1 2t-13+C=13 log cot x+1-16 log cot2x-cot x+1-13 tan-1 2 cot x-13+C

 

DEFINITE INTEGRALS

Page 20.15 Ex.20.1

Q1.

Answer :

Let I=∫491x dx. Then,I=2∫4912x dx⇒I=2×49⇒I=23-2⇒I=2

Q2.

Answer :

Let I=∫-231x+7 dx. Then,I=log x+7-23⇒I=log 10-log 5⇒I=log 105 ∵log a- log b=logab⇒I=log 2

Q3.

Answer :

Let I=∫01211-x2 dx. Then,I=sin-1×012⇒I=sin-112-sin-10⇒I=π6-0⇒I=π6

Q4.

Answer :

Let I=∫0111+x2dx. Then,I=tan-1×01⇒I=tan-11-tan-10⇒I=π4-0⇒I=π4

Q5.

Answer :

Let I=∫23xx2+1dx. Then,I=12∫232xx2+1⇒I=12log x2+123⇒I=12log 10-log 5⇒I=12log 105 ∵log a-log b=log ab⇒I=12log 2

Q6.

Answer :

Let I=∫0∞1a2+b2x2 dx. Then,I=1a2∫0∞11+b2x2a2 dx⇒I=1a2∫0∞11+bxa2 dx⇒I=aba2tan-1bxa0∞⇒I=1abtan-1∞-tan-10⇒I=π2ab

Q7.

Answer :

Let I=∫-1111+x2dx. Then,I=tan-1x-11⇒I=tan-11-tan-1-1⇒I=π4–π4⇒I=π2

Q8.

Answer :

Let I=∫0∞e-x dx. Then,I=-e-x0∞⇒I=-e-∞+e0⇒I=0+1⇒I=1

Q9.

Answer :

Let I=∫01xx+1 dx. Then,I=∫011-1x+1 dx⇒I=x-log x+101⇒I=1-log 2-(0-log 1)⇒I=log e-log 2⇒I=log e2

Q10.

Answer :

Let I=∫0π2sin x+cos x dx. Then,I=-cos x+sin x0π2⇒I=0+1–1+0⇒I=2

Q11.

Answer :

Let I=∫π4π2cot x dx. Then,I=-∫π4π2cot x-(cosec x+cot x)cosec x+cot x dx⇒I=-∫π4π2-cosec x cot x-cot2 xcosec x+cot x dx⇒I=-∫π4π2-cosec x cot x-cosec2x+1 cosec x+cot x dx ∵cosec2x=1+cot2x⇒I=-∫π4π2-cosec x cot x-cosec2x cosec x+cot x dx-∫π4π21cosec x+cot xdx⇒I=-∫π4π2-cosec x cot x-cosec2x cosec x+cot x dx-∫π4π2sin x1+cos xdx⇒I=-log cosec x+cot xπ4π2+log 1+cos xπ4π2⇒I=-log 1+∞+log 2+1+log 1+0-log 1+12⇒I=log 2+1-log 2+12⇒I=log 22+12+1⇒I=log2⇒I=12log 2

Q12.

Answer :

Let I=∫0π4sec x dx. Then,I=∫0π4sec x sec x+tan xsec x+tan xdx⇒I=∫0π4sec2 x+sec x tan xsec x+tan xdxPut u=sec x+tan x⇒du=sec2 x+sec x tan x dx∴∫0π4sec2 x+sec x tan xsec x+tan x dx=∫duu⇒I= log u⇒I=log sec x+tan x0π4⇒I=log secπ4+tanπ4-log sec 0+tan 0⇒I=log (2+1)-log 1⇒I=log (2+1)

Q13.

Answer :

Let I=∫π6π4cosec x dx. Then,I=∫π6π4cosec x cosec x-cot xcosec x-cot x dx⇒I=∫π6π4cosec2 x-cosec x cot xcosec x-cot x dx⇒I=log cosec x-cot xπ6π4⇒I=log 2-1-log2-3

Q14.

Answer :

Let I=∫011-x1+x dx. Then,I=∫0111+x-1+x-11+x dxI=∫0111+x-1+x1+x dx⇒I=log 1+x-x+log 1+x01⇒I=log 2-1+log 2-log 1-0+log 1=2 log 2-1

Q15.

Answer :

Let I=∫0π11+sin x dx. Then, I=∫0π1-sin x1+sin x1-sin x dx⇒I=∫0π1-sin x1-sin2 x dx ⇒I=∫0π1-sin xcos2 x dx ∵sin2 x+cos2 x=1⇒I=∫0πsec2 x-sec x tan x dx⇒I=tan x-sec x0π⇒I=tan π-sec π-tan 0-sec 0⇒I=0+1-0-1⇒I=1+1⇒I=2

Q16.

Answer :

Let I=∫-π4π411+sin x dx. Then,I=∫-π4π411+sin x×1-sin x1-sin x dx⇒I=∫-π4π41-sin x1-sin2 x dx⇒I=∫-π4π41-sin xcos2 x dx⇒I=∫-π4π41cos2 x-sin xcos2 x dx⇒I=∫-π4π4sec2 x-sec x tan x dx⇒I=tan x-sec x-π4π4⇒I=1-2–1-2⇒I=2

Q17.

Answer :

Let I=∫0π2cos2 x dx. Then,I=∫0π2cos2 x dx⇒I=12∫0π21+cos 2x dx ∵cos 2x=2 cos2 x-1⇒I=x2+sin 2×40π2⇒I=π4+0-0⇒I=π4

Q18.

Answer :

Let I=∫0π2cos3 x dx. Then,I=∫0π2cos2 x cos x dx⇒I=∫0π21-sin2 x cos x dxLet u= sin x, du= cos x dx⇒I=∫1-u2 du⇒I=u-u33⇒I=sin x-sin3 x30π2⇒I=1-13-0⇒I=23

Q19.

Answer :

Let I=∫0π6cos x cos 2x dx. Then,I=∫0π6cos x cos2 x-sin2 x dx⇒I=∫0π62 cos3 x-cos x dx⇒I=∫0π62 cos x 1-sin2 x – cos x dx⇒I=2sin x-sin3 x3-sin x0π6⇒I=212-124-12-0⇒I=512

Q20.

Answer :

Let I=∫0π2sin x sin 2x dx. Then,I=∫0π22 sin2x cos x dx⇒I=∫0π221-cos2 x cos x dx⇒I=∫0π22 cos x -2 cos3 x dx⇒I=2sinx-2sin x-sin3 x30π2⇒I=2-21-13-0⇒I=23

 

Page 20.16 Ex.20.1

Q21.

Answer :

Let I=∫π3π4tan x+cot x2 dx. Then,I=∫π3π4tan2 x+cot2 x+2 tan x cot x dx⇒I=∫π3π4tan2 x+cot2 x+2 dx⇒I=∫π3π4sec2 x-1+cosec2 x-1+2 dx⇒I=∫π3π4sec2 x+cosec2 x dx⇒I=tan x-cot xπ3π4⇒I=1-1-3-13⇒I=-23

Q22.

Answer :

Let I=∫0π2cos4 x dx. Then,I=∫0π2cos2 x2 dx⇒I=∫0π21+cos 2×24 dx⇒I=14∫0π21+cos2 2x+2 cos 2x dx⇒I=14∫0π21+2 cos 2x+1+cos 4×2 dx⇒I=14∫0π23+4 cos 2x+cos 4×2 dx⇒I=143×2+2 sin 2×2+sin 4×80π2⇒I=143π4+0⇒I=3π16

Q23.

Answer :

Let I=∫0π2a2 cos2 x+b2 sin2 x dx. Then, I=∫0π2a2 cos2 x+b2 1-cos2 x dx⇒I=∫0π2b2+a2-b2 cos2 x dx⇒I=∫0π2b2+a2-b21+cos 2x2dx⇒I=b2x+a2-b22x+sin 2×20π2⇒I=b2π2+a2-b22π2+0⇒I=π4a2+b2

Q24.

Answer :

Let I=∫0π21+sin x dx. Then,I=∫0π21+sin x×1-sin x1-sin x dx⇒I=∫0π21-sin2 x1-sin x dx⇒I==∫0π2cos x1-sin x dxLet 1-sin x=u⇒-cos x dx=du∴I=∫-duu⇒I==-2u⇒I==-21-sin x0π2⇒I==0+2⇒I==2

Q25.

Answer :

Let I=∫0π21+cos x dx. Then,I=∫0π21+cos x×1-cos x1-cos x dx⇒I=∫0π21-cos2 x1-cos x dx⇒I=∫0π2sin x1-cos x dxLet 1-cos x=u⇒sin x dx=du∴I=∫duu⇒I=2u⇒I=21-cos x0π2⇒I=2-0⇒I=2

Q26.

Answer :

Let I=∫0π2x sin x dxIntegrating by partsI=-x cos x0π2-∫0π21-cos x dx⇒I=-x cos x0π2+sin x0π2⇒I=0+1⇒I=1

Q27.

Answer :

Let I=∫0π2x cos x dx. Then,Integrating by partsI=x sin x0π2-∫0π21 sin x dx⇒I=x sin x0π2+cos x0π2⇒I=π2-1

Q28.

Answer :

Let I=∫0π2×2 cos x dx. Then,Integrating by partsI=x2 sin x0π2-∫0π22x sin x dx⇒I=x2 sin x0π2–2x cos x0π2+∫0π2-2 cos x dx⇒I=x2 sin x0π2+2x cos x0π2-2 sin x0π2⇒I=π24-2

Q29.

Answer :

Let I=∫0π4×2 sin x dx. Then,Integrating by partsI=-x2 cos x0π4-∫0π4-2x cos x dx⇒I=-x2 cos x0π4+2x sin x0π4-∫0π42 sin x dx⇒I=-x2 cos x0π4+2x sin x0π4+2 cos x0π4⇒I=-π2162+π22+22-2⇒I=2+π22-π2162-2

Q30.

Answer :

Let I=∫0π2×2 cos 2x dx. Then,Integrating by partsI=x2 sin 2×20π2-∫0π22x sin 2×2 dx⇒I=x2 sin 2×20π2–x cos 2×20π2+∫0π2-1 cos 2×2 dx⇒I=x2 sin 2×20π2+x cos 2×20π2-sin 2×40π2⇒I=0-π4-0⇒I=-π4

Q31.

Answer :

Let I=∫0π2×2 cos2 x dx. Then,I=∫0π2×2 1+cos 2x2dx⇒I=∫0π2×22+x2 cos 2×2 dx⇒I=x360π2+x2 sin 2×40π2-∫0π2×2 sin 2x dx⇒I=x360π2+x2 sin 2×40π2–x cos 2×40π2+∫0π2-1 cos2x2dx⇒I=x360π2+x2 sin 2×40π2+x cos 2×40π2-sin 2×40π2⇒I=π348-π8

Q32.

Answer :

Let I=∫12log x dx. Then,I=∫121 log x dxIntegrating by parts⇒I=x log x12-∫121x x dx⇒I=x log x12-∫12dx⇒I=x log x12-x12⇒I=2 log 2-2+1⇒I=2 log 2-1

Q33.

Answer :

Let I=∫13log x1+x2 dx. Then,I=-11+x log x13-∫131x-1x+1 dx⇒I=-11+x log x13+∫131xx+1 dx⇒I=-11+x log x13+∫131x-1x+1 dx⇒I=-11+x log x13+log x-log x+113⇒I=-14 log 3+log 3-log 4+log 2⇒I=34 log 3-log 2

Q34.

Answer :

Let I=∫1eexx1+x log x dx. Then,I=∫1eexx+ex log x dx⇒I=∫1eexx dx+∫1eex log x dxIntegrating first term by parts⇒I=log x ex1e-∫1eex log x dx+∫1eex log x dx⇒I=log e ee -0⇒I=ee

Q35.

Answer :

Let I=∫1elog xx dxLet log x=u⇒1x dx=du∴I=∫u du⇒I=u22⇒I=(log x)221e⇒I=12-0⇒I=12

Q36.

Answer :

Let I=∫ee21log x-1log x2 dx. Then,I=∫ee21 1log x dx-∫ee21log x2 dxIntegrating by parts⇒I=xlog xee2-∫ee2-1xlog x2 x dx-∫ee21log x2 dx⇒I=xlog xee2+∫ee21log x2 dx-∫ee21log x2 dx⇒I=xlog xee2+0⇒I=e2log e2-elog e⇒I=e22 log e-elog e⇒I=e22-e

Q37.

Answer :

Let I=∫12x+3xx+2 dx. Then,I=∫12xxx+2+3xx+2 dx⇒I=∫12dxx+2+∫123xx+2 dx⇒I=log x+212+32∫121x-1x+2 dx⇒I=log x+212+32log x-log x+212⇒I=log 4-log 3+32log 2-log 4-0+log 3⇒I=log 4-log 3+32-log 2+log 3⇒I=2 log 2-log 3+32 log 3-32 log 2⇒I=12 log 2+12 log 3⇒I=12log 2+ log 3⇒I=12 log 6

Q38.

Answer :

Let I=∫012x+35×2+1 dx. Then,I=∫012x5x2+1 dx+∫0135×2+1 dx⇒I=15∫0110x5x2+1 dx+3∫0115×2+12 dx⇒I=15log 5×2+101+35tan-15×01⇒I=15 log 6 +35tan-15

Q39.

Answer :

Let I=∫0214+x-x2 dx.Then,I=-∫021×2-x-4 dx⇒I=-∫021×2-x+14-14-4 dx=-∫021x-122-174 dx=-∫021x-122-1722 dx=∫021-2x-122+1722 dx=117log 17+2x-117-2x+102=117log 17+317-3-log 17-117+1=117log 26+6178-log 18-21716=117log 52+121718-217=117log 52+121718-217×18+21718+217⇒I=117 log 1344+32017256⇒I=117 log 21+5174

Q40.

Answer :

Let I=∫0112×2+x+1 dx. Then,I=12∫011×2+x2+12 dxI=12∫011×2+x2+116-116+12 dx⇒I=12∫011x+142+716 dx⇒I=12×47tan-1x+147401⇒I=27tan-157-tan-117

Q41.

Answer :

Let I=∫01×1-x dx. Then,I=∫0114-x-122 dx⇒I=12∫011-x-122 14 dx⇒I=12∫011-x-12 122 dxLet x-1212=sin u⇒2 dx=cos u du∴I=14∫-π2π21-sin2 u cos u du⇒I=14∫-π2π2cos2 u du⇒I=14∫-π2π2cos 2u+12 du⇒I=18sin 2u2+u-π2π2⇒I=18π2+π2⇒I=π8

Q42.

Answer :

Let I=∫0213+2x-x2 dx. Then,I=∫021-x2+2x-1+1+3 dx⇒I=∫021-x-12+4 dx⇒I=sin-1x-1202⇒I=sin-112-sin-1-12⇒I=2 sin-112⇒I=2×π6=π3

Q43.

Answer :

Let I=∫0414x-x2 dx. Then,I=∫0414x-x2-4+4 dx⇒I=∫041-x-22+4 dx⇒I=sin-1x-2204⇒I=sin-11-sin-1(-1)⇒I=2 sin-11⇒I=2 π2=π

Q44.

Answer :

Let I=∫-111×2+2x+5 dx. Then, I=∫-111×2+2x+1+4 dx⇒I=∫-111x+12+22 dx⇒I=12tan-1x+12-11⇒I=12tan-11-tan-10⇒I=12π4⇒I=π8

Q45.

Answer :

Let I=∫14×2+x2x+1 dx. Let 2x+1=u⇒x=u-12⇒dx=du2∴I=∫u-122+u-12u du2⇒I=18∫u2+1-2u+2u-2u du=18∫u2-1u du=18∫u32-u-12 du=182u525-2u121=1822x+1525-22x+112114=1825×243-6-25×93+23⇒I=184565-835⇒I=57-35

Q46.

Answer :

Let I=∫01×1-x5 dx. Then,I=∫01x-1+11-x5 dx⇒I=∫01-1-x6+1-x5 dx⇒I=1-x7701-1-x6601⇒I=-17+16⇒I=142

Q47.

Answer :

Let I=∫12x-1x2ex dx. Then,I=∫12exx-exx2 dx⇒I=∫12exx dx- ∫12exx2 dxIntegrating first term by partsI=exx12-∫12-1x2ex dx- ∫12exx2 dx⇒I=exx12+∫12exx2 dx- ∫12exx2 dx⇒I=exx12⇒I=e22-e

Q48.

Answer :

Let I=∫01x e2x+sin πx2 dx. Then,I=∫01x e2x dx+∫01sin πx2 dxIntegrating first term by partsI=x e2x201-∫011 e2x2 dx+-cos πx2π201⇒I=x e2x201-e2x401-2πcos πx201⇒I=e22-e24+14+2π⇒I=e24+14+2π

Q49.

Answer :

Let I=∫01x ex+cos πx4 dx. Then,I=∫01x ex dx+∫01cosπx4 dxIntegrating first term by partsI=x ex01-∫011 ex dx+sin πx4π401⇒I=x ex01-ex01+sin πx4π401⇒I=e-e+1+4π sin π4⇒I=1+4π2⇒I=1+22π

Disclaimer: The answer given in the book has some error. The solution here is created according to the question given in the book.

Q50.

Answer :

Let I=∫π2πex 1-sin x1-cos x dx. Then,I=∫π2πex1-2 sin x2 cos x22 sin2 x2 dx As, sin A=2 sin A2 cos A2, cos A=1-2 sin2 A2⇒I=∫π2πex 12 cosec2 x2-cot x2 dx⇒I=∫π2π12 ex cosec2 x2 dx-∫π2πex cot x2 dxIntegrating second term by partsI=-ex cot x2π2π-∫π2π12 ex cosec2 x2 dx+∫π2π12 ex cosec2 x2 dx⇒I=-0-eπ2⇒I=eπ2

Q51.

Answer :

Let I=∫02πex2sin x2+π4 dx. Then,Integrating by partsI=-2ex2 cos x2+π402π-∫02π-22 ex2 cos x2+π4 dxAgain, integrating second term by parts⇒I=-2ex2 cos x2+π402π+2ex2sin x2+π402π-∫02π22 ex2sin x2+π4 dx⇒I=-2ex2 cos x2+π402π+2ex2sin x2+π402π-I⇒2I=22 eπ+22-22eπ-22=0⇒I=0

Q52.

Answer :

Let I=∫02πex cosπ4+x2 dx. Then,Integrating by partsI=2ex sin π4+x202π-∫02π2ex sin π4+x2 dxIntegrating second term by partsI=2ex sin π4+x202π+4ex cos π4+x202π+∫02π-4ex cos π4+x2 dx⇒I=2ex sin π4+x202π+4ex cos π4+x202π-4I⇒5I=-2e2π 12-2 12-4e2π 12-4 12⇒5I=-32 e2π-32⇒I=-325e2π+1

Q53.

Answer :

Let I=∫0111+x-x dx. Then,I=∫0111+x-x×1+x+x1+x+x dx⇒I=∫011+x+x1+x-x dx⇒I=∫011+x+x dx⇒I=231+x32+23×3201⇒I=23×22+23-23⇒I=423

Q54.

