Main Menu
  • School
    • Close
    • CBSE English Medium
    • CBSE Hindi Medium
    • UP Board
    • Bihar Board
    • Maharashtra Board
    • MP Board
    • Close
  • English
    • Close
    • English Grammar for School
    • Basic English Grammar
    • Basic English Speaking
    • English Vocabulary
    • English Idioms & Phrases
    • Personality Enhancement
    • Interview Skills
    • Close
  • Sarkari Exam Prep
    • Close
    • All Govt Exams Preparation
    • MCQs for Competitive Exams
    • Notes For Competitive Exams
    • NCERT Syllabus for Competitive Exam
    • Close
  • Study Abroad
    • Close
    • Study in Australia
    • Study in Canada
    • Study in UK
    • Study in Germany
    • Study in USA
    • Close
Class 12th Mathematics || Menu
  • Videos Maths Class 12
  • MCQ Maths Class 12
  • Notes Maths Class 12
  • Book Maths Class 12
  • Important Formulas Maths Class 12
  • Previous Year Papers Maths Class 12
  • Chapter wise Practice Papers Maths Class 12
  • Important Questions Maths Class 12
  • Sample Papers Maths Class 12
  • Question Answer Maths Class 12
  • Syllabus Maths Class 12
  • Marking Scheme Maths Class 12
  • Relations and Functions
    • Introduction to Relations
    • Introduction to Functions
    • Problems on Functions
    • Composition of Functions
    • Problems on Composition
    • Binary Operations
    • R.D Sharma Solutions
    • Close
  • Inverse Trigonometric Functions
    • Introduction: Inverse Trigonometry
    • Properties of Inverse Trigonometry
    • R.D Sharma Solutions
    • Close
  • Matrices
    • Introduction to Matrices
    • Theorems
    • MCQs
    • Ex 3.1
    • Ex 3.2
    • Ex 3.3
    • Ex 3.4
    • Examples
    • Miscellaneous Exercises
    • R.D Sharma Solutions
    • Close
  • Determinants
    • Introduction to Determinants
    • Theorems
    • MCQs
    • Ex 4.1
    • Ex 4.2
    • Ex 4.3
    • Ex 4.4
    • Ex 4.5
    • Ex 4.6
    • Examples
    • Miscellaneous Exercises
    • R.D Sharma Solutions
    • Close
  • Continuity and Differentiability
    • Introduction Continuity and Differentiability
    • Miscellaneous Exercises
    • MCQs
    • Theorem
    • R.D Sharma Solutions
    • Ex 5.1
    • Ex 5.2
    • Ex 5.3
    • Ex 5.4
    • Ex 5.5
    • Ex 5.6
    • Ex 5.8
    • Close
  • Applications of Derivatives
    • Introduction
    • Ex 6.1
    • Ex 6.2
    • Ex 6.3
    • Ex 6.4
    • Ex 6.5
    • MCQs
    • Miscellaneous Exercises
    • R.D Sharma Solutions
    • Close
  • Integrals
    • Introduction to Integration
    • Problems on Definite Integrals
    • Properties of Definite Integrals
    • Evaluating Definite Integrals
    • Limit of A Sum
    • Integration by Parts
    • Integration by Partial Fractions
    • Integrals of Special Functions
    • Integrals of Trigonometric Identities
    • Integration by Substitution
    • More Problems on Integration
    • R.D Sharma Solutions
    • Close
  • Applications of Integrals
    • Area Between A Curve and A Line
    • Area Between Two Curves
    • R.D Sharma Solutions
    • Close
  • Differential Equations
    • Intro: Differential Equations
    • Variable Separable Form
    • Homogenous Differential Equations
    • Linear Differential Equations
    • R.D Sharma Solutions
    • Close
  • Vector Algebra
    • Introduction to Vector Algebra
    • Scalar Product of Two Vectors
    • Properties of Vectors
    • Cross Product
    • R.D Sharma Solutions
    • Close
  • Three Dimensional Geometry
    • Introduction to 3-D Geometry
    • Cartesian Equation of A Line
    • Skew Lines
    • Equation of Plane
    • Intercept Form and Family of Planes
    • Distance of A Point From A Plane
    • R.D Sharma Solutions
    • Close
  • Linear Programming
    • Introduction to Linear Programming
    • Optimal Solution
    • Solution of Linear Programming Problems
    • R.D Sharma Solutions
    • Close
  • Probability
    • Introduction to Conditional Probability
    • Independent Events
    • Bayes’ Theorem
    • Distribution of Random Variables
    • Binomial Distribution
    • Mean and Variance of A Random Variable
    • R.D Sharma Solutions
    • Close
  • Maths Class 12

Inverse Trigonometric Functions, Class 12 Mathematics R.D Sharma Question Answer

Advertisement

Page 4.7 Ex. 4.1

Q1.

Answer :

(i) Let tan-1-3=y
Then,
tany=-3
We know that the range of the principal value branch is -π2, π 2.
Thus,
tany=-3=-tanπ3=tan-π3⇒y=-π3∈-π2,π2
Hence, the principal value of tan-1-3 is -π3.

(ii) Let cos-1-12=y
Then,
cosy=-12
We know that the range of the principal value branch is 0, π.
Thus,
cosy=-12=cos3π4⇒y=3π4∈0,π
Hence, the principal value of cos-1-12 is 3π4.

(iii) Let cosec-1-2=y
Then,
cosecy=-2
We know that the range of the principal value branch is -π2, π2-0.
Thus,
cosecy=-2=cosec-π4y=-π4∈-π2,π2, y≠0
Hence, the principal value of cosec-1-2 is -π4.

(iv) Let cos-1-32=y
Then,
cosy=-32
We know that the range of the principal value branch is 0,π.
Thus,
cosy=-32=cos5π6⇒y=5π6∈0,π
Hence, the principal value of cos-1-32 is 5π6.

(v) Let sin-1-12=y
Then,
siny=-12
We know that the range of the principal value branch is -π2,π2.
Thus,
siny=-12=sin-π6⇒y=-π6∈-π2,π2
Hence, the principal value of sin-1-12 is -π6.

(vi) Let tan-113=y
Then,
tany=13
We know that the range of the principal value branch is -π2,π2.
Thus,
tany=13=tanπ6⇒y=π6∈-π2,π2
Hence, the principal value of tan-113 is π6.

(vii) Let sec-1-2=y
Then,
secy=-2
We