Answer :

Let I=∫12xx+1x+2 dx. Then,I=∫12-1x+1+2x+2 dx⇒I=-∫121x+1 dx+2∫121x+2 dx⇒I=-log x+1+2 log x+212⇒I=-log 3+2 log 4+log 2-2 log 3⇒I=5 log 2-3 log 3⇒I=log 25- log 33⇒I=log 3227

Q55.

Answer :

Let I=∫0π2sin3 x dx. Then,I=∫0π2sin x sin2 x dx⇒I=∫0π2sin x 1-cos2 x dxLet u =cos x, du= -sin x dx∴I=∫-1-u2 du⇒I=u33-u⇒I=cos3 x3-cos x0π2⇒I=0-13+1⇒I=23

Q56.

Answer :

Let I=∫0πsin2 x2-cos2 x2 dx. Then,I=-∫0π cos x dx ∵cos A=cos2 A2-sin2 A2⇒I=-sin x0π⇒I=0

Q57.

Answer :

Let I∫12e2x1x-12×2 dx. Then,I=∫12e2x 1x-∫12e2x 12×2 dxIntegrating first term by parts⇒I=e2x2x12-∫12-e2x 12×2-∫12e2x 12×2 dx⇒I=e2x2x12⇒I=e44-e22⇒I=e4-2e24

Q58.

Answer :

We have,∫0k12+8×2 dx=π16⇒18∫0k114+x2 dx=π16⇒14 tan-12x0k=π16⇒tan-12k=π4⇒2k=tanπ4⇒2k=1⇒k=12

Q59.

Answer :

We have,∫0a3x2 dx=8⇒3 x330a=8⇒a3=8⇒a=2

 

Page 20.32 Ex.20.2

Q1.

Answer :

Let x2=t. Then, 2x dx=dtWhen x=2, t=4 and x=4, t=16. ∴I=∫24xx2+1 dx⇒I=∫41612dtt+1⇒I=12 log t+1416⇒I=12 log 17-12 log 5⇒I=12 log 175

Q2.

Answer :

Let 1+log x=t. Then, 1x dx=dtWhen x=1, t=1 and x=2, t=1+log 2∴I=∫121×1+log x2 dx⇒I=∫11+log 21t2 dt⇒I=-1t11+log 2⇒I=-11+log 2+1⇒I=log 2log 2+log e⇒I=log 2log 2e

Q3.

Answer :

Let x2=t. Then, 2x dx=dtWhen x=1, t=1 and x=2, t=4∴I=∫123x9x2-1 dx⇒I=32∫14dt9t-1⇒I=318log 9t-114⇒I=318log 35-log 8⇒I=log 35-log 86

Q4.

Answer :

Let I=∫0π215 cos x+3 sin x dx. Then,I=∫0π2151-tan2x21+tan2x2+32 tan x21+tan2 x2 dx ∵sin A=2 tan A21+tan2 A2, cos A=1-tan2 A21+tan2 A2⇒I=∫0π21+tan2 x25-5 tan2 x2+6 tan x2 dx⇒I=∫0π2sec2 x25-5 tan2 x2+6 tan x2 dxLet tan x2 =t. Then, 12 sec2 x2 dx=dtAlso, x=0, t=0 and x=π2, t=1∴I=∫012dt5-5t2+6t⇒I=15∫012dt1-t2+65t+36100-36100=25∫01dt-t-6102+136100=25×10136-log t-610-13610t-610+1361001=134-log 4-2344+234+log -6-234-6+234=134 log 6+2346-234×4+2344-234=134 log 160+2034160-2034=134 log 8+348-34

Q5.

Answer :

Let x= a tan t. Then, dx=a sec2 t dtWhen x=0, t=0 and x=a, t=π4∴I=∫0axa2+x2 dx⇒I=∫0π4a tan ta2+a2 tan2 ta sec2 t dt=∫0π4a tan t a sec2 ta sec t dt=∫0π4a tan t sec t dt=asec t0π4=a2-1

Q6.

Answer :

Let ex=t. Then, ex dx=dtWhen x=0, t=1 and x=1, t=e∴I=∫01ex1+e2x dx⇒I=∫1edt1+t2⇒I=tan-1x1e⇒I=tan-1e-tan-11⇒I=tan-1e-π4

Q7.

Answer :

Let I=∫01x ex2dx.Let x2=t. Then, 2x dx=dtWhen x=0, t=0 and x=1, t=1∴ I=12∫01et dt⇒I=12et01⇒I=12e-1

Q8.

Answer :

Let I=∫13cos log xx dx.Let log x=t. Then, 1x dx=dtWhen x=1, t=0 and x=3, t =log 3∴I=∫0log 3cos t dt=sin t0log 3=sin log 3

Q9.

Answer :

Let I=∫012×1+x4 dx.Let x2=t. Then, 2x dx=dtWhen x=0, t=0 and x=1, t=1∴ I=∫012×1+x4 dx⇒I=∫0111+t2 dt⇒I=tan-1t01⇒I=tan-11- tan-10⇒I=π4

Q10.

Answer :

Let I=∫0aa2-x2 dx.Let x= a sin t. Then, dx= a cos t dtWhen x=0, t=0 and x=a, t=π2∴ I=∫0aa2-x2 dx⇒I=∫0π2a2-a2 sin2 t a cos t dt⇒I=∫0π2a2 cos2 t dt⇒I=a2∫0π21+cos 2t2 dt⇒I=a22t+sin 2t20π2⇒I=a22π2-0⇒I=πa24

Q11.

Answer :

∫0π2sin ϕ cos5 ϕ dϕLet sin ϕ=t. Then, cos ϕ dϕ=dtWhen ϕ=0, t=0 and ϕ=π2, t=1Also, cos5 ϕ=cos4 ϕ cos ϕ=1-sin2 ϕ2 cos ϕ∴ I=∫0π2sin ϕ cos5 ϕ dϕ⇒I=∫01t 1-t22 dt⇒I=∫01t1+t4-2t2 dt⇒I=∫01t+t92-2t52 dt⇒I=2t323+2t11211-4t72701⇒I=23+211-47⇒I=64231

Q12.

Answer :

Let I=∫0π2cos x1+sin2 x dx.Let sin x=t. Then, cos x dx=dtWhen x=0, t=0 and x=π2, t=1∴I=∫0π2cos x1+sin2 x dx⇒I=∫0111+t2 dt⇒I=tan-1 t01⇒I=π4

Q13.

Answer :

Let I=∫0π2sin θ1+cos θ dθ.Let cos θ=t. Then, -sin θ dθ=dtWhen θ=0, t=1 and θ=π2, t=0∴ I=∫0π2sin θ1+cos θ dθ=∫10-dt1+t=∫01dt1+t=21+t01=22-1

Q14.

Answer :

Let I=∫0π3cos x3+4 sin x dx.Let sin x =t. Then, cos x dx=dtWhen x=0, t=0 and x=π3, t=32∴ I=∫0π3cos x3+4sin xdx=∫03213+4tdt=14log 3+4t032=14log 3+23-log 3=14 log 3+233

Q15.

Answer :

Let I=∫01tan-1×1+x2 dx.Let tan-1x =t. Then, 11+x2 dx=dtWhen x=0, t=0 and x=1, t=π4∴ I=∫01tan-1×1+x2 dx⇒I=∫0π4t dt⇒I=2t3230π4⇒I=23π432⇒I=112π32

Q16.

Answer :

Let I=∫02xx+2 dx.Let x+2=t2. Then, dx=2t dtWhen x=0, t=2 and x=2, t=2∴ I=∫22t2-2 t 2t dt⇒I=2∫22t4-2t2 dt⇒I=2t55-23t322⇒I=2323-163-425-423⇒I=21615+8215⇒I=16152+2

Q17.

Answer :

∫01tan-12×1-x2dx=∫012tan-1x=2x tan-1×01-2∫01×1+x2dx=2x tan-1×01-log1+x201=2π4-0-log2+0=π2-log2

Q18.

Answer :

Let I=∫0π2sin x cos x1+sin4 x dx.Let sin x=t. Then, cos x dx=dtWhen x=0, t=0 and x=π2, t=1∴ I=∫01t1+t4 dtLet t2=u. Then, 2t dt=duSo, I=∫01t1+t4dt ⇒I=12∫0111+u2du⇒I=12tan-1u01⇒I=π8

Q19.

Answer :

∫0π21acosx+b sinxdx=∫0π21a1-tan2x21+tan2x2+b2tanx21+tan2x2dx=∫0π21+tan2x2a-atan2x2+2b tanx2dx=∫0π2sec2x2a-atan2x2+2b tanx2dxLet tanx2=t, Then, 12sec2x2dx=dtWhen x=0, t=0, x=π2, t=1Therefore the integral becomesI= ∫012dta-at2+2bt=∫012dt-at2-2bta-1=2a∫01dt-t-ba2-1-b2a2=2a∫01dtb2a2+1-t-ba2=2a12a2+b2a2loga2+b2a2+t-baa2+b2a2-t-ba01
1a2+b2loga+b+a2+b2a+b-a2+b2

Q20.

Answer :

Let I=∫0π215+4 sin x dx. Then,I=∫0π215+42 tan x21+tan2 x2 dx⇒I=∫0π21+tan2x251+tan2x2+8 tan x2 dx⇒I=∫0π2sec2 x25 tan2 x2+8 tan x2+5 dxLet tan x2=t. Then, 12sec2 x2 dx=dtWhen x=0, t=0 and x=π2, t=1∴ I=2∫0115t2+8t+5 dt⇒I=2∫0115t2+8t+5+452-452 dt⇒I=2∫0115t+452+95 dt⇒I=23tan-15t+453501⇒I=23tan-13-tan-143⇒I=23tan-13-431+3×43⇒I=23 tan-113

Q21.

Answer :

∫0πsinxsinx+cosxdx=12∫0π2sinxsinx+cosxdx=12∫0πsinx+cosx-cosx-sinxsinx+cosxdx=12∫0πdx-12∫0πcosx-sinxsinx+cosxdx=12×0π-12logsinx+cosx0π=12π-0-12log1-log1=π2

Q22.

Answer :

Let I=∫0π13+2 sin x+cos x dx. Then,I=∫0π13+22 tanx21+tan2x2+1-tan2x21+tan2x2 dx⇒I=∫0π1+tan2 x22 tan2 x2+4 tan x2+4 dxLet tan x2=t. Then, 12 sec2 x2 dx=dtWhen x=0, t=0 and x=π, t=∞∴ I=∫0∞2 dt2t2+4t+4⇒I=∫0∞dtt+12+1⇒I=tan-1t+10∞⇒I=π2-π4⇒I=π4

Q23.

Answer :

Let I=∫01tan-1x dx. Then,I=∫011 tan-1x dxIntegrating by partsI= x tan-1×01-∫01×1+x2 dx⇒I=x tan-1×01-12log x2+101⇒I=π4-0-12 log 2+0⇒I=π4-12 log 2

Q24.

Answer :

Let I=∫0π2sin 2x tan-1sin x dx. Then,I=∫0π22 sin x cos x tan-1sin x dxLet sin x=t. Then, cos x dx=dtWhen x=0, t=0 and x=π2, t=1∴ I=2∫01 t tan-1t dt⇒I=2t22 tan-1t01-2∫01t1+t2 dt⇒I=2t22 tan-1t01-log 1+t201 ⇒I=2π4-1⇒I=π2-1

Q25.

Answer :

Let I=∫01cos-1×2 dx. Then,I=∫011cos-1x2dxIntegrating by parts⇒I=xcos-1×201-∫012x cos-1x -11-x2 dxAgain, integrating second term by parts⇒I=xcos-1×201+21-x2 cos-1×01-2∫0111-x21-x2 dx⇒I=xcos-1×201+21-x2 cos-1×01-2×01⇒I=0+2π2-2⇒I=π-2

Q26.

Answer :

Let I=∫0π4tan3 x1+cos 2x dx. Then,I=∫0π4tan3 x2 cos2 x dx⇒I=12∫0π4tan3 x sec2 x dxLet tan x=t. Then, sec2 x dx=dtWhen x=0, t=0 and x=π4, t=1∴ I=12∫01t3 dt⇒I=12t4401⇒I=1214-0⇒I=18

Q27.

Answer :

Let I=∫0π15+3 cos x dx. Then,I=∫0π15+31-tan2 x21+tan2 x2 dx⇒I=∫0π1+tan2 x25+5 tan2 x2-3 tan2 x2 dx⇒I=∫0πsec2 x25+2 tan2 x2 dxLet tan x2=t. Then, 12 sec2 x2 dx=dtWhen x=0, t=0 and x=π, t=∞∴ I=∫0∞dt5+2t2⇒I=12∫0∞dt52+t2⇒I=12tan-15t20∞⇒I=12π2-0⇒I=π4

Q28.

Answer :

Let I=∫0π21a2 sin2 x+b2 cos2 x dx. Then,Dividing the numerator and denominator by cos2x, we getI=∫0π2sec2xa2 tan2x+b2 dxLet tan x =t. Then, sec2 x dx= dtWhen x=0, t=0 and x=π2 , t=∞∴ I=∫0∞1a2 t2+b2 dt⇒I=1a2∫0∞1t2+b2a2 dt⇒I=1a2×abtan-1atb0∞⇒I=1abπ2⇒I=π2ab

Q29.

Answer :

Let, I=∫0asin-1xa+x dxLet, x=a tan2θ ⇒θ=tan-1xaWhen, x→x ; θ→0 and x→a ; θ→π4and  dx=2a tanθ sec2θ dθThen,I=∫0π4sin-1a tan2θa+a  tan2θ 2a tanθ sec2θ dθ⇒I= 2a ∫0π4sin-1sinθ tanθ sec2θ dθ⇒I= 2a ∫0π4θ tanθ sec2θ dθLet, tan θ=t⇒θ=tan-1t⇒sec2θ dθ =dtwhen, θ→0 ; t→0 and θ→π4 ; t→1Then, I=2a∫01tan-1t  t dt             =2a∫01tan-1t  t dt             =2atan-1t  t2201-2a2∫01t21+t2   dt             =2aπ4×12-0-a∫011-11+t2   dt             =2aπ8-at-tan-1t01             =πa4-a1-π4             =πa4-a+πa4             =πa2-a            =aπ2-1

Q30.

Answer :

Let I=∫01tan-1×1+x2 dx. Then,Let tan-1x=t. Then, 11+x2 dx=dtWhen x=0, t=0 and x=1, t=π4∴ I=∫0π4 t dt⇒I=t220π4⇒I=π232

Q31.

Answer :

∫π3π21+cosx1-cosx32dx=∫π3π21+cosx1-cosx32×1-cosx1-cosxdx=∫π3π21-cos2x1-cosx2dx=∫π3π2sinx1-cosx2dxLet 1-cosx=t, Then sinx dx=dtWhen x=π3, t=12 and x=π2, t=1Therefore the integral becomes=∫121dtt2=-1t121=-1+2=1

Q32.

Answer :

Let I=∫01x tan-1x dx. Then,Integrating by partsI=x2 tan-1×201-12∫01×21+x2 dx⇒I=x2 tan-1×201-12∫011+x21+x2-11+x2 dx⇒I=x2 tan-1×201-12x-tan-1×01⇒I=π8-0-121-π4-0⇒I=π4-12

Q33.

Answer :

Let, I=∫1-x2x4+x2+1 dx=-∫x2-1×4+x2+1 dx=-∫1-1x2x2+1+1×2 dx=-∫1-1x2x2+2+1×2-1 dx=-∫1-1x2x+1×2-1 dxLet, x+1x=t⇒1-1x2dx=dtThen integral becomes,I=-∫1t2-1 dt=-12logt-1t+1=12logt+1t-1=12logx+1x+1x+1x-1=12logx2+x+1×2-x+1i.e., ∫1-x2x4+x2+1 dx=12logx2+x+1×2-x+1⇒∫011-x2x4+x2+1 dx=12logx2+x+1×2-x+1 01 =12log 3

 

Page 20.33 Ex.20.2

Q34.

Answer :

Let I=∫0124×31+x24 dx. Then,Let x2 =t. Then, 2x dx=dtWhen x=, t=0 and x=1, t=1∴ I=∫0112t1+t4 dtIntegrating by partsI=12t-31+t301+12∫01131+t3dt⇒I=12t-31+t301-161+t201⇒I=12-124-0-124+16⇒I=12×112⇒I=1

Q35.

Answer :

Let I=∫412xx-413 dx.Let x-4=t. Then, dx=dtWhen x=4, t=0 and x=12, t=8∴ I=∫08t+4t13 dt⇒I=∫08 t43+4t13 dt⇒I=37t73+31t4308⇒I=3847+48⇒I=7207

Q36.

Answer :

Let I=∫0π2×2 sin x dx. Then,Integrating by partsI=-x2 cos x0π2-∫0π2-2x cos x dxAgain, integratting by parts⇒I= -x2 cosx0π2+2x sin x0π2-∫0π21 sin x dx⇒I= -x2 cos x0π2+2x sin x0π2–cos x0π2⇒I=π24 0-0+2π2-0+0-2⇒I=π-2

Q37.

Answer :

Let I=∫011-x1+x dx. Then,I=∫011-x1+x×1-x1-x dx⇒I=∫011-x1-x2 dx⇒I=∫0111-x2 dx-∫01×1-x2 dx⇒I=sin-1×01+12∫01-2×1-x2 dx⇒I=sin-1×01+1221-x201⇒I=π2-0+0-1⇒I=π2-1

Q38.

Answer :

Let I=∫011-x21+x22 dx. Then,I=∫011×2-1x+1×2 dxLet x+1x=t. Then, 1-1×2 dx=dtWhen x=0, t=∞ and x=1, t=2∴I=∫∞2-dtt2⇒I=1t∞2⇒I=12-0⇒I=12

Q39.

Answer :

Let I=∫-115x4x5+1 dx. Then,Let x5+1=t. Then, 5×4 dx=dtWhen x=-1, t=0 and x=1, t=2∴ I=∫02t dt⇒I=23t3202⇒I=238⇒I=423

Q40.

Answer :

Let, I=∫0ax a2-x2a2+x2 dxConsider, x2=a2cos2θ ⇒2x dx=-2a2 sin2θ dθ ⇒x dx=-a2 sin2θ dθWhen, x→0 ; θ→π4 and x→a ;θ→0Now, integral becomes,I=∫π40-a2 sin2θ a2-a2cos2θa2+a2cos2θ dθ =∫π40-a2 sin2θ tanθ dθ =a2 ∫0π42 sinθ cosθ sinθcosθ dθ =a2 ∫0π42sin2θ dθ =a2 ∫0π41-cos 2θ dθ =a2 θ -sin2θ20π4 =a2 π4 -12

Q41.

Answer :

Let, I= ∫-aaa-xa+x dxConsider, x=a cos 2y Then y=12cos-1xa ⇒dx=-2a sin 2y dyWhen, x→-a ;y→π2 and x→a ;y→0Now, integral becomes, I= ∫π20 -2a sin 2ya-a cos 2y a+a cos 2y dy =∫0π2 2a sin 2y tan y dy =2a∫0π2 2sin y cos y sin ycos y dy =2a∫0π2 2sin2 y dy =2a∫0π2 1-cos 2y dy =2a y-sin 2y20π2 =2a π2-sin 2y20π2 =πa

Q42.

Answer :

Let I=∫0π55-4cos θ14 sin θ dθ. Let 5-4 cos θ=t . Then, 4 sin θ dθ=dtWhen θ=0, t=1 and θ=π, t=9∴I=54∫19t14 dt⇒I=544t54519⇒I=93-1

Q43.

Answer :

Let I=∫0π6cos-3 2θ sin 2θ dθ. Then,I=∫0π6sin 2θcos3 2θ dθLet cos 2θ=t. Then, -2 sin 2θ dθ=dtWhen θ=0, t=1 and θ=π6, t=12∴ I=-12∫112dtt3⇒I=1212t2112⇒I=122-12⇒I=34

Q44.

Answer :

Let I=∫0π23x cos2 x32 dx. Then,Let x32=t. Then, 32x dx= dtWhen x=0, t=0 and x=π23, t=π∴ I=23∫0πcos2 t dt⇒I=23∫0π1+cos 2×2 dx⇒I=13x+sin 2×20π⇒I=13π+0⇒I=π3

Q45.

Answer :

Let I=∫121×1+log x2 dx. Then, Let 1+log x=t. Then, 1x dx=dtWhen x=1, t=1 and x=2, t=1+log 2∴ I=∫11+log 21t2 dt⇒I=-1t11+log 2⇒I=-11+log 2+1⇒I=log 21+log 2

Q46.

Answer :

Let I=∫0π2cos5 x dx. Then,I=∫0π2cos4 x cos x dx⇒I=∫0π21-sin2 x2 cos x dx⇒I=∫0π21-2 sin2 x+sin4 x cos x dx Let sin x =t. Then, cos dx= duWhen x=0, t=0 and x=π2, t=1∴ I=∫011-2t2+t4 dt⇒I=t-2t33+t5501⇒I=1-23+15⇒I=815

Q47.

Answer :

Let I=∫49×30-x322 dx. Then,Let 30-x32=t. Then, -32x dx= dtWhen, x=4, t=22 and x=9, t=3∴ I=∫223-231t2 dt⇒I=231t223⇒I=2313-122⇒I=1999

Q48.

Answer :

Let I=∫0π4sin3 2t cos 2t dt. Then,Let sin 2t =u. Then, 2 cos 2t dt=duWhen t=0, u=0 and t=π4, u=1∴ I=12∫01u3 du⇒I=12u4401⇒I=1214-0⇒I=18

Q49.

Answer :

Let I=∫0π2sin x cos xcos2 x+3 cos x+2 dx. Then,Let cos x =t. Then, – sin x dx= dtWhen x=0, t=1 and x =π2, t=0∴ I=-∫10t dtt2+3t+2⇒I=∫10-t dtt+2t+1⇒I=∫101t+1-2t+2 dt⇒I=log t+1-2 log t+210⇒I=log t+1t+2201⇒I=log 14-log 2901⇒I=log 98

Q50.

Answer :

Let I=∫0πsin3 x 1+2 cos x1+cos x2 dx. Then,I=∫0πsin x sin2 x 1+2 cos x1+cos x2 dx⇒I=∫0πsin x 1-cos2 x1+2 cos x1+cos x2 dx⇒I=∫0πsin x 1-cos x1+2 cos x1+cos x3 dxLet cos x =t. Then, – sin x dx = dtWhen x=0, t=1 and x=π, t=-1∴ I=-∫1-11-t1+2t1+t3 dt⇒I=∫-111+t-2t21+t3+3t+3t2 dt⇒I=∫-111+t3+3t+3t2+t+t4+3t2+3t3-2t2-2t5-6t3-6t4 dt⇒I=∫-111+4t+4t2-2t3-5t4-2t5 dt⇒I=t+2t2+4t33-t42-t5-t63-11⇒I=1+2+43-12-1-13+1-2+43+12-1+13⇒I=83

Q51.

Answer :

Let I=∫0π22 sin x cos x tan-1sin x dx. Then,Let sinx =t. Then, cos x dx = dtWhen x=0, t=0 and x=π2, t=1∴ I=∫01 2t tan-1 t dt⇒I=2t2 tan-1 t201-2∫01t21+t2 dt⇒I=2t2 tan-1 t201-2∫011+t21+t2-11+t2 dt⇒I=2t2 tan-1 t201-t-tan-1 t+01⇒I=1 tan-1 1 -0-1+tan-11+0⇒I=π4-1+π4⇒I=π2-1

Q52.

Answer :

Let, I=∫0π/2x+sin x1+cos x dx =∫0π/2x+sin x2 cos2 x2 dx =∫0π/2 x2 cos2 x2 +sin x2 cos2 x2dx =12∫0π/2x sec2 x2dx+∫0π/22sin x2cosx22 cos2 x2dx =12x tanx2120π/2-12∫0π/2 tanx212dx+∫0π/2tanx2dx =x tanx20π/2-∫0π/2 tanx2 dx+∫0π/2tanx2dx =π2 tanπ4 =π2 ×1 =π2

Q53.

Answer :

Let I=∫0π4tan x+cot x dx. Then,I=∫0π4sin xcos x+cos xsin x dx ⇒I=∫0π4sin x+cos xsin x cos x dx⇒I=2∫0π4sin x+cos x2 sin x cos x dx⇒I=2∫0π4sin x +cos x1-sin x-cos x2 dxLet sin x-cos x =t. Then, cos x+ sin x dx= dtWhen x=0, t=1 and x=π4, t=0∴ I=2∫-10dt1-t2⇒I=2 sin-1 t-10⇒I=π2⇒I

 

Page 20.74 Ex.20.3

Q1.

Answer :

(i) We have,
∫14fx dx, where fx=4x+3, if 1≤x≤23x+5, if 2≤x≤4

I=∫14fx dx⇒I=∫12fx dx+∫24fx dx Additive property⇒I=∫12 4x+3 dx+∫243x+5 dx⇒I=2×2+3×12+3×22+5×24⇒I=8+6-2-3+24+20-6-10⇒I=37

(ii) We have,
∫09fx dx, where fx sin x,0≤x≤π21,π2≤x≤3ex-3,3≤x≤9

I=∫09fx dx⇒I=∫0π2fx dx+ ∫π23fx dx+∫39fx dx Additive property⇒I=∫0π2sin x dx+ ∫π231 dx+∫39ex-3 dx⇒I=-cos x0π2+xπ23+ex-339⇒I=0+1+3-π2+e6-e0⇒I=3-π2+e6

(iii) We have,
∫14fx dx, where fx=7x+3,if 1≤x≤38x,if 3≤x≤4

I=∫14fx dx⇒I=∫13fx dx+∫34fx dx Additive property⇒I=∫137x+3 dx+∫348x dx⇒I=7×22+3×13+4×234⇒I=632+9-72-3+64-36⇒I=562+34⇒I=62

Q2.

Answer :

(i)
∫-44x+2 dxWe know that, x+2=-x+2 , -4≤x≤-2x+2, -2<x≤4∴I=∫-44x+2 dx⇒I=∫-4-2-x+2 dx+∫-24x+2 dx⇒I=-x22-2x-4-2+x22+2x-24⇒I=-2+4-8-8+8+8-2+4⇒I=20

(ii)
I=∫-33x+1 dxWe know that, x+1=-x+1 , -3≤x≤-1x+1, -1<x≤3∴ I=∫-3-1-x+1 dx+∫-13x+1 dx⇒I=-x+122-3-1+x+122-13⇒I=0+2+8-0⇒I=10

(iii)
∫-112x+1 dxWe know that, 2x+1=-2x+1, -1≤x≤-122x+1, -12<x≤1∴I=∫-1-12-2x+1 dx+∫-1212x+1 dx⇒I=-x2+x-1-12+x2+x-121⇒I=-14+12+1-1+1+1-14+12⇒I=52

(iv)
∫-222x+3 dxWe know that, 2x+3=-2x+3, -2≤x≤-322x+3, -32<x≤2∴I=∫-2-32-2x+3 dx+∫-3222x+3 dx⇒I=-x2+3x-2-32+x2+3x-322⇒I=-94+92+4-6+4+6-94+92⇒I=252

(v)
∫02×2-3x+2 dxWe know that, x2-3x+2=-x2-3x+2, x-1x-2≤0 or, 1≤x≤2×2-3x+2, x2-3x+2≥0 or, x∈-∞, 1∪2, ∞∴I=∫02×2-3x+2 dx⇒I=∫01×2-3x+2 dx-∫12×2-3x+2 dx⇒I=x33-3×22+2×01-x33-3×22+2×12⇒I=13-32+2-83-6+4-13+32-2⇒I=13-32+2-83+6-2+13-32⇒I=1

(vi)
∫033x-1 dxWe know that, 3x-1=-3x-1, 0≤x≤133x-1, 13<x≤3∴I==∫013-3x+1 dx+∫1303x+1 dx⇒I=-3×22-x013+3×22+x133⇒I=-16+13-0+272+3-16-13⇒I=656

(vii)
∫-66x+2dxWe know that, x+2=-x+2 , -6≤x≤-2x+2, -2<x≤6∴I=∫-66x+2 dx⇒I=∫-6-2-x+2 dx+∫-26x+2 dx⇒I=-x22-2x-6-2+x22+2x-26⇒I=-2+4+18-12+18+12-2+4⇒I=40

(viii)
∫-22x+1 dxWe know that, x+1=-x+1 , -2≤x≤-1x+1, -1<x≤2∴I=∫-22x+1 dx⇒I=∫-2-1-x+1 dx + ∫-12x+1 dx⇒I=-x22-x-2-1+x22+x-12⇒I=-12+1+2-2+2+2-12+1⇒I=5

(ix)
∫12x-3 dxWe know that, x+1=-x+1 , 1≤x≤3x+1, x>3∴I=∫12x-3 dx⇒I=∫12-x-3 dx⇒I=-x22-3×12⇒I=-2-6+12+3⇒I=32

(x)
∫0π2cos 2x dxWe know that, cos 2x=-cos 2x ,π4 ≤x≤π2cos 2x, 0<x≤π4∴I=∫-22cos 2x dx⇒I=∫0π4cos 2x dx- ∫π4π2 cos 2x dx⇒I=sin 2×20π4-sin 2×2π4π2⇒I=12-0-0+12⇒I=1

(xi)
∫02πsin x dxWe know that, sin x=- sin x ,π ≤x≤2πsin x, 0<x≤π∴I=∫02πsin x dx⇒I=∫0π sin x dx+∫π2π- sin x dx⇒I=-cos x0π+cos xπ2π⇒I=1+1+1–1⇒I=4

(xii)
∫-π4π4sin x dxWe know that, sin x=- sin x ,-π4 ≤x≤0sin x, 0<x≤π4∴I=∫-π4π4sin x dx⇒I=∫-π40-sin x dx +∫0π4 sin x dx⇒I=cos x-π40-cos x0-π4⇒I=1-12-12+1⇒I=2-22⇒I=2-2

(xiii)
∫28x-5 dxWe know that, x-5=-x-5 , 2≤x≤5x-5, 5<x≤8∴I=∫28x-5 dx⇒I=∫25-x-5 dx+∫58 x-5 dx⇒I=-x22-5×25+x22-5×58⇒I=-252+25+2-10+32-40-252+25⇒I=9

(xiv)
∫-π2π2sin x+ cos x dxSince, f-x=sin -x + cos -x=sin x + cos x=fxSo, fx is an even function.∴I=2∫0π2sin x+cos x dx⇒I=2-cos x+sin x0π2⇒I=20+1+1-0⇒I=4

(xv)
∫04x-1 dxWe know that, x-1=-x-1 , 0≤x≤1x-1, 1<x≤4∴I=∫04x-1 dx⇒I=∫01-x-1 dx+∫14x-1 dx⇒I=-x22+x01+x22-x14⇒I=-12+1-0+8-4-12+1⇒I=5

(xvi)
I=∫14x-1+x-2+x-4 dx⇒I=∫14x-1 dx+∫14x-2 dx+∫14x-4 dxWe know that, x-1=-x-1 , x≤1x-1, 1<x≤4x-2=-x-2 , 1≤x≤2x-2, 2<x≤4x-4=-x-4 , 1≤x≤4x-4, x>4∴I=∫14x-1 dx-∫12x-2 dx+∫24x-2 dx-∫14x-4 dx⇒I=x22-x14-x22-2×12+x22-2×24-x22-4×14⇒I=8-4-12+1-2-4-12+2+8-8-2+4-8-16-12+4⇒I=232

(xvii)

I=∫-50x+x+2+x+5 dx⇒I=∫-50x dx+∫-50x+2 dx+∫-50x+5 dxWe know that, x=-x , -5≤x≤0x, x>0x+2=-x+2 , -5≤x≤-2x+2, -2<x≤0x+5=-x+5 , -5≤x≤0x+5, x>-5∴I=-∫-50x dx-∫-5-2x+2 dx+∫-20x+2 dx+∫-50x+5 dx⇒I=-x22-50-x22+2x-5-2+x22+2x-20+x22+5x-50⇒I=252-2-4-252+10-2+4+-252+25⇒I=632

(xviii)
I=∫04x+x-2+x-4 dx⇒I=∫04x dx+∫04x-2 dx+∫04x-4 dxWe know that, x=-x , -5≤x≤0x, x>0x-2=-x-2 , 0≤x≤2x-2, 2<x≤4x-4=-x-4 , 0≤x≤4x-4, x>4∴I=∫04x dx-∫02x-2 dx+∫24x-2 dx-∫04x-4 dx⇒I=x2204-x22-2×02+x22-2×24-x22-4×04⇒I=8-2-4+8-8-2+4-8-16⇒I=20

Q3.

Answer :

Let I=∫0π211+tanxdx … (i)=∫0π211+tanπ2-xdx Using ∫0afxdx= ∫0afa-xdx=∫0π211+cotxdx … (ii)Adding (i) and (ii) 2I =∫0π211+tanx+11+cotxdx =∫0π21+cotx+1+tanx1+tanx1+cotx dx =∫0π22+tanx+cotx1+tanx+cotx+tanxcotxdx =∫0π22+tanx+cotx2+tanx+cotxdx =∫0π2 dx =x0π2 2I =π2∴ I =π4

Q4.

Answer :

Let I=∫0π211+cotxdx … (i)= ∫0π211+cotπ2-xdx Using ∫0afxdx=∫0afa-xdx=∫0π211+tanxdx … (ii) Adding (i) and (ii)2I=∫0π211+cotx+11+tanx dx =∫0π21+tanx+ 1+cotx1+cotx1+tanx dx =∫0π22+tanx+ cotx1+tanx +cotx + tanx cotxdx =∫0π22+tanx+ cotx2+tanx+ cotx dx =∫0π2dx = x0π2=π2Hence , I=π4

Q5.

Answer :

Let I=∫0π2cotxcotx+tanxdx …(i) =∫0 π2cotπ2-xcotπ2-x+tanπ2-xdx Using ∫0afx dx=∫0afa-x dx= ∫0π2tanxtanx+cotx dx …(ii) Adding (i) and (ii)2I=∫0π2cotxcotx+tanx+tanxtanx+cotx dx =∫0π2dx =x0π2 =π2Hence, I =π4

Q6.

Answer :

Let I=∫0π2sinnxsinnx+ cosnxdx … (i)= ∫0π2sinnπ2-xsinnπ2-x+ cosnπ2-xdx Using ∫0afx dx=∫0afa-x dx= ∫0π2cosnxcosnx+ sinnx dx = ∫0π2cosnxsinnx+ cosnx dx … (ii)Adding (i) and (ii) we get2I =∫0π2sinnxsinnx+ cosnx+cosnxsinnx+ cosnx dx =∫0π2sinnx+ cosnxsinnx+ cosnx dx= ∫0π2 dx =x0π2=π2Hence I=π4i.e.,∫0π2sinnxsinnx+ cosnxdx=π4∴∫0π2sin3/2xsin3/2x+ cos3/2xdx=π4

Q7.

Answer :

Let I =∫0π2sinnxsinnx+ cosnxdx … (i) =∫0π2sinnπ2-xsinnπ2-x +cosnπ2-x dx=∫0π2 cosnx cosnx+sinnx dx =∫0π2 cosnx sinnx+ cosnx dx … (ii)Adding (i) and (ii) we get2I =∫0π2sinnxsinnx+ cosnx+ cosnx sinnx+ cosnxdx =∫0π2sinnx + cosnx sinnx+ cosnx dx =∫0π21 dx =∫0π2 dx=x0π2=π2Hence I =π4

 

Page 20.75 Ex.20.3

Q8.

Answer :

Let I = ∫0π211+tanxdx …(i)= ∫0π211+tanπ2-xdx Using ∫0afx dx=∫0afa-x dx=∫0π211+cotxdx …(ii) Adding (i) and (ii) we get2I = ∫0π211+tanx+11+cotxdx =∫0π21+cotx+1+tanx1+tanx 1+cotx dx =∫0π21+cotx+1+tanx1+cotx+tanx+tanx cotx dx =∫0π22+cotx+tanx 2+cotx+tanx dx= ∫0π2 dx =x0π2=π2Hence I = π4

Q9.

Answer :

We have, I=∫0a1x+a2-x2dxPutting x=a sin θ⇒dx=a cos θ dθWhen x→0; θ→0 And x→a; θ→π2∴I=∫0π2a cos θ a sin θ+a2-a sin θ2dθ=∫0π2a cos θ a sin θ+a cos θdθI=∫0π2cos θ sin θ+cos θdθ …..1⇒I=∫0π2cos π2-θ sin π2-θ +cos π2-θ dθ=∫0π2sin θcos θ+sin θdθI=∫0π2sin θ sin θ+cos θdθ …..2By adding 1 and 2, we get2I=∫0π2cos θ +sin θsin θ+cos θdθ ⇒2I=∫0π2dθ ⇒2I=θ0π2⇒2I=π2⇒I=π4

Q10.

Answer :

We have,I=∫0∞log x1+x2 dxPutting x=tan θ⇒dx=sec2θ dθWhen x→0 ; θ→0and x→∞ ; θ→π2Now, integral becomes,

I=∫0π2log tan θ1+tan2 θ sec2θ dθ⇒I=∫0π2log tan θ dθ …..1⇒I=∫0π2log tan π2-θ dθ ∵∫0afxdx=∫0afa-xdx⇒I=∫0π2log cot θ dθ …..2Adding 1 and 2, we get

2I=∫0π2log tan θ dθ+∫0π2log cot θ dθ=∫0π2log tan θ+log cot θ dθ=∫0π2log tan θ×cot θ dθ=∫0π2log 1 dθ=∫0π20 dθ⇒2I=0⇒I=0∴∫0∞log x1+x2 dx=0

Q11.

Answer :

We have,I=∫01log 1+x1+x2 dxPutting x=tan θ⇒dx=sec2 θ dθWhen x→0 ; θ→0and x→1 ; θ→π4Now, integral becomes

I=∫0π4log 1+tan θsec2 θ sec2 θ dθ⇒I=∫0π4log 1+tan θ dθ …..1⇒I=∫0π4log1+tan π4-θ dθ ∵∫0afxdx=∫0afa-xdx=∫0π4log1+tanπ4-tan θ1+tanπ4 tan θ dθ=∫0π4log1+1-tan θ1+tan θ dθ=∫0π4log21+tan θ dθI=∫0π4log 2-log 1+tan θ dθ …..2

Adding 1 and 2, we get2I=∫0π4log 2 dθ⇒2I=log 2θ0π4⇒2I=π4log 2⇒I=π8log 2∴∫01log1+x1+x2dx=π8log 2

Q12.

Answer :

We have,I=∫0∞x1+x1+x2 dxPutting x=tan θ⇒dx=sec2θ dθWhen x→0 ; θ→0and x→∞ ; θ→π2Now, integral becomes

I=∫0π2tan θ1+tan θ sec2θ sec2θ dθ=∫0π2tan θ1+tan θ dθ=∫0π2sin θcos θ1+sin θcos θdθ⇒I=∫0π2sin θsin θ+cos θdθ …..1⇒I=∫0π2sinπ2-θsinπ2-θ+cosπ2-θdθ ∵∫0afxdx=∫0afa-xdx⇒I=∫0π2cos θcos θ+sin θdθ⇒I=∫0π2cosθsinθ+cosθdθ …..2

Adding 1 and 2, we get2I=∫0π2sinθ+cosθsinθ+cosθ dθ⇒2I=∫0π2dθ⇒2I=π2⇒I=π4∴∫0∞x1+x1+x2 dx=π4

Q13.

Answer :

Let I =∫0πx tanxsecx cosecxdx …(i)=∫0ππ-x tanπ-xsecπ-x cosecπ-xdx Using ∫0afxdx=∫0afa-xdx=∫0π-π-xtanx-secx cosecxdx=∫0ππ-xtanxsecx cosecxdx …(ii)Adding (i) and (ii)2I=∫0πx tanxsecx cosecx+π-xtanxsecx cosecxdx =∫0πx+π-x tanxsecx cosecxdx =∫0π πtanxsecx cosecxdx =∫0ππsin2x dx =π∫0π1- cos2x dx =π x0π-π2∫0π1+cos2x dx =π2×0π-π2sin2x20π =π22Hence, I = π24

Q14.

Answer :

Let I =∫0πx sinx cos4x dx …(i) =∫0ππ-x sinπ-x cos4π-x dx =∫0ππ-x sinx cos4x dx …(ii) Adding (i) and (ii) we get2I= ∫0πx+π-x sinx cos4x dx = π∫0π sinx cos4x dx Let cos x= t, Then -sinx dx = dt, When x=0, t=1, x=π, t=-1Therefore, 2I=-π∫1-1t4 dt =π∫-11t4 dt =πt55-11 =π5+π5 =2π5Hence I =π5

Q15.

Answer :

Let I=∫0πx sin3x dx …(i) =∫0ππ-x sin3π-x dx =∫0ππ-x sin3x dx …(ii)Adding (i) and (ii) we get2I=∫0πx+π-xsin3x dx =∫0ππ sin3x dx =∫0ππ 3 sin x -sin 3×4 dx =π4∫0π 3 sin x -sin 3x dx =π4-3 cos x+cos 3×30π =π4-3 cos π+3cos 0+cos 3π3-cos 03 =π43+3+-13-13 =π23-13 =π2×83 =4π3∴I = 2π3

Q16.

Answer :

∫0πx log sinxdxLet I =∫0πx logsinxdx …..(i) I=∫0ππ-x log sinπ-x dx I=∫0ππ-x logsin x dx …..(ii)Adding (i) and (ii)2I=π∫0π log sinx dx =2π∫0π2 log sinx dx I=π∫0π2log sinx dx …..(iii)Let∫0π2log sinx dx= I2I2=∫0π2log sinπ2-x dx =∫0π2log cosx dx2I2=∫0π2log sinx+log cosx dx=∫0π2logsinx cosx dx=∫0π2logsin2x dx-∫0π2log 2 dxLet 2x=t2dx=dtwhen,x=0⇒t=0x=0 ⇒ t=π2I2=12∫0πlog sint dt-π2log 22I2=22∫0π2log sint dt-π2log 22I2=I2-π2log 2I2=-π2log 2From iii, I=π∫0π2log sinx dx=π I2I=π-π2log 2I=-π2 log 22

Q17.

Answer :

Let I =∫0πx sinx1+ sinxdx … (i) =∫0ππ-xsinπ-x1+sinπ-x dx =∫0ππ-x sinx1+ sinxdx … (ii)Adding (i) and (ii) we get 2I=∫0πx+π-x sinx1+ sinxdx =∫0ππ sinx1+ sinxdx =π∫0π1+sinx-11+sinxdx =π∫0πdx-π∫0π11+sinxdx =π∫0πdx-π∫0π1-sinx1+sinx1-sinxdx =π∫0πdx-π∫0π1-sinx1-sin2xdx =π∫0πdx-π∫0π1-sinxcos2xdx =π∫0πdx-π∫0πsec2x-secx tanxdx =πx0π-πtanx-secx0π =π2-π0+1-0+1 =π2-2πHence I=ππ2-1

Q18.

Answer :

We have, I =∫0πx1+cosα sinxdx …..1 =∫0ππ-x1+cosα sinπ-xdx =∫0ππ-x1+cosα sinxdx …..2Adding 1 and 2 we get,2I=∫0πx+π-x1+cosα sinxdx⇒I=π2∫0π11+cosα sinx dx

= π2∫0π11+cosα sinx=π2∫0π11+cosα 2tanx21+tan2x2dx=π2∫0π1+tan2x21+tan2x2+2cosα tan x2dx=π2∫0πsec2x21+tan2x2+2cosα tan x2dx
Putting tanx2=t⇒12sec2x dx=dtWhen x→0; t→0and x→π; t→∞∴I=π2∫0∞21+t2+2cosα tdt=π2∫0∞2t+cosα2-cos2α+1dt=π∫0∞1t+cosα2+sin2αdt=π1sin αtan-1t+cos αsin α01=πsinαtan-1∞-tan-1cotα=πsinαπ2-tan-1tanπ2-α=παsinα

Q19.

Answer :

Let I=∫0πx cos2x dx … (i) =∫0ππ-x cos2π-x dx =∫0ππ-x cos2x dx … (ii)Adding (i) and (ii) we get2I=∫0πx+π-x cos2x dx =∫0ππ cos2x dx =π∫0π1+cos2x2 dx =π2∫0π1+cos2x dx =π2x+sin2x20π =π2π-0 Hence I=π

Q20.

Answer :

Let I =∫0π22 log cosx-logsin2xdx =∫0π22 log cosx-log2sinx cosxdx =∫0π22logcosx-log2-logsinx-logcosxdx =∫0π2logcosx-log2-logsinxdx =∫0π2logcosx dx-∫0π2log2 dx -∫0π2logsinx dx =∫0π2logcosx dx-∫0π2log2 dx -∫0π2logsinπ2-x dx Using∫0afx dx=∫0afa-x dx =∫0π2logcosx dx-∫0π2log2 dx-∫0π2logcosx dx =-log2 x0π2 =-π2 log2

Q21.

Answer :

Let I=∫0πsin2x cos3x dx =∫0πsin2x cos2x cos x dx =∫0π sin2x1-sin2x cos x dx =∫0πsin2x -sin4x cos x dxLet, sin x=t ⇒cos x dx = dtWhen x→0 ; t→0 and x→π ; t→0∴ I=∫00t2 -t4 dt =0 ∵ ∫aaf(x)dx = 0

Q22.

Answer :

Let I=∫0π2x sinx cosxsin4x+cos4xdx …(i) =∫0π2π2-x sinπ2-x cosπ2-xsin4π2-x+cos4π2-xdx =∫0π2π2-xcosx sinxcos4x+sin4x dx =∫0π2π2-xsinx cosxsin4x+cos4x dx … (ii)Adding (i) and (ii) we get2I =∫0π2x+π2-xsinx cosxsin4x+cos4xdx =π2∫0π2sinx cosxsin4x+cos4xdxLet sin2x=t, Then 2 sinx cosx dx=dtWhen x=0, t=0, x=π2, t=1Therefore2I =π4∫01dtt2+1-t2 =π8∫01dtt-122+14 =π8×2tan-12t-101 =π4π4+π4Hence I=π216

Q23.

Answer :

Let I=∫-π2π2sin3x dx =∫-π2π2 sinx1-cos2xdx =∫-π2π2sinx dx-∫-π2π2sinx cos2x dx =-cosx-π2π2+cos3x3-π2π2 =0 +0 =0

Q24.

Answer :

Let I= ∫-π2π2sin4x dx =∫-π2π2sin2x2 dx =∫-π2π21-cos2x22 dx =14∫-π2π21-2cos2x+cos22x dx =14∫-π2π2dx-12∫-π2π2cos2x dx+18∫-π2π21+cos4x dx =14∫-π2π2dx-12∫-π2π2cos2x dx+18∫-π2π2dx+18∫-π2π2cos4x dx =38∫-π2π2dx-12∫-π2π2cos2x dx+18∫-π2π2cos4x dx =38x-π2π2-14sin2x-π2π2+132sin4x-π2π2 =38π2+π2-140-0+1320-0Hence I=3π8

Q25.

Answer :

Let I=∫-11log2-x2+xdxHere fx=log2-x2+xf-x=log2+x2-x=-log2-x2+x=-fxHence fx is an odd function,Therefore,I=0

Q26.

Answer :

Let I=∫-π4π4sin2x dxHere fx = sin2xf-x=sin2-x=sin2x =fxHence sin2x is an even functionTherefore,I=2∫0π4sin2x dx =2∫0π41-cos2x2dx =∫0π41-cos2x dx =x-sin2x20π4 =π4-12→

Q27.

Answer :

Let, I=∫0πlog1-cosx dx =∫0πlog2sin2x2 dx =∫0πlog2 dx+ 2∫0πlog sinx2 dx Let, t =x2 in the secong integral. then dt= 12dxWhen x→0 ; t→0 and x→π ; t→π2I=log2x0π+4∫0π2log sint dt =πlog2+4×-π2log2 Where, ∫0π2log sint dt=-π2log2 =-π log2

Q28.

Answer :

Let I=∫-π2π2log2-sinx2+sinxdxHere, fx=log2-sinx2+sinxf-x=log2-sin-x2+sin-x=log2+sinx2-sinx=-log2-sinx2+sinx=-fxHence fx is an odd function∴ I =0

Q29.

Answer :

Let I=∫0axx+a-xdx … (i) ⇒ I=∫0aa-xa-x+xdx Using, ∫0afx dx=∫0afa-x dx ⇒ I=∫0aa-xx+a-xdx … (ii)Adding (i) and (ii)2I=∫0ax+a-xx+a-x dx =∫0a dx=x0a=aHence I=a2

Q30.

Answer :

Let I=∫05x+44x+44-9-x4dx … (i)I=∫059-x49-x4-x+44dx Using ∫0afxdx=∫0afa-xdxI=-∫059-x4x+44-9-x4dx … (ii)Adding (i) and (ii)2I=∫05x+44x+44-9-x4-9-x4x+44-9-x4dx =∫05x+44-9-x4x+44-9-x4dx =∫05dx =x05 =5Hence I= 52

Q31.

Answer :

Let I=∫07x3x3+7-x3dx … (i) =∫077-x37-x3+x3 dx Using ∫0afx dx=∫0afa-x dx =∫077-x3x3+7-x3 dx … (ii) Adding (i) and (ii) we get2I=∫07×3+7-x3x3+7-x3dx = ∫07dx =x07=7Hence I =72

Q32.

Answer :

Let I =∫π6π311+tanxdx … (i) =∫π6π311+tanπ3+π6-xdx =∫π6π311+cotxdx … (ii)Adding (i) and (ii)2I=∫π6π311+tanx+11+cotx dx =∫π6π31+cotx+1+tanx1+cotx+tanx+tanx cotx dx =∫π6π32+cotx+tanx2+cotx+tanx dx =∫π6π3 dx =xπ6π3 =π3-π6∴2I=π6Hence I=π12

Q33.

Answer :

Let I=∫abfxfa+b-x+fxdx … (i) =∫abfa+b-xfx+fa+b-xdx … (ii)Adding (i) and (ii) we get2I=∫abfx+fa+b-xfa+b-x+fxdx =∫ab dx =xab=b-aHence I=b-a2

Q34.

Answer :

Let I=∫02×2-xdx =∫022-x2-2+xdx =∫022-xxdx =∫022x-xx dx =∫022×12-x32 dx =2×3232-x525202 =43×32-25×5202 =823-825=16215

Q35.

Answer :

Let I =∫01log1x-1dx … (i) =∫01log11-x-1dx Using ∫0af(x) dx = ∫0af(a-x) dx I =∫01logx1-x dx … (ii)Adding (i) and (ii)2I=∫01log1-xx+logx1-x dx =∫01 log1-xx×x1-x dx =∫01log1 dx =0Hence I=0

Q36.

Answer :

Let I=∫02afxdxBy Additive propertyI=∫0afxdx+∫a2afxdxConsider the integral ∫a2afxdxLet x=2a-t, then dx=-dtWhen x=a, t=a, x=2x, t=0Hence ∫a2afxdx=-∫a0f2a-tdt =∫0af2a-tdt =∫0af2a-xdx Changeing the variableTherefore,I=∫0afxdx+∫0af2a-xdx =∫0afxdx+∫0afxdx Given ∫0afxdx=∫0af2a-xdx =2∫0afxdx

Hence Proved

Q37.

Answer :

Let I=∫02afxdxUsing additive propertyI=∫0afxdx+∫a2afxdxConsider the integral ∫a2afxdxLet x=2a-t, Then dx=-dtWhen x=a, t=a and x=2a, t=0Therefore,∫a2afxdx=-∫a0f2a-tdt =∫0af2a-tdt =∫0af2a-xdx changing the variableWe have f2a-x=-fxTherefore,I=∫0afxdx-∫0afxdx =0

Q38.

Answer :

(i)
I=∫-aafx2dxHere gx=f(x2)⇒g-x=f-x2=f(x2)=gx i.e, gx is even ThereforeI=2∫0afx2dx Using ∫-aagxdx=2∫0agxdx when gx is even
(ii)
I=∫-aaxfx2dxLet gx=xfx2⇒g-x=-xf-x2=-xfx2=-gx i.e, gx is odd ThereforeI=0 Using ∫-aagxdx=0 when gx is odd

Q39.

Answer :

Let I=∫02afxdxBy Additive propertyI=∫0afxdx+∫a2afxdxConsider the integral ∫a2afxdxLet x=2a-t, then dx=-dtWhen x=a. t=a, x=2a, t=0Hence, ∫a2afxdx=-∫a0f2a-tdt =∫0af2a-tdt=∫0af2a-xdx ThereforeI=∫0afxdx+∫0af2a-xdx =∫0afx+f2a-x dxHence, proved.

 

Page 20.76 Ex.20.3

Q40.

Answer :

Let I=∫-aafxdxBy Additive propertyI=∫-a0fxdx+∫0afxdxLet x=-t, then dx = -dt,When x=-a, t=a, x=0, t=0Hence ∫-a0fxdx=-∫a0f-tdt =∫0af-tdt =∫0af-xdx Changing the variableTherefore,I=∫0af-xdx+∫0afxdx =∫0afx+f-x dxHence, proved.

Page 20.90 Ex.20.4

Q1.

Answer :
∫abfxdx=limh→0 hfa+fa+h+fa+2h…………+fa+n-1h, where, h=b-an

Here, a=0, b=3, fx=x+4, h=3-0n=3nTherefore, I=∫03x+4dx =limh→0 hf0+f0+h+…….+f0+n-1h =limh→0 h0+4+h+4+…….+n-1h+4 =limh→0 h4n+h1+2+…….+n-1 =limh→0 h4n+hnn-12 =limn→∞ 3n4n+3n×nn-12 =limn→∞12+921-1n =12+92=332

Q2.

Answer :

∫abfxdx=limh→0 hfa+fa+h+fa+2h……………+fa+n-1hwhere h=b-an

Here a=0, b=2, fx=x+3, h=2-0n=2nTherefore,I=∫02x+3dx =limh→0 hf0+f0+h+………………..+f0+n-1h =limh→0 h0+3+0+h+3+……………+0+n-1h+3 =limh→0 h3n+h1+2+3………+n-1 =limh→0 h3n+hnn-12 =limn→∞ 2n3n+n-1 =limn→∞24-1n =8

Q3.

Answer :

∫abfxdx=limh→0 hfa+fa+h+fa+2h……………+fa+n-1hwhere h=b-an
Here a=1, b=3, fx=3x-2, h=3-1n=2nTherefore,I=∫133x-2dx=limh→0 hf1+f1+h+………………..+f1+n-1h=limh→0 h3-2+3+3h-2+3+6h-2……………+3n-1h+3-2=limh→0 hn+3h1+2+3………+n-1=limh→0 hn+3hnn-12=limn→∞ 2nn+3n-3=limn→∞24-3n =8

Q4.

Answer :

∫abfxdx=limh→0 hfa+fa+h+fa+2h……………+fa+n-1hwhere h=b-an

Here a=-1, b=1, fx=x+3, h=1+1n=2nTherefore,I=∫-11x+3dx=limh→0 hf-1+f-1+h+………………..+f-1+n-1h=limh→0 h-1+3+-1+h+3+……………+-1+n-1h+3=limh→0 h2n+h1+2+3………+n-1=limh→0 h2n+hnn-12=limn→∞ 2n2n+n-1=limn→∞23-1n=6

Page 20.91 Ex.20.4

Q5.

Answer :

∫abfxdx=limh→0 hfa+fa+h+fa+2h……………+fa+n-1hwhere h=b-an

Here, a=0, b=5, fx=x+1, h=5-0n=5nTherefore,I=∫05x+1dx=limh→0 hf0+f0+h+………………..+f0+n-1h=limh→0 h0+1+h+1+……………+n-1h+1=limh→0 hn+h1+2+3………+n-1=limh→0 hn+hnn-12=limn→∞ 5nn+5n-52=limn→∞572-5n=352

Q6.

Answer :

∫abfxdx=limh→0 hfa+fa+h+fa+2h……………+fa+n-1hwhere h=b-an

Here, a=1, b=3, fx=2x+3, h=3-1n=2nTherefore,I=∫132x+3dx=limh→0 hf1+f1+h+………………..+f1+n-1h=limh→0 h2+3+2+2h+3+……………+2+2n-1h+3=limh→0 h5n+2h1+2+3………+n-1=limh→0 h5n+2hnn-12=limn→∞ 2n5n+2n-2=limn→∞27-2n=14

Q7.

Answer :

∫abfxdx=limh→0 hfa+fa+h+fa+2h+…+fa+n-1hwhere h=b-an

Here a=3, b=5, fx=2-x, h=5-3n=2nTherefore,I=∫352-xdx =limh→0 hf2+f2+h+…+f2+n-1h =limh→0 h2-2+2-h-2+…+2-n-1h-2 =limh→0 h-h1+2+3+…+n-1 =limh→0 h-2hnn-12 =limn→∞ 2n-2n+2 =limn→∞2-2+2n =-4

Q8.

Answer :

∫abfxdx=limh→0 hfa+fa+h+fa+2h……………+fa+n-1hwhere h=b-an

Here a=0, b=2, fx=x2+1, h=2-0n=2nTherefore,I=∫02×2+1dx=limh→0 hf0+f0+h+………………..+f0+n-1h=limh→0 h0+1+h2+1+……………+n-12h2+1=limh→0 hn+h212+22+32………+n-12=limh→0 hn+h2nn-12n-16=limn→∞ 2nn+2n-12n-13n=limn→∞21+231-1n2-1n=2+83=143

Q9.

Answer :

∫abfxdx=limh→0 hfa+fa+h+fa+2h……………+fa+n-1hwhere h=b-an

Here a=1, b=2, fx=x2, h=2-1n=1nTherefore,I=∫12x2dx=limh→0 hf1+f1+h+………………..+f1+n-1h=limh→0 h1+h+12+……………+n-1h+12=limh→0 hn+h212+22+32………+n-12+2h1+2+3+………..+n-1=limh→0 hn+h2nn-12n-16+2hnn-12=limn→∞ 1nn+n-12n-16n+n-1=limn→∞2+161-1n2-1n-1n=2+13=73

Q10.

Answer :

∫abfxdx=limh→0 hfa+fa+h+fa+2h……………+fa+n-1hwhere h=b-an

Here a=2, b=3, fx=2×2+1, h=3-2n=1nTherefore,I=∫232×2+1dx=limh→0 hf2+f2+h+………………..+f2+n-1h=limh→0 h22.22+1+22+h2+1+……………+22+n-1h2+1=limh→0 hn+222+2+h2+………….2+n-1h2=limh→0 hn+8n+2h212+22+32………+n-12+8h1+2+…….+n-1=limh→0 h9n+h22nn-12n-16+8hnn-12=limn→∞ 1n9n+n-12n-13n+4n-4=limn→∞13+131-1n2-1n-4n =13+23=413

Q11.

Answer :

∫abfxdx=limh→0 hfa+fa+h+fa+2h……………+fa+n-1hwhere h=b-an

Here a=1, b=2, fx=x2-1, h=2-1n=1nTherefore,I=∫12×2-1dx=limh→0 hf1+f1+h+………………..+f1+n-1h=limh→0 h1-1+h2-1+……………+n-12h2-1=limh→0 hn-1+h212+22+32………+n-12=limh→0 hn-1+h2nn-12n-16=limn→∞ 1nn-1+n-12n-16n=limn→∞1-1n+161-1n2-1n=1+13=43

Q12.

Answer :

∫abfxdx=limh→0 hfa+fa+h+fa+2h……………+fa+n-1hwhere h=b-an

Here a=0, b=2, fx=x2+4, h=2-0n=2nTherefore,I=∫02×2+4dx=limh→0 hf0+f0+h+………………..+f0+n-1h=limh→0 h0+4+h2+4+……………+n-12h2+4=limh→0 h4n+h212+22+32………+n-12=limh→0 h4n+h2nn-12n-16=limn→∞ 2n4n+2n-12n-13n=limn→∞24+231-1n2-1n=8+83=323

Q13.

Answer :

∫abfxdx=limh→0 hfa+fa+h+fa+2h……………+fa+n-1hwhere h=b-an

Here a=1, b=4, fx=x2-x, h=4-1n=3nTherefore,I=∫14×2-xdx=limh→0 hf1+f1+h+………………..+f1+n-1h=limh→0 h1-1+1+h2-1+h+……………+1+n-1h2-1+n-1h=limh→0 hh212+22+32………+n-12+1+2h1+2+……+n-1-n-h1+2+…..+n-1=limh→0 hh2nn-12n-16+hn-12=limn→∞ 3n9n-12n-16n+3n-12=limn→∞3321-1n2-1n+321-1n=9+92=272

Q14.

Answer :

∫abfxdx=limh→0 hfa+fa+h+fa+2h……………+fa+n-1hwhere h=b-an

Here a=0, b=1, fx=3×2+5x, h=1-0n=1nTherefore,I=∫013×2+5xdx=limh→0 hf0+f0+h+………………..+f0+n-1h=limh→0 h0+0+3h2+5h+……………+3n-12h2+5n-1h=limh→0 h5h1+2+………+n+3h212+22+32………+n-12=limh→0 h5hnn-12+h23nn-12n-16=limn→∞ 1n5n-12+n-12n-12n=limn→∞521-1n+121-1n2-1n=52+1=72

Q15.

Answer :

∫abfxdx=limh→0 hfa+fa+h+fa+2h……………+fa+n-1hwhere h=b-an

Here a=0, b=2, fx=ex, h=2-0n=2nTherefore,I=∫02exdx=limh→0 hf0+f0+h+………………..+f0+n-1h=limh→0 he0+eh+e2h+…….+en-1h=limh→0 hehn-1eh-1=limh→0 e2-1eh-1h=e2-11=e2-1

Q16.

Answer :

∫abfxdx=limh→0 hfa+fa+h+fa+2h……………+fa+n-1hwhere h=b-an

Here a=a, b=b, fx=ex, h=b-anTherefore,I=∫abexdx=limh→0 hfa+fa+h+………………..+fa+n-1h=limh→0 hea+ea+h+…………+ea+n-1h=limh→0 heaehn-1eh-1=limh→0 heaeb-a-1eh-1=limh→0eb-eaeh-1h=eb-ea1=eb-ea

Q17.

Answer :

∫abfxdx=limh→0 hfa+fa+h+fa+2h+…+fa+n-1hwhere h=b-an
Here a=a, b=b, fx=cos x, h=b-anTherefore,I=∫abcos x dx=limh→0 hfa+fa+h+…+fa+n-1h=limh→0 hcosa+cosa+h+…+cosa+n-1h=limh→0 hcosa+n-1h2sinnh2sinh2=limh→0h2sinh22cosa+b-a2-h2 sinb-a2 Using nh=b-a=limh→0h2sinh2×limh→02cosa+b2-h2sinb-a2=2cosa+b2sinb-a2=sin b-sin a Since, 2cosA sinB=sinA+B-sinA-B

Q18.

Answer :

∫abfxdx=limh→0 hfa+fa+h+fa+2h+…+fa+n-1hwhere h=b-an
Here a=0, b=π2, fx=sinx, h=π2-0n=π2nTherefore,I=∫0π2sinxdx =limh→0 hf0+f0+h+…+f0+n-1h =limh→0 hsin0+sinh+sin2h+…+sinn-1h =limh→0 hsinn-1h2sinnh2sinh2 =limh→0 h2sinh2×2sinπ4-h2sinπ4 Using nh=π2 =limh→0h2sinh2×limh→02sinπ4-h2sinπ4 =2sinπ4sinπ4=2×12×12=1

Q19.

Answer :

∫abfxdx=limh→0 hfa+fa+h+fa+2h+…+fa+n-1hwhere h=b-an
Here a=0, b=π2, fx=cosx, h=π2-0n=π2nTherefore,I=∫0π2cosx dx =limh→0 hf0+f0+h+…+f0+n-1h =limh→0 hcos0+cosh+cos2h+…+cosn-1h =limh→0 hcosn-1h2sinnh2sinh2 =limh→0 hcosπ4-h2sinπ4sinh2 Using , nh=π2 =limh→0h2sinh2×2cosπ4-h2sinπ4 =limh→0h2sinh2×limh→02cosπ4-h2sinπ4 =2cosπ4 sinπ4=2×12×12=1

Q20.

Answer :

∫abfxdx=limh→0 hfa+fa+h+fa+2h……………+fa+n-1hwhere h=b-an

Here a=1, b=4, fx=3×2+2x, h=4-1n=3nTherefore,I=∫143×2+2xdx=limh→0 hf1+f1+h+………………..+f1+n-1h=limh→0 h3.12+2×1+31+h2+21+h+……………+31+n-1h2+21+n-1h=limh→0 h312+1+h2+1+2h2+………..+1+n-1h2+21+1+h+……….+1+n-1h=limh→0 h3n+3h212+22+32………+n-12+6h1+2+………n-1h+2n+2h1+2+……….+n-1h=limh→0 h5n+3h2nn-12n-16+8hnn-12=limn→∞ 3n5n+9n-12n-12n+12n-12=limn→∞317-12n+921-1n2-1n=51+27=78

Q21.

Answer :

∫abfxdx=limh→0 hfa+fa+h+fa+2h……………+fa+n-1hwhere h=b-an

Here a=0, b=2, fx=3×2-2, h=2-0n=2nTherefore,I=∫023×2-2dx=limh→0 hf0+f0+h+………………..+f0+n-1h=limh→0 h0-2+3h2-2+……………+3n-12h2-2=limh→0 h-2n+3h212+22+32………+n-12=limh→0 h-2n+3h2nn-12n-16=limn→∞ 2n-2n+2n-12n-1n=limn→∞2-2+21-1n2-1n=-4+8=4

Q22.

Answer :

∫abfxdx=limh→0 hfa+fa+h+fa+2h……………+fa+n-1hwhere h=b-an

Here a=0, b=2, fx=x2+2, h=2-0n=2nTherefore,I=∫02×2+2dx=limh→0 hf0+f0+h+………………..+f0+n-1h=limh→0 h0+2+h2+2+……………+n-12h2+2=limh→0 h2n+h212+22+32………+n-12=limh→0 h2n+h2nn-12n-16=limn→∞ 2n2n+2n-12n-13n=limn→∞22+231-1n2-1n=4+83=203

Q23.

Answer :

∫abfxdx=limh→0 hfa+fa+h+fa+2h……………+fa+n-1hwhere h=b-an

Here, a=0, b=4, fx=x+e2x, h=4-0n=4nTherefore,I=∫04x+e2xdx=limh→0 hf0+f0+h+………………..+f0+n-1h=limh→0 h0+e0+h+e2h+……………+n-1h+e2n-1h=limh→0 hh1+2+…..+n-1h+e0+e2h+e4h+………+e2n-1h=limh→0 hhnn-12+e2hn-1e2h-1=limn→∞ 16n2×nn-12+limh→0 e8-1e2h-1h=limn→∞81-1n+limh→0 e8-12(e2h-1)2h=8+e8-12=15+e82

Q24.

Answer :

∫abfxdx=limh→0 hfa+fa+h+fa+2h……………+fa+n-1hwhere h=b-an

Here a=0, b=2, fx=x2+x, h=2-0n=2nTherefore,I=∫02×2+xdx=limh→0 hf0+f0+h+………………..+f0+n-1h=limh→0 h0+0+h2+h+……………+n-12h2+h=limh→0 hh212+22+32………+n-12+h1+2+3……..+n-1h=limh→0 hh2nn-12n-16+hnn-12=limn→∞ 2n2n-12n-13n+n-1=limn→∞2231-1n2-1n+1-1n=83+2=143

Q25.

Answer :

∫abfxdx=limh→0 hfa+fa+h+fa+2h……………+fa+n-1hwhere h=b-an

Here a=0, b=2, fx=x2+2x+1, h=2-0n=2nTherefore,I=∫02×2+2x+1dx=limh→0 hf0+f0+h+………………..+f0+n-1h=limh→0 h0+0+1+h2+2h+1+……………+n-12h2+2n-1h+1=limh→0 hn+h212+22+32………+n-12+2h1+2+………+n-1h=limh→0 hn+h2nn-12n-16+2hnn-12=limn→∞ 2nn+2n-12n-13n+2n-2=limn→∞23+231-1n2-1n-2n =6+83=263

Q26.

Answer :

∫abfxdx=limh→0 hfa+fa+h+fa+2h……………+fa+n-1hwhere h=b-an

Here a=0, b=3, fx=2×2+3x+5, h=3-0n=3nTherefore,I=∫032×2+3x+5dx=limh→0 hf0+f0+h+………………..+f0+n-1h=limh→0 h0+0+5+2h2+3h+5+……………+2n-12h2+3n-1h+5=limh→0 h5n+2h212+22+32………+n-12+3h1+2+…….+n-1h=limh→0 h5n+2h2nn-12n-16+3hnn-12=limn→∞ 3n5n+3n-12n-1n+9n-12=limn→∞35+31-1n2-1n+921-1n=15+18+272=933

Q27.

Answer :

∫abfxdx=limh→0 hfa+fa+h+fa+2h……………+fa+n-1hwhere h=b-an

Here a=a, b=b, fx=x, h=b-anTherefore,I=∫abx dx=limh→0 hfa+fa+h+………………..+fa+n-1h=limh→0 ha+a+h+ a+2h+……….+a+n-1h=limh→0 hna+h1+2+3+……..+n-1=limh→0 hna+hnn-12=limh→0 b-anna+b-an-12=limh→0b-aa+b-ab-a-h2=b-aa+b-a22=2ab-2a2+b2+a2-2ab2=b2-a22

Q28.

Answer :

∫abfxdx=limh→0 hfa+fa+h+fa+2h……………+fa+n-1hwhere h=b-an

Here a=0, b=5, fx=x+1, h=5-0n=5nTherefore,I=∫05x+1dx=limh→0 hf0+f0+h+………………..+f0+n-1h=limh→0 h0+1+h+1+……………+n-1h+1=limh→0 hn+h1+2+3+……………..+n-1h=limh→0 hn+hnn-12=limn→∞ 5nn+5n-12=limn→∞51+521-1n=5+252=352

Q29.

Answer :

∫abfxdx=limh→0 hfa+fa+h+fa+2h……………+fa+n-1hwhere h=b-an

Here a=2, b=3, fx=x2, h=3-2n=1nTherefore,I=∫23×2 dx=limh→0 hf2+f2+h+………………..+f2+n-1h=limh→0 h22+2+h2+………..+2+n-1h2=limh→0 h4n+h212+22+32………+n-12+4h1+2+……+n-1h =limh→0 h4n+h2nn-12n-16+4hnn-12=limn→∞ 1n4n+n-12n-16n+2n-2=limn→∞6+161-1n2-1n-2n =6+13=193

Q30.

Answer :

∫abfxdx=limh→0 hfa+fa+h+fa+2h……………+fa+n-1hwhere h=b-an

Here a=1, b=4, fx=x2-x, h=4-1n=3nTherefore,I=∫14×2-xdx=limh→0 hf1+f1+h+………………..+f1+n-1h=limh→0 h1-1+1+h2-1+h+……………+n-1h+12-n-1h+1=limh→0 hh212+22+32………+n-12-h1+2+…….+n-1=limh→0 hh2nn-12n-16-hnn-12=limn→∞ 3n3n-12n-12n+3n-12=limn→∞3321-1n2-1n+321-1n=9+93=383

Q31.

Answer :

∫abfxdx=limh→0 hfa+fa+h+fa+2h……………+fa+n-1hwhere h=b-an

Here a=0, b=2, fx=x2-x, h=2-0n=2nTherefore,I=∫02×2-xdx=limh→0 hf0+f0+h+………………..+f0+n-1h=limh→0 h0-0+h2-h+……………+n-12h2-n-1h=limh→0 hh212+22+32………+n-12-h1+2+…..+n-1h=limh→0 hh2nn-12n-16-hnn-12=limn→∞ 2n2n-12n-13n-n+1=limn→∞2231-1n2-1n-1+1n=83-2=23

Q32.

Answer :

∫abfxdx=limh→0 hfa+fa+h+fa+2h……………+fa+n-1hwhere h=b-an

Here, a=1, b=3, fx=2×2+5x, h=3-1n=2nTherefore,I=∫132×2+5xdx=limh→0 hf1+f1+h+………………..+f1+n-1h=limh→0 h2+5+21+h2+51+h+……………+21+n-1h2+51+n-1h=limh→0 h212+1+h2+…………+1+n-1h2+51+1+h+1+2h+……..+1+n-1h=limh→0 h2n+2h212+22+32………+n-12+4h1+2+……+n-1+5n+5h1+2+……+n-1=limh→0 h7n+2h2nn-12n-16+9hnn-12=limn→∞ 2n7n+4n-12n-13n+9n-9=limn→∞216+431-1n2-1n-9n=32+163=1123

 

Page 20.95 (Very Short Answers)

Q1.

Answer :

∫0π2sin2x dx=∫0π21-cos2x2 dx=12∫0π21-cos2x dx=12x-sin2x20π2=12π2-0=π4

Q2.

Answer :

∫0π2cos2x dx=∫0π21+cos2x2 dx=12∫0π21+cos2x dx=12x+sin2x20π2=12π2+0=π4

Q3.

Answer :

∫-π2π2sin2x dx=∫-π2π21-cos2x2 dx=12∫-π2π21-cos2xdx=12x-sin2x2-π2π2=12π2-0+π2-0=π2

Q4.

Answer :

∫-π2π2cos2 xdx=∫-π2π21+cos2x2 dx=12∫-π2π21+cos2x dx=12x+sin2x2-π2π2=12π2+0+π2-0=π2

Q5.

Answer :

Let I=∫-π2π2sin3xdx=∫-π2π2sinx sin2x dx=∫-π2π2sinx1-cos2x dxLet cosx =t, then -sinx dx =dt,When, x→-π2 ; t→0 and x→π2 ; t→0I=∫00-1+t2 dt=0

Q6.

Answer :

We have,I=∫-π2π2x cos2x dxLet fx=x cos2x⇒ f-x=-x cos2-x=-x cos2x∴f-x=-fxi.e., fx is odd functionWe know that ∫-aafx dx=0 , if fx is odd function.∴I=∫-π2π2x cos2x dx=0

Q7.

Answer :
∫0π4tan2x dx=∫0π4sec2x-1 dx=tanx-x0π4=1-π4-0=1-π44430. →

Q8.

Answer :

∫0111+x2dx=tan-1×01=π4-0=π4ode is 4430. →

Q9.

Answer :

Let, I=∫-21xxdxWe have,x=x 0≤x≤1-x -2≤x<0∴xx=1 0≤x≤1-1 -2≤x<0Therefore,I=∫-20-1dx+∫01 1 dx =-x-20+x01 =0-2+1-0 =-1

Q10.

Answer :

∫0∞e-xdx=-e-x0∞=-0-1=0+1=1

Q11.

Answer :

∫04116-x2dx=∫04142-x2dx=sin-1×404=π2-0=π2s

Q12.

Answer :

∫031×2+9dx=∫031×2+32dx =13 tan-1×303=13tan-11- tan-10=13π4- 0=π12

Q13.

Answer :

∫0π21-cos2xdx=∫0π22sin2x dx =∫0π22 sinx dx=-2 cosx0π2=-0-2=2

Q14.

Answer :

Let, I=∫0π2log tanxdx … (i)=∫0π2log tanπ2-x dx Using, ∫0a fx dx=∫0a fa-x dx=∫0π2log cotx dx … (ii)Adding (i) and (ii) we get2I=∫0π2log tanx dx+∫0π2log cotx dx =∫0π2logtanx×cotxdx =∫0π2log1 dx=0Hence, I=0

Q15.

Answer :

Let, I=∫0π2log3+5cosx3+5sinxdx … (i)=∫0π2log3+5cosπ2-x3+5sinπ2-x dx=∫0π2log3+5sinx3+5cosx dx … (ii)Adding (i) and (ii)2I=∫0π2log3+5cosx3+5sinx+log3+5sinx3+5cosx dx =∫0π2log3+5cosx3+5sinx×3+5sinx3+5cosx dx =∫0π2log1 dx=0Hence I=0

Q16.

Answer :

Let I=∫0π2sinnxsinnx+cosnxdx …(i)=∫0π2sinnπ2-xsinnπ2-x+cosnπ2-xdx=∫0π2cosnxcosnx+sinnxdx=∫0π2cosnxsinnx+cosnxdx …(ii)Adding (i) and (ii)2I=∫0π2sinnxsinnx+cosnx+cosnxsinnx+cosnxdx = ∫0π2sinnx+cosnxsinnx+cosnx dx=∫0π2dx=x0π2=π2Hence I=π4

Q17.

Answer :

Let I=∫0πcos5x dx =∫0πcosxcos2x2 dx =∫0πcosx1-sin2x2 dx Let sinx =t, then cosx dx = dtWhen, x→0 ; t→0 and x→π ; t→0 Therefore,I=∫001-t22 dt =0

Q18.

Answer :

We have,I=∫02xdxWe know that,x=0, 0<x<11, 1<x<2∴I=∫02xdx=∫01xdx+∫12xdx=∫010dx+∫121dx=0+x12=2-1=1

Q19.

Answer :

We have,I=∫01.5x dx=∫01x dx+∫11.5x dx=∫010 dx+∫11.51dx ∵x=0 0≤x<11 1≤x<1.5=0+x11.5=1.5-1=0.5=12

Q20.

Answer :

We have,I=∫01x dxWe know x=x, 0<x<1∴I=∫01x dx=x2201=12-02=12
s 4430. →

Q21.

Answer :

We have,I=∫01exdxWe know that,x=x, when 0<x<1∴I=∫01exdx=ex01=e1-e0=e-1

Q22.

Answer :

We have,I=∫02xx dxWe know that,xx=x×0, 0<x<1x×1, 1<x<2i.e.,xx=0, 0<x<1x, 1<x<2∴I=∫02xx dx=∫01xx dx+∫12xx dx=∫010 dx+∫12x dx=0+x2212=222-122=42-12=32

Q23.

Answer :

We have,I=∫012x-x dx=∫012x-0 dx ∵x=0 where, 0<x<1=∫012x dx=2xloge201=21loge2-20loge2=2loge2-1loge2=1loge2

Q24.

Answer :

Let, I=∫-π2π2loga-sinθa+sinθdθHere, fθ=loga-sinθa+sinθConsider, f-θ=loga-sin-θa+sin-θ=-loga-sinθa+sinθ=-fθi.e., fθ is odd function.Therefore, I=0

Q25.

Answer :

x = -x , -1<x<0 x , 0<x<1∴xx = -x2 , -1<x<0 x2 , 0<x<1Now, ∫-11xxdx=∫-10- x2 dx+∫01 x2 dx=-∫-10 x2 dx+∫01 x2 dx=-x33-10+x3301=-0+13+13-0=0-13+13-0=0

Q26.

Answer :

We have,I=∫12loge x dxWe know that,x=1, when 1<x<2∴I=∫12loge 1 dxI=∫120 dx=0

 

Q27.

Answer :

Let I=∫abfxfx+fa+b-xdx … (i) =∫abfa+b-xfa+b-x+fa+b-a-b+xdx =∫abfa+b-xfa+b-x+fxdx∴ I=∫abfa+b-xfx+fa+b-xdx …(ii)Adding (i) and (ii) we get2I=∫abfxfx+fa+b-x+fa+b-xfx+fa+b-xdx =∫abfx+fa+b-xfx+fa+b-x dx =xab =b-aHence, I=b-a2

Q28.

Answer :

∫0111+x2dx=tan-1×01=tan-11-tan-10=π4-0=π4

Q29.

Answer :

∫0111+x2dx=tan-1×01=tan-11-tan-10=π4-0=π4

Q30.

Answer :

∫231xdx=logex23=loge3-loge2=loge32→

Q31.

Answer :

∫024-x2dx=∫0222-x2dx=x24-x2+12×22sin-1×202=x24-x202+2sin-1×202=0+2π2-0=π

Q32.

Answer :

We have,I=∫012×1+x2dxPutting 1+x2=t⇒2x dx=dtWhen x→0; t→1And x→1; t→2∴I=∫12dtt=loge t12=loge2-loge1=loge2-0=loge2 4430. →

Q33.

Answer :

We have,I=∫02×2 dx=∫01×2 dx+∫12×2 dx=∫010dx+∫121dx ∵x2=0 0< x<11 1<x<2=0+x12=2-1

Q34.

Answer :

We have,∫013×2+2x+kdx=0⇒x3+x2+kx01=0⇒1+1+k-0=0⇒k=-2. →

Q35.

Answer :

We have,I=∫0π/4sin x dxWe know that,x=x, when 0<x<π4 As π=3.14 ⇒ π4=0.785<1∴I=∫0π/4sin x dx=-cos x0π4=-cos π4-cos 0=cos 0-cos π4=1-12=2-12

 

Page 20.96 (Very Short Answers)

Q36.

Answer :

∫-33ax2+bx+cdx=ax33+bx22+cx-33=9a+92b+3c+9a-92b+3c=18a+6c

Hence, the given integral is independent of b

Q37.

Answer :

We have,∫0a3x2dx=8⇒3x330a=8⇒x30a=8⇒a3-0=8⇒a=83 =20. →

Page 20.96 (Multiple Choice Questions)

Q1.

Answer :

(d) π/8

Let, I=∫01×1-xdx =∫01x-x2dx =∫0114-x2-x+14dx =∫01122-x-122 dx =x-122x-x2+12×14sin-12x-101 =18 sin-11-sin-1-101=18π2+π2 =π8

Q2.

Answer :

(c) 2

∫0π11+sinxdx=∫0π11+sinx×1-sinx1-sinxdx=∫0π1-sinx1-sin2xdx=∫0π1-sinxcos2xdx =∫0πsec2x-secx tanx dx=tanx-secx0π=0+1-0+1=2

Q3.

Answer :

a π24π24

Let I=∫0πxtanxsecx+cosxdx (i)=∫0ππ-xtanπ-xsecπ-x+cosπ-xdx=∫0ππ-xtanxsecx+cosx dx (ii)Adding (i) and (ii)2I=∫0πxtanxsecx+cosx+π-xtanxsecx+cosxdx =∫0ππ tanxsecx+cosxdx =π∫0πsinx1+cos2x dx =-πtan-1cosx0π =-π-π4-π4=π22Hence I=π24We have, I=∫0πx tanxsecx+cosxdx …..1=∫0ππ-xtanπ-xsecπ-x+cosπ-xdx=∫0ππ-xtanxsecx+cosx dx …..2Adding 1 and 2, we get2I=∫0πxtanxsecx+cosx+π-xtanxsecx+cosxdx⇒I=12∫0ππ tanxsecx+cosxdx =π2∫0πsinx1+cos2x dxPutting cos x=t⇒-sinx dx=dt⇒sinx dx=-dtWhen x→0; t→1and x→π; t→-1⇒I=π2∫1-1-dt1+t2=π2∫-11dt1+t2=π2tan-1t-11=π2tan-11-tan-1-1=π2π4–π4=π2×π2=π24Hence I=π24

Q4.

Answer :

(c) 8

∫02π1+sinx2dx=∫02πsin2x4+cos2x4+2sinx4cosx4 dx=∫02πsinx4+cosx4dx=-cosx414+sinx41402π=4sinx4-cosx402π=4sin2π4-cos2π4-sin 0+cos 0=4sinπ2-cosπ2-0+1=41-0-0+1=4×2=8

Q5.

Answer :

(c) π/4

Let I=∫0π2cosxcosx+sinxdx … (i) =∫0π2cosπ2-xcosπ2-x+sinπ2-xdx = ∫0π2sinxsinx+cosxdx = ∫0π2sinxcosx+sinxdx … (ii)Adding (i) and (ii)2I=∫0π2cosxcosx+sinx+sinxcosx+sinxdx =∫0π2dx =x0π2=π2Hence I=π4

Q6.

Answer :

(b) log 2

We have,I=∫0∞11+exdxPutting ex=t⇒ exdx= dt⇒dx= dttWhen x→0; t→1and x→∞; t→∞∴I=∫1∞1t1+tdt=∫1∞1t+t2dt=∫1∞1t+122-122dt

=12×12logt+12-12t+12+121∞=logtt+11∞=logtttt+1t1∞=log11+1t1∞=log11+0-log11+1=log1-log12=0–log2=log2

 

Page 20.97 (Multiple Choice Questions)

Q7.

Answer :

(a) 2

∫0π24sinxxdxLet x=t, then12xdx=dtWhen x=0, t=0, x=π24, t=π2Therefore the integral becomes∫0π22 sint dt=-2cost0π2=2

Q8.

Answer :

(d) log43

Let, I= ∫0π2cosx2+sinx1+sinxdxLet sinx , then cosx dx =dtWhen x=0, t=0, x=π2, t=1Therefore the integral becomesI=∫01dt2+t1+t=∫01-12+t+11+t dt=-log2+t+log1+t01=log1+t-log2+t01=log2-log3-log1+log2=log43

Q9.

Answer :

b 23tan-113

We have,I=∫0π212+cosxdx=∫0π212+1-tan2x21+tan2x2dx=∫0π21+tan2x22+2 tan2x2+1-tan2x2dx=∫0π2sec2x23+tan2x2dx

Putting tan x2=t⇒12sec2x2dx=dt⇒sec2x2dx=2dtWhen, x→0; t→0and x→π2; t→1∴I=∫0123+t2dt=2∫01132+t2dt=23tan-1t301=23tan-113-tan-103=23tan-113

Q10.

Answer :

Disclaimer: None of the given option is correct.

We have,I=∫0π1-x1+xdx=∫0π1-x1+x×1-x1-xdx=∫0π1-x1-x2dx=∫0π11-x2dx-∫0πx1-x2dxPutting 1-x2=t⇒-2x dx=dt⇒x dx=-dt2When x→0; t→1and x→π; t→1-π2∴I=∫0π11-x2dx-∫11-π2 -dt2t=sin-1×0π+22 t11-π2=0-0+ 1-π2-1=1-π2-1

Q11.

Answer :

a πa2-b2We have,I=∫0π1a+bcosxdx=∫0π1a+b1-tan2x21+tan2x2dx

=∫0π1+tan2x2a1+tan2x2+b1-tan2x2dx=∫0π1+tan2x2a+b+a-btan2x2dx=∫0πsec2x2a+b+a-btan2x2dx

Putting tanx2=t⇒12sec2x2dx=dt⇒sec2x2dx=2 dtWhen x→0; t→0and x→π; t→∞∴I=∫0∞2dta+b+a-bt2=2a-b∫0∞1a+ba-b+t2dt

=2a-b∫0∞1a+ba-b2+t2dt=2a-b×a-ba+btan-1ta+ba-b0∞=2a2-b2π2-0=2a2-b2π2=πa2-b2

Q12.

Answer :

(c) π12Let, I=∫π6π311+cotxdx … (i)=∫π6π311+cotπ3+π6-xdx Using ∫abfxdx=∫abfa+b-xdx=∫π6π311+tanxdx … (ii)Adding (i) and (ii) we get 2I= ∫π6π3 11+cotx+11+tanxdx =∫π6π32+cotx+tanx1+cotx1+tanxdx =∫π6π32+cotx+tanx2+cotx+tanxdx =∫π6π3dx =xπ6π3 =π3-π6 =π6Hence, I=π12

Q13.

Answer :
(b) π60∫0∞1×2+4×2+9dx=15∫0∞1×2+4-1×2+9dx=1512tan-1×2-13tan-1×30∞=1512×π2-13×π2=15×π12=π60

Q14.

Answer :

(a) 1

∫1elogx dx=∫1elogx x0 dx=x logx1e-∫1e1xx dx=x logx1e-x1e=e-0-e-1=e-e+1=1

Q15.

Answer :

(a) π12

∫1311+x2dx=tan-1×13=π3-π4=π12

Page 20.98 (Multiple Choice Questions)

Q16.

Answer :

a π12+log22

We have,I=∫033x+1×2+9dxI=∫033xx2+9dx+∫031×2+9dxI1=∫033xx2+9dx and I2=∫031×2+9dxPutting x2+9=t in I1⇒2x dx=dt⇒x dx=dt2When x→0; t→9and x→3; t→18∴I=∫9183 dt2 t+∫031×2+9dx=32∫918dtt+∫031×2+32dx=32logt918+13tan-1×303=32log18-log9+13π4-0=32log189+π12=32log 2+π12=log8+π12=log22+π12=π12+log22

Q17.

Answer :

b π4

We have,I=∫0∞x1+x1+x2 dxPutting x=tan θ⇒dx=sec2θ dθWhen x→0 ; θ→0and x→∞ ; θ→π2Now, integral becomes

I=∫0π2tan θ1+tan θ sec2θ sec2θ dθ=∫0π2tan θ1+tan θ dθ=∫0π2sin θcos θ1+sin θcos θdθ⇒I=∫0π2sin θsin θ+cos θdθ …..1⇒I=∫0π2sinπ2-θsinπ2-θ+cosπ2-θdθ ∵∫0afxdx=∫0afa-xdx⇒I=∫0π2cos θcos θ+sin θdθ⇒I=∫0π2cosθsinθ+cosθdθ …..2

Adding 1 and 2, we get2I=∫0π2sinθ+cosθsinθ+cosθ dθ⇒2I=∫0π2dθ⇒2I=π2⇒I=π4∴∫0∞x1+x1+x2 dx=π4

Q18.

Answer :

(b) 2

∫-π2π2sinxdx=-∫-π20sinx dx+∫0π2sinx dx=–cosx-π20+-cosx0π2=1-0-0+1=2

Q19.

Answer :

(a) π4
Let, I=∫0π211+tanxdx … (i) =∫0π211+tanπ2-xdx = ∫0π211+cot xdx … (ii)Adding (i) and (ii) we get2I=∫0π211+tanx+11+cotx dx =∫0π21+cotx+1+tan x1+tan x1+cotx dx =∫0π22+ tan x+cot x1+tan x+cotx +tan x cot x dx =∫0π22+ tan x+cot x2+ tan x+cot x dx =∫0π2dx =x0π2=π2Hence, I=π4

Q20.

Answer :

(b) e − 1
Let, I=∫0π2cosx esinx dxLet sinx =t, then cosx dx =dtWhen x=0, t=0 and x=π2, t=1Therefore the integral becomesI=∫01 et dt=et01=e-1

Q21.

Answer :

(b) 12
∫0α11+4x2dx=π8⇒∫0α11+2x2dx=π8⇒12 tan-12×0α=π8⇒12tan-12α=π8⇒2α=tanπ4⇒2α=1∴ α=124430. →

Q22.

Answer :

(b) 0

∫01a-x2 fxdx=a2∫01fxdx+∫01×2 fx dx-2a∫01x fxdx=a2×1+a2-2aa As per given values=2a2-2a2=0

Q23.

Answer :

(c) 0

∫-ππsin3x cos2 xdx=∫-ππsinx1-cos2x cos2x dxLet cos x =t, then -sin x dx =dt,When, x=-π, t=-1, x=π,t=-1Therefore the integral becomes∫-1-1-1-t2t2 dt=0

Q24.

Answer :

(b) loge3

∫π6π31sin2xdx=∫π6π3cosec2x dx=12∫π6π32cosec2x dx=-12logcosec2x+cot2xπ6π3=-12-2log3=log3

Q25.

Answer :

(b) 2

∫-111-xdx=∫-101-x dx+∫011-x dx=x-x22-10+x-x2201=0+1+12+1-12-0=2

Q26.

Answer :

(c) (ln x)−1 x (x − 1)

Using Newton Leibnitz formula

f'(x)=1logex3(3×2)−1logex2(2x)=3x23lnx−2x2lnx=x2lnx−xlnx=1lnxx(x−1)=(lnx)−1x(x−1).

 

Page 20.99 (Multiple Choice Questions)

Q27.

Answer :

(b) 10π29We have,I10=∫0π/2×10 sin x dx=x10 -cos x0π2-∫0π/210 x9 ∫sin x dxdx=-x10cos x0π2-10∫0π/2 x9 -cos x dx=-x10 cos x0π2+10∫0π/2 x9 cos x dx=-x10 cos x0π2+10×9 sin x0π2-10∫0π/2 9×8 sin x dx=-π210 ×0-010 cos 0+10π29 ×1-09 ×0-90∫0π/2 x8 sin x dx=10π29 ×1-90 I8=10π29-90 I8∴I10+90 I8=10π29

Q28.

Answer :

Disclaimer: The question given is not correct because the function provided does not converge in the given domain.

Q29.

Answer :

(c) ln(3/2)

limn→∞12n+1+12n+2+……….+12n+n=limn→∞∑r=1n12n+r=limn→∞1n∑r=1n12+rnlet rn=x=∫0∞12+xdx=log2+x0∞=log3-log2=log32=ln32

Q30.

Answer :

(a) 4

We have,I=∫-221-x2dx1-x2=-1-x2, -2<x<-11-x2, -1<x<1-1-x2, 1<x<2∴I=∫-2-11-x2dx+∫-111-x2dx+∫121-x2dx=∫-2-1-1-x2dx+∫-111-x2dx+∫12-1-x2dx=-∫-2-11-x2dx+∫-111-x2dx-∫121-x2dx=-x-x33-2-1+x-x33-11-x-x3312=–1+13+2-83+1-13+1-13-2-83-1+13=-1-73+2-23-1-73=-1+73+2-23-1+73=4

Q31.

Answer :

(d) π/4

We have, I=∫0π211+cot3xdx …..1=∫0π211+cot3π2-xdx ∴I=∫0π211+tan3xdx …..2Adding 1 and 2 we get2I=∫0π211+cot3x+11+tan3xdx

=∫0π21+tan3x+1+cot3x1+cot3x1+tan3x dx=∫0π22+tan3x+cot3x1+tan3x+cot3x+cot3x tan3xdx=∫0π22+tan3x+cot3x1+tan3x+cot3x+1dx=∫0π22+tan3x+cot3x2+tan3x+cot3x dx=∫0π2[1]dx=x0π2=π2Hence I=π4

Q32.

Answer :

(d) π/4

We have, I=∫0π2sinxsinx+cosxdx …..1⇒I=∫0π2sinπ2-xsinπ2-x+cosπ2-xdx⇒I=∫0π2cosxcosx+sinx dx ∴I=∫0π2cosxsinx+cosx dx …..2Adding 1 and 2, we get2I=∫0π2sinxsinx+cosx+cosxcosx+sinxdx=∫0π2sinx+cosxsinx+cosxdx =∫0π2dx=x0π2=π2Hence I=π4

Q33.

Answer :

(c) π/2

We have,I=∫01ddxsin-12×1+x2dxWe know since ∫f'(x) = f(x)f(x) =sin-12×1+x2 and f'(x)=ddxsin-12×1+x2 Therefore, I=sin-12×1+x201=sin-11-sin-10=π2

Q34.

Answer :

(d) 1

We have, I=∫0π2x sinx dx =-x cosx0π2-∫0π21-cosx dx=-x cosx0π2+∫0π2cosx dx=-x cosx0π2+sinx0π2=-0-0+ 1-0=1

Q35.

Answer :

(c) 0

I=∫0π2sin2x log tanx dx …..1I=∫0π2sinπ-2x log tanπ2-x dxI=∫0π2sin2x log cotx dx …..2Adding 1 and 2, we get,2I=∫0π2sin2x log tanx +log cotx dx2I=∫0π2sin2x log tanx cotx dx2I=∫0π2sin2x log1 dxI=0

Q36.

Answer :

(a) π/4
∫0π15+3 cosxdx=∫0π15+3 1-tan2x21+tan2x2dx=∫0π1+tan2x25+5tan2x2+3-3tan2x2dx=∫0πsec2x28+2tan2x2dxLet tanx2=t, then sec2x2 dx=2dtWhen x=0, t=0, x=π, t=∞Therefore the integral becomes12∫0∞dt4+t2=12tan-1t20∞=12π2-0=π4

Q37.

Answer :

(a) π ln 2

∫0∞log x+1x 11+x2dx
Substitute x = tan θ
⇒ dx = sec2 θ dθ.
when,
x = 0 ⇒ θ = 0
x=∞⇒θ=π2∫0π2 tan θ+1tan θ11+tan2θ×sec2θ dθ∫0π2log tan2θ+1tanθ 11+tan2θ×sec2θdθ⇒∫0π2log sec2θtan θ1sec2θ×sec2θdθ ∵1+tan2θ=sec2θ⇒∫0π2log sec2θtan θdθ⇒∫0π2log 1sin θ.cos θdθ⇒-∫0π2log sin θ.cos θdθ⇒-∫0π2 log sin θ+log cos θdθ⇒-∫0π2log sin θdθ-∫0π2log cos θ dθ
Let us consider,
∫0π2log sin θdθ=I …..(i)⇒I=∫0π2log sin π2-θdθ=∫0π2log cos θdθ …..iiAdding i and ii2I=∫0π2log sin θdθ+∫0π2log cos θdθ =∫0π2log sin θ.cos θdθ =∫0π2log sin 2θdθ-∫0π2log 2dθLet us consider 2θ=t2dθ=dt2I=12∫0πlog sin tdt-π2log 22I=22∫0π2log sin tdt-π2log 2 ∵sin θ is positive in both 1st and 2nd quadrants2I=I-π2log 22I-I=-π2log 2I=-π2log 2, where I=∫0π2log sin θdθNow,-∫0π2logsin θdθ-∫0π2log cos θdθ-2∫0π2log sin θdθ=-2×I=-2×-π2log 2 ∵where I=-π2log2=π log 2

 

Page 20.100 (Multiple Choice Questions)

Q38.

Answer :

c ∫0afx dx+∫0af2a-x dx

According to the additivity property of integrals,∫abf(x)dx=∫acf(x)dx+∫cbf(x)dx, where a<c<busing this property, ∫02af(x)dx=∫0af(x)dx +∫02af(x)dx ……(1)Now, consider the integral, ∫02af(x)dxLet x=2a-t. Then dx=d(2a-t)⇒dx=-dtAlso, x=a⇒t=a and x=2a⇒t=0Therefore, ∫a2af(x)dx=-∫a0f(2a-t)dt⇒∫a2af(x)dx=∫0af(2a-t)dt⇒∫a2af(x)dx=∫0af(2a-x)dxSubstituting this in equation (1) we get,∫02af(x)dx=∫0af(x)dx +∫0af(2a-x)dx →

Q39.

Answer :

(d) a+b2 ∫ab fx dx
Let, I=∫abx fxdx …(i) =∫aba+b-x fa+b-xdx =∫aba+b-x fx dx …(ii) Adding (i) and (ii)2I=∫abx+a+b-x fxdx =a+b∫ab fxdx Hence I=a+b2∫ab fxdx

Q40.

Answer :

(b) 0

Let, I=∫01tan-12x-11+x-x2dx … (i)=∫01tan-121-x-11+1-x-1-x2dx=∫01tan-11-2×2-x-1-x2+2x dx=∫01tan-11-2×1+x-x2 dx=-∫01tan-12x-11+x-x2 dx … (ii)Adding (i) and (ii)2I=∫01tan-12x-11+x-x2 dx-∫01tan-12x-11+x-x2 dx =0Hence, I=0

Q41.

Answer :

(c) 0

Let I=∫0π2log4+3sinx4+3cosxdx …(i) =∫0π2log4+3sinπ2-x4+3cosπ2-x dx =∫0π2log4+3 cosx4+3sinxdx …(ii)Adding (i) and (ii)2I=∫0π2log4+3sinx4+3cosx+log4+3 cosx4+3sinx dx = ∫0π2log4+3sinx4+3cosx×4+3 cosx4+3sinx dx = ∫0π2log1 dx=0Hence I=0

Q42.

Answer :

(c) π

∫-π2π2×3+xcosx+tan5x+1dx=x44-π2π2+x sinx-π2π2-∫-π2π2sinx dx+∫-π2π2tan3x sec2x-1dx+x -π2π2=π464-π464+π2-π2–cosx-π2π2+∫-π2π2tan3x sec2x dx-∫-π2π2tan3x dx+π2+π2=π+0+tan4x4-π2π2-∫-π2π2tanx sec2x dx-∫-π2π2tanx dx=π-tan2x2-π2π2–logcosx-π2π2=π

 

Page 20.100 (Revision Exercise)

Q1.

Answer :

Let, I=∫04×4-x dx =∫044-x4-4+x dx =∫044-xx dx =∫044x-x32 dx =8×32304-2×52504 =643-645 =12815 →

Q2.

Answer :

∫12x3x-2dxLet, 3x-2=t, then 3dx=dtwhen, x=1 ; t=1 and x=2 ; t=4Therefore the integral becomes∫14t+23t dt3=19∫14t32+2t dt=192t525+4t32314=19645+323-25-43=46135

Q3.

Answer :

Let I=∫15x2x-1dxLet, 2x-1=t, then 2dx=dt,When, x→1 ; t→1 and x→5 ; t→9x=t+12I=12∫19t+1t×dt2=142t323+2t19=1418+6-23-2=163

Q4.

Answer :

∫01cos-1x dx=∫01cos-1x ×1 dx= cos-1x x01-∫01-x1-x2dx=x cos-1×01-221-x201=0+1=1

Q5.

Answer :

∫01tan-1x dx=∫01tan-1x×1 dx=tan-1x x01-∫01×1+x2dx=xtan-1×01-12log1+x201=π4-0-12log2+0=π4-12log2

Q6.

Answer :

∫01cos-11-x21+x2dxLet, x= tanθ, dx= sec2θ dθWhen, x→0 ; θ→0and x→1 ; θ→π4Therefore, the integral becomes∫0π4cos-11-tan2θ1+tan2θ sec2θ dθ= ∫0π4cos-1cos2θ sec2θ dθ=2∫0π4θ sec2θ dθ=2θ tanθ0π4-2∫0π4tanθ dθ=2θ tanθ0π4+2logcosθ0π4=2π4-0+2log12-0=π2-log2

Q7.

Answer :

∫01tan-12×1-x2dxLet, x= tanθ, then dx= sec2θ dθWhen, x→0 ; θ→0And x→1 ; θ→π4Therefore the integral becomes∫0π4tan-12tanθ1-tan2θ sec2θ dθ=∫0π4tan-1tan2θ sec2θ dθ=2∫0π4θ sec2θ dθ=2θ tanθ0π4-2∫0π4tanθ dθ=2θ tanθ0π4-2-logcosθ0π4=2π4-0+2log12-0=π2-log2

Q8.

Answer :

∫013tan-13x-x31-3x2dxLet x = tanθ, then dx= sec2θ dθWhen, x→0 ; θ→0And x→13 ; θ→π6Therefore the integral becomes∫0π6tan-13tanθ-tan3θ1-3tan2θsec2θ dθ=∫0π6tan-1tan3θsec2θ dθ=3∫0π6θ sec2θ dθ=3θ tanθ0π6-3∫0π6tanθ dθ=3θ tanθ0π6-3-logcosθ0π6=3π6×13-0+3log32=π23+3log32=π23-32log43

Q9.

Answer :

∫011-x1+x dx=∫011-x-1+11+xdx=∫012-x+11+xdx=∫0121+x-∫011+x1+xdx=∫0121+x-∫01dx=2log1+x01-x01=2log2-1

 

Page 20.101 (Revision Exercise)

Q10.

Answer :

∫0π3cosx3+4sinxdxLet, sin x = t ⇒ cosx dx = dtWhen, sinx →0 ; t→0And sinx →π3 ; t→32=∫032dt3+4t=14log3+4t032=14loglog3+23-log3+0=14loglog23+3-log3=14log23+33

Q11.

Answer :

∫0π2sin2x1+cosx2dx=∫0π21-cos2x1+cosx2dx=∫0π21+cosx1-cosx1+cosx2dx=∫0π21-cosx1+cosxdx=∫0π21-cosx-1+11+cosxdx=∫0π22-1+cosx1+cosxdx=∫0π221+cosxdx-∫0π2dx=∫0π221-cosx1+cosx1-cosxdx-∫0π2dx=2∫0π21-cosxsin2xdx-x0π2=2∫0π2cosec2x-cosecx cotx dx-x0π2=2-cotx+cosecx0π2-x0π2=2-π2

Q12.

Answer :

∫0π2sinx1+cosxdxLet 1+cosx =t, then -sinx dx = dtWhen, x→0, t→2 and x→π2, t→1Therefore, the integral becomes∫21-1tdt=∫121tdt=2t12=22-1

Q13.

Answer :

∫0π2cosx1+sin2xdxLet sinx =t, then cosx dx = dtWhen x→0 ; t→0And x→π2; t→1Therefore the integral becomes∫01dt1+t2=tan-1×01=π4

Q14.

Answer :

We have,I=∫0πsin3x1+2cosx1+cosx2dx=∫0πsin2x1+2cosx1+cosx2sinx dx=∫0π1-cos2x1+2cosx1+cosx2sinx dxPutting cosx=t⇒-sinx dx=dtWhen x→0; t→1and x→π; t→-1∴I=-∫1-11-t21+2t1+t2dt=∫-111-t21+2t1+t2dt=∫-111+2t-t2-2t31+2t+t2dt=∫-111+2t+t2+2t+4t2+2t3-t2-2t3-t4-2t3-4t4-2t5dt=∫-111+4t+4t2-2t3-5t4-2t5dt=t+2t2+4t33-t42-t5-t63-11=1+2+43-12-1-13–1-2-12-4-133+-142+-15+-163=1+2+43-12-1-13+1-2+43+12-1+13=83

Q15.

Answer :

I = ∫0∞x1+x1+x2 dx

using partial fraction,
x(1+x)(1+x2)A1+x + Bx+C1+x2x=A(1+x2) + (Bx+C)(1+x)x=A+Ax2+Bx+Bx2+C+CxB+C=1A+C=0A+B=0so, A=-12, B=12, C=12

putting the values of A,B and C we get

-121+x+12x+121+x2=-1211+x + 12x+11+x2Therefore, I=∫0∞-1211+x + 12x+11+x2I=-12log1+x0∞ + 12∫0∞x1+x2+11+x2I=-12log1+x0∞ + 12×2∫0∞2×1+x2 +12∫0∞11+x2
I=-12log1+x0∞ + 14log1+x20∞ + 12tan-1×0∞I=-12log1+x0∞ + 12×12log1+x20∞ + 12tan-1×0∞I=12logx2+1x+10∞ + 12tan-1×0∞I=12log1+1×21+1×0∞ + 12tan-1×0∞I=120 + 12tan-1∞ – tan-10
I = π4

Q16.

Answer :

Let, I=∫0π4sin2x sin3x dx …i⇒I=-sin2xcos3x30π4+∫0π42cos2xcos3x3dx⇒I=-sin2xcos3x30π4+23cos2xsin3x30π4+49∫0π4sin2x sin3x dx⇒I=-sin2xcos3x30π4+23cos2xsin3x30π4+49I From i⇒59I=-sin2xcos3x30π4+23cos2xsin3x30π4⇒59I=132+0⇒59I=132∴ I=352

Q17.

Answer :

∫011-x1+xdx=∫011-x1+x×1-x1-xdx=∫011-x1-x2dx=∫0111-x2dx-∫01×1-x2dx=sin-1×01+1-x201=π2-1

Q18.

Answer :

∫121x2e-1xdxLet -1x=t, then 1×2 dx=dtWhen, x→1 ; t→-1And x→2 ; t→-12Therefore the integral becomes∫-1-12etdt=et-1-12=e-12-e-1=e-1e

Q19.

Answer :

∫0π4cos4x sin3x dx=∫0π4cos4x sinx 1-cos2x dx=∫0π4cos4x sinx dx-∫0π4cos6x sinx dx=-cos5x50π4+cos7x70π4=-1202+15+1562-17=-240+235+2112=235-92560

Q20.

Answer :

∫π3π21+cosx1-cosx52dx=∫π3π21+cosx1-cosx52×1-cosx1-cosxdx=∫π3π2sinx1-cosx3dx=-121-cosx-2π3π2=-121-4=32

Q21.

Answer :

∫0π2×2 cos2x dx=x2sin2x20π2-∫0π22x sin2x2dx=x2sin2x20π2-∫0π2x sin 2x dx=x2sin2x20π2–xcos2x20π2+-∫0π2cos2x2dx=x2sin2x20π2+xcos2x20π2-∫0π2cos2x2dx=x2sin2x20π2+xcos2x20π2-12sin2x20π2=0-π4-0=-π4

Q22.

Answer :

∫01log1+xdx=∫01log1+x×1 dx=log1+x x01-∫01×1+xdx=log1+x x01-∫011-11+xdx=xlog1+x01-x-log1+x01=log2-1+log2=2log2-1=log4-loge=log4e

Q23.

Answer :

∫24×2+x2x+1dx=x2+x2x+124-∫242x+12x+1 dx=x2+x2x+124-∫242x+132 dx=x2+x2x+124-2x+152524=60-65-2435-2555=575-5

Q24.

Answer :

We have,I=∫01xtan-1x2dxPutting tan-1x=u⇒x=tan u⇒dx=sec2u duWhen x→0; u→0and x→1; u→π4∴I=∫0π4tan uu2sec2u du=∫0π4u2 tan u sec2u du=u2 tan2 u20π4-∫0π42u tan2 u2 du=u2 tan2 u20π4-∫0π4u sec2 u-1 du=u2 tan2 u20π4-∫0π4u sec2 u du+∫0π4u du=u2 tan2 u20π4-u tan u0π4+∫0π4 tan u du+u220π4=u2 tan2 u20π4-u tan u0π4+log sec u0π4+u220π4=π216 ×12-π4+log2+π232=π216-π4+log2=π216-π4+12log 2

Q25.

Answer :
I=∫01(cos-1x)2dxlet cos-1x = θ⇒x = cosθ⇒dx = -sinθ dθwhen x=0, θ=π2 and when x=1, θ=0therefore, I = ∫π20θ2(-sinθ)dθ I = -∫π20θ2(sinθ)dθI = ∫0π2θ2(sinθ)dθI = [θ2(-cosθ)]0π2 -∫0π22θ∫0π2sinθdθ]I = [θ2(-cosθ)]0π2 – ∫0π2[2θ(-cosθ)dθ]
=[-θ2cosθ]0π2 + ∫0π22θ(cosθ)dθ=[-θ2cosθ]0π2 + 2[θsinθ – ∫0π2sinθdθ]=[-θ2cosθ]0π2+ 2[θsinθ + cosθ]0π2

I = 2[(π2 + 0) – 1] I = π – 2

Q26.

Answer :

∫12x+3xx+2dx=∫12x+2+1xx+2dx=∫121xdx+∫121xx+2dx=∫121xdx+12∫12x+2-xxx+2dx=∫121xdx+12∫121xdx-12∫121x+2dx=32∫121xdx-12∫121x+2dx=32logx12-12logx+212=32log2-12log4+12log3=32log2- log2+12log3=12log2+12log3=12log6

Q27.

Answer :

Let, I=∫0π4ex sinxdx …i =-excosx0π4+∫0π4ex cosx dx =-excosx0π4+exsinx0π4-∫0π4ex sinx dx⇒ I =-excosx0π4+exsinx0π4- I Using i ⇒ 2I=-excosx0π4+exsinx0π4 =-12eπ4+1+12eπ4-0 =1Hence I = 12

Q28.

Answer :

∫0π4tan4x dx=∫0π4tan2xsec2x-1 dx=∫0π4tan2x sec2x dx-∫0π4tan2x dx=tan3x30π4-tanx-x0π4=13-1+π4=π4-23

Q29.

Answer :

We have,2x-1=-2x-1, 0≤x≤12 2x-1, 12≤x≤1∴∫012x-1dx=∫012-2x-1 dx+∫1212x-1 dx=-x2+x012+x2-x121=-14+12+1-1-14+12=12

Q30.

Answer :
We have,x2-2x=-x2-2x, 1≤x≤2 x2-2x, 2≤x≤3∴∫13×2-2xdx=∫12-x2-2x dx+∫23×2-2x dx=-x33+x212+x33-x223=-83+4+13-1+9-9-83+4=2

Q31.

Answer :

∫0π2sinx-cosxdx=2∫0π2sinx12-cosx12dx=2∫0π2sinx cosπ4-cosx sinπ4dx=2∫0π2sinx-π4dxWe have,sinx-π4=-sinx-π4, 0≤x≤π4 sinx-π4, π4≤x≤π2∴∫0π2sinx-cosxdx=2∫0π4-sinx-π4dx+2∫π4π2sinx-π4dx =2cosx-π40π4-2cosx-π4π4π2 =2cos 0-cos-π4-2cosπ4-cos 0 =21-12-12+1 =22-22 = 22-2 = 22-1

Q32.

Answer :
We have,sin2πx=sin2πx, 0≤x≤12-sin2πx, 12≤x≤1∴∫01sin2πxdx =∫012sin2πx dx+∫121-sin2πx dx =-cos2πx2π012+cos2πx2π121 =12π+12π+12π+12π =2π

Q33.

Answer :

∫13×2-4dx=∫12-x2-4 dx+∫23×2-4 dx=-x33+4×12+x33-4×23=-83+8+13-4+9-12-83+8=4

Q34.

Answer :

∫-π2π2sin9xdxLet fx=sin9xConsider, f-x=sin9-x=-sin9x=-fxThus fx is an odd functionTherefore,∫-π2π2sin9xdx=0

Q35.

Answer :

∫-1212cosx log1+x1-xdxLet fx=cosx log1+x1-xConsider f-x=cos-x log1-x1+x =cosx-log1+x1-x=-cosx log1+x1-x=-fxThus fx is an odd functionTherefore,∫-1212cosx log1+x1-xdx=0

Q36.

Answer :

∫-aax ex21+x2dxLet fx=x ex21+x2Consider f-x=-x ex21+x2=-fxThus fx is an odd functionTherefore,∫-aax ex21+x2dx=0ode is 4430. →

Q37.

Answer :

Let, I=∫0π211+cot7xdx … (i) =∫0π211+cot7π2-xdx =∫0π211+tan7xdx …(ii)Adding (i) and (ii)2I=∫0π211+cot7x+11+tan7xdx =∫0π22+cot7x+tan7x1+cot7x1+tan7xdx =∫0π22+cot7x+tan7x2+cot7x+tan7xdx =∫0π2dx =x0π2 =π2Hence, I=π4

Q38.

Answer :

Let, I=∫02πcos7xdx …i =∫02πcos72π-xdx =∫02π-cos7xdx⇒ I=-∫02πcos7xdx …iiAdding i and ii we get, 2I=∫02πcos7xdx-∫02πcos7xdx⇒2I=0∴I = 0

Q39.

Answer :

Let, I=∫0axx+a-xdx …(i) =∫0aa-xa-x+a-a+xdx =∫0aa-xa-x+xdx⇒I =∫0aa-xx+a-xdx …(ii)Adding (i) and (ii)2I=∫0axx+a-x+a-xx+a-xdx =∫0adx =x0a =aHence, I=a2

Q40.

Answer :

Let, I=∫0π211+tan3xdx … (i) =∫0π211+tan3π2-xdx =∫0π211+cot3xdx ….(ii)Adding (i) and (ii)2I=∫0π211+tan3x+11+cot3xdx =∫0π22+tan3x+cot3x1+tan3x1+cot3xdx =∫0π22+tan3x+cot3x2+tan3x+cot3xdx =∫0π2dx =x0π2 =π2Hence, I=π4

Q41.

Answer :

Let, I=∫0πx sinx1+cos2xdx …(i) =∫0ππ-x sinπ-x1+cos2π-xdx =∫0ππ-x sinx1+cos2xdx …(ii)Adding (i) and (ii)2I=∫0πx sinx1+cos2x+π-x sinx1+cos2x dx = ∫0ππ sinx1+cos2xdx =π-tan-1cosx0π =-πtan-1-1-tan-11 =-π-π4-π4 =π22Hence, I=π24

Q42.

Answer :

Let, I=∫0πx sinx cos4x dx …(i) =∫0ππ-x sinπ-x cos4π-x dx =∫0ππ-x sinx cos4x dx …(ii) Adding (i) and (ii)2I=∫0πx sinx cos4x +π-x sinx cos4x dx =∫0πx+π-x sinx cos4x dx = π∫0πsinx cos4x dx =π-cos5x50π =π15+15 =2π5Hence, I=π5

Q43.

Answer :

We have,I =∫0πxa2cos2x+b2sin2xdx …..1=∫0ππ-xa2cos2π-x+b2sin2π-xdx=∫0ππ-xa2cos2x+b2sin2xdx …..2Adding 1 and 22I=∫0πx+π-xa2cos2x+b2sin2xdx=π∫0π1a2cos2x+b2sin2xdx=π∫0πsec2xa2+b2tan2xdx Dividing numerator and denominator by cos2x=2π∫0π2sec2xa2+b2tan2xdx Using ∫02afxdx=∫0afxdx+∫0af2a-xdxPutting tan x=t⇒sec2x dx=dtWhen x→0; t→0and x→π2; t→∞∴2I=2π∫0π2dta2+b2t2⇒I=πb2∫0π2dta2b2+t2=πb2×batan-1bta0∞=πabπ2-0=πab×π2=π22ab Hence I=π22ab

Q44.

Answer :
∫-π4π4tanxdx=∫-π40-tanx dx+∫0π4 tanx dx=log cosx-π40+-log cosx0π4=-log12-log12=2log2=log2

Q45.

Answer :

We have,I=∫01.5×2 dx=∫01×2 dx+∫12×2 dx+∫21.5×2 dx=∫010 dx+∫121 dx+∫21.52 dx ∵x2=0 where, 0<x<11 where, 1<x<22 where, 2<x<1.5=0+x12+2×21.5=x12+2×21.5=2-1+21.5-2=2-1+3-22=2-2

Q46.

Answer :

We have,I=∫0πx1+cos α sin x dx …..1⇒I=∫0ππ-x1+cos α sin π-x dx ∵∫0afxdx=∫0afa-xdx⇒I=∫0ππ-x1+cos α sin x dx …..2Adding 1 and 2, we get

2I=∫0ππ1+cos α sin x dx ⇒I=π2∫0π11+cos α sin x dx =π2∫0π11+cos α 2tan x21+tan2x2 dx =π2∫0π1+tan2x21+tan2x2+cos α 2tan x2 dxPutting tanx2=t⇒12sec2x2dx=dtWhen x→0 ; t→0and x→π ; t→∞Now, integral becomes

I=π∫0∞dt1+t2+2t cos α =π∫0∞dtt+cos α2+1-cos2α=π∫0∞dtt+cos α2+sin2α=π1sin αtan-1t+cos αsin α0∞=πsin αtan-1t+cos αsin α0∞=πsin απ2-tan-1cot α=πsin απ2-tan-1tanπ2-α=πsin απ2-π2-α=παsin α

Q47.

Answer :

Let, I=∫0π2xsinx cosxsin4x+cos4xdx …(i)=∫0π2π2-xsinπ2-x cosπ2-xsin4π2-x+cos4π2-xdx=∫0π2π2-xcosx sinxcos4x+sin4xdx …(ii)Adding (i) and (ii)2I=∫0π2x+π2-xsinx cosxsin4x+cos4xdx =π2∫0π2sinx cosxsin2x+cos2x2-2sin2x cos2xdx = π2∫0π2sinx cosx1-2sin2x cos2x dx = π2∫0π2sinx cosx1-2sin2x 1-sin2xdx =π2∫0π2sinx cosx1-2sin2x+2sin4xdxLet, sin2x =t, then 2sinxcosx dx = dt When, x→0 ; t→0 and x→π2 ; t→1 2I=π4∫0111-2t+2t2dt =π8∫011t-122+14 =π82 tan-12t-101 =π4tan-11-tan-1-1 =π4π4+π4 =π28Hence, I=π216

Q48.

Answer :

We have,I=∫0π2cos2xsinx+cosxdx …..1=∫0π2cos2π2-xsinπ2-x+cosπ2-xdx=∫0π2sin2xcosx+sinx dx …..2

Adding 1 and 22I=∫0π2cos2xsinx+cosx+sin2xcosx+sinxdx= ∫0π21sinx+cosxdx=∫0π212tanx21+tan2x2+1-tan2x21+tan2x2dx

=-∫0π21+tan2x2tan2x2-2tanx2-1 dx=-∫0π2sec2x2tan2x2-2tanx2-1 dxPutting tanx2=t⇒12sec2x2dx=dt⇒sec2x2dx=2dtWhen x→0; t→0and x→π2; t→1

∴2I=-2∫01dtt2-2t-1⇒I=-∫01dtt-12-22=-122logt-1-2t-1+2 01=-122log-1-log-1-2-1+2 =-122log 1-log2+12-1

=-122-log2+12-1 =122log2+12+12-12+1=122log2+122-1=122log2+12=122×2 log2+1=12log2+1

Q49.

Answer :

∫0πcos2x logsinx dx=logsinx sin2x20π-∫0πcosxsinxsin2x2 dx=logsinx sin2x20π-∫0πcos2x dx=logsinx sin2x20π-∫0π1+cos2x2dx=logsinx sin2x20π-12x+sin2x20π=0-12π+0=-π2

Q50.

Answer :

Let I=∫0πxa2-cos2xdx … (i) =∫0ππ-xa2-cos2π-xdx =∫0ππ-xa2-cos2xdx …(ii)Adding (i) and (ii)2I=∫0ππa2-cos2xdx =π2a∫0π1a-cosx+1a+cosx dx =π2a∫0πsec2x2a-1+a+1tan2x2+sec2x2a+1+a-1tan2x2dxLet, tanx2=t, then 12sec2x2 dx=dt2I=πa∫0∞1a-1+a+1t2+1a+1+a-1t2 dt =πaa2-1tan-1a+1a-1t+tan-1a-1a+1t0∞ =πaa2-1π2+π2=π2aa2-1∴I=π22aa2-1

Q51.

Answer :

Let I=∫0πx tanxsecx +tanxdx …(i) =∫0ππ-x tanπ-xsecπ-x +tanπ-xdx =∫0ππ-x tanxsecx +tanxdx …(ii)Adding (i) and (ii) we get2I=∫0ππ tanxsecx +tanxdx =π∫0πsinx1+sinxdx =π∫0π1+sinx-11+sinxdx =π∫0π1-11+sinxdx =πx0π-π∫0π11+2tanx21+tan2x2dx =π2-π∫0πsec2x21+tan2x2+2tanx2dx =π2-π∫0πsec2x21+tanx22dx =π2+π21+tanx20π =π2+π0-2 =π2-2π =ππ-2Hence I=π2π-2

Q52.

Answer :

Let, I=∫23×5-x+xdx …(i) =∫235-x5-5+x+5-xdx =∫235-xx+5-xdx …(ii)Adding (i) and (ii) 2I=∫23×5-x+x+5-xx+5-xdx =∫235-x+x5-x+x dx =∫23dx =x23 =3-1=1Hence, I=12

Q53.

Answer :

We have,I=∫0π2sin2xsinx+cosxdx …..1=∫0π2sin2π2-xsinπ2-x+cosπ2-xdx=∫0π2cos2xcosx+sinx dx …..2Adding 1 and 22I=∫0π2sin2xsinx+cosx+cos2xcosx+sinx dx=∫0π21sinx+cosx dx=∫0π21+tan2x22tanx2+1-tan2x2 dx=∫0π2sec2x22tanx2+1-tan2x2 dxPutting tanx2=t⇒ 12sec2x2dx=dt⇒ sec2x2dx=2 dtWhen x→0; t→0and x→π2; t→1∴2I=∫012dt2t+1-t2 dx=2∫01dt22-t-12=222log2+t-12-t+1 01=12log22 – log2-12+1 =120-log2-12+1 =-12log2-12+1=12log2+12-1=12log2+12+12-12+12I=12log2+122-12I=22log2+1Hence I=12log2+1

Q54.

Answer :

Let, I=∫0π2xsin2x+cos2xdx =∫0π2x1dx =∫0π2x dx =x220π2 ∴ I=π28

Q55.

Answer :

∫-ππx10 sin7x dxLet fx=x10 sin7xConsider f-x=-x10 sin7-x=-x10 sin7x=-fxHence fx is an odd functionTherefore ∫-ππx10 sin7x dx=0

Q56.

Answer :

∫01cot-11-x+x2dx=∫01cot-1xx-1+1dx=∫01cot-1xx-1+1x-x-1dx=∫01cot-1x-cot-1x-1 dx=xcot-1×01+∫01×1+x2dx-x-1cot-1x-101-∫01x-11+x-12dx=xcot-1×01+12log1+x201-x-1cot-1x-101-12log1+1-x201=π4-12log2+π4-12log2=π2-log2

Page 20.102 (Revision Exercise)

Q57.

Answer :

∫0π16-cosxdx=∫0π1+tan2x26+6tan2x2-1+tan2x2dx=∫0πsec2x25+7tan2x2dxLet, tanx2=t, then 12sec2x2 dx=dtTherefore the integralbecomes∫0∞2dt5+7t2 =27∫0∞dt57+t2 =235tan-17t50∞=π35

Q58.

Answer :

We have,I=∫0π212cosx+4sinxdx=∫0π21+tan2x22-2tan2x2+8tanx2dxPutting tanx2=t⇒ 12sec2x2dx=dtWhen x→0; t→0and x→π2; t→1∴I=2∫01dt2-2t2+8t=-22∫01dt t2-4 t-1=-∫01dtt-22-5=∫01dt52-t-22=125log5+t-25-t+2 01= 125log5-15 +1 -log5 -25 +2 = 125log5-15 +1 ×5 +25 -2=125log5+25-5-25-25+5-2 =125log5+3-5+3
I = 125log 3 + 53 – 5×3 + 53 + 5 I = 125log 3 + 522I =225log 3 + 52 I = 15log 3 + 52

Q59.

Answer :

∫π6π2cosecx cotx1+cosec2xdx=∫π6π2cosx1+sin2xdx=tan-1sinxπ6π2=tan-11-tan-112=tan-11-121+1×12=tan-113

Q60.

Answer :

∫0π214cosx+2sinxdx=∫0π21+tan2x24-4tan2x2+4tanx2dxLet tanx2=t, then 12sec2x2 dx=dtWhen x=0, t=0, x=π2, t=1=-14∫01dtt-122-54=-14×-45log2t-1-52t-1+501=15log5+15-1

Q61.

Answer :

∫04xdx=x2204=8-0=8

Q62.

Answer :

∫022×2+3dx=2×33+3×02=163+6=343

Q63.

Answer :

Here a =1,b=4, fx=x2+x, h=4-1n=3nTherefore,∫14×2+xdx =limh→0 hfa+fa+h+fa+2h+…………+fa+n-1h =limh→0 hf1+f1+h+……….+f1+n-1h =limh→0 h1+1+1+h2+1+h+1+2h2+1+2h+………+1+n-1h2+1+n-1h =limh→0 h2n+h212+22+…………..n-12+2h1+2+……+n-1+h1+2+……+n-1 =limh→0 h2n+h2nn-12n-16+3hnn-12 =limn→0∞6+921-1n2-1n+921-1n =6+9+92=272

Q64.

Answer :

Here a =-1,b=1, fx=e2x, h=1+1n=2nTherefore,∫-11e2xdx =limh→0 hfa+fa+h+fa+2h+…………+fa+n-1h =limh→0 hf-1+f-1+h+……….+f-1+n-1h =limh→0 he-2+e2-1+h+e2-1+2h+…….+e2-1+n-1h =limh→0 he-2e2hn-1e2h-1 =limh→0 e-2 e4-1e2h-12h×12 Since, nh=2 =12e2-e-2

Q65.

Answer :

Here a =2,b=3, fx=e-x, h=3-2n=1nTherefore,∫23e-xdx =limh→0 hfa+fa+h+fa+2h+…………+fa+n-1h =limh→0 hf2+f2+h+……….+f2+n-1h =limh→0 he-2+e-2+h+e-2+2h+…….+e-2+n-1h =limh→0 he-2e-hn-1e-h-1 =limh→0 e-2 e-1-1e-h-1-h×-1 Since nh=1 =e-2-e-3

Q66.

Answer :

Here, a =1,b=3, fx=2×2+5x, h=3-1n=2nTherefore,∫132×2+5xdx =limh→0 hfa+fa+h+fa+2h+…………+fa+n-1h =limh→0 hf1+f1+h+……….+f1+n-1h =limh→0 h2+5+21+h2+51+h+21+2h2+51+2h+………+2n-1h2+5n-1h =limh→0 h2n+2h212+22+…………..n-12+4h1+2+…………n-1+5n+5h1+2+…………n-1 =limh→0 h7n+2h2nn-12n-16+9hnn-12 =limn→0∞14+831-1n2-1n+181-1n =14+163+18 =1123

Q67.

Answer :

Here a =1,b=3, fx=x2+3x, h=3-1n=2nTherefore,∫13×2+3xdx =limh→0 hfa+fa+h+fa+2h+…………+fa+n-1h =limh→0 hf1+f1+h+……….+f1+n-1h =limh→0 h1+3+1+h2+31+h+1+2h2+31+2h+………+n-1h2+3n-1h =limh→0 hn+h212+22+…………..n-12+2h1+2+…………n-1+3n+3h1+2+…………n-1 =limh→0 h4n+h2nn-12n-16+5hnn-12 =limn→0∞8+431-1n2-1n+101-1n =8+83+10 =623

Q68.

Answer :

Here a =0,b=2, fx=x2+2, h=2-0n=2nTherefore,∫02×2+2dx =limh→0 hfa+fa+h+fa+2h+…………+fa+n-1h =limh→0 hf0+f0+h+……….+f0+n-1h =limh→0 h0+2+0+h2+2+0+2h2+2+………+n-1h2+2 =limh→0 h2n+h212+22+…………..n-12 =limh→0 h2n+h2nn-12n-16 =limn→0∞4+431-1n2-1n =4+83 =203

Q69.

Answer :

Here, a =0, b=3, fx=x2+1, h=3-0n=3nTherefore,∫03×2+1dx =limh→0 hfa+fa+h+fa+2h+…………+fa+n-1h =limh→0 hf0+f0+h+……….+f0+n-1h =limh→0 h0+1+h2+1+2h2+1+………+n-1h2+1 =limh→0 hn+h212+22+…………..n-12 =limh→0 hn+h2nn-12n-16 =limh→03+921-1n2-1n =3+9=12

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Advertisement

CBSE Delhi Question Answer of Chapters in PDF

Free Sample Papers and Previous Years' Question Papers for CBSE Exams from the Official CBSE Academic Website (CBSE.nic.in) in Delhi, Rajasthan, Uttar Pradesh and Bihar

Download CBSE / NCERT Book, Notes & MCQ Online Test / Mock Test

Online Quiz with Answers for Objective Questions in Hindi and English

Advertisement

Maharashtra Board Marathi & English Medium

Just Launched! Access Maharashtra Board Exam MCQs, Previous Year Papers, Textbooks, Solutions, Notes, Important Questions, and Summaries—available in both Marathi and English mediums—all in one place Maharashtra Board

Android APP

सरकारी Exam Preparation

Sarkari Exam Preparation Youtube

CBSE – दिल्ली, उत्तर प्रदेश, मध्य प्रदेश, बिहार, राजस्थान & हरियाणा Board हिंदी माध्यम

कक्षा 6 to 8 हिंदी माध्यम
कक्षा 9 & 10 हिंदी माध्यम
कक्षा 11 हिंदी माध्यम

State Board

यूपी बोर्ड 6,7 & 8
बिहार बोर्ड हिंदी माध्यम

CBSE Board

Mathematics Class 6
Science Class 6
Social Science Class 6
हिन्दी Class 6
सामाजिक विज्ञान कक्षा 6
विज्ञान कक्षा 6

Mathematics Class 7
Science Class 7
SST Class 7
सामाजिक विज्ञान कक्षा 7
हिन्दी Class 7

Mathematics Class 8
Science Class 8
Social Science Class 8
हिन्दी Class 8

Mathematics Class 9
Science Class 9
English Class 9

Mathematics Class 10
SST Class 10
English Class 10

Mathematics Class XI
Chemistry Class XI
Accountancy Class 11

Accountancy Class 12
Mathematics Class 12

Learn English
English Through हिन्दी
Job Interview Skills
English Grammar
हिंदी व्याकरण - Vyakaran
Microsoft Word
Microsoft PowerPoint
Adobe PhotoShop
Adobe Illustrator
Learn German
Learn French
IIT JEE

Study Abroad

Study in Australia: Australia is known for its vibrant student life and world-class education in fields like engineering, business, health sciences, and arts. Major student hubs include Sydney, Melbourne, and Brisbane. Top universities: University of Sydney, University of Melbourne, ANU, UNSW.

Study in Canada: Canada offers affordable education, a multicultural environment, and work opportunities for international students. Top universities: University of Toronto, UBC, McGill, University of Alberta.

Study in the UK: The UK boasts prestigious universities and a wide range of courses. Students benefit from rich cultural experiences and a strong alumni network. Top universities: Oxford, Cambridge, Imperial College, LSE.

Study in Germany: Germany offers high-quality education, especially in engineering and technology, with many low-cost or tuition-free programs. Top universities: LMU Munich, TUM, University of Heidelberg.

Study in the USA: The USA has a diverse educational system with many research opportunities and career advancement options. Top universities: Harvard, MIT, Stanford, UC Berkeley.

Privacy Policies, Terms and Conditions, About Us, Contact Us
Copyright © 2025 eVidyarthi and its licensors. All Rights Reserved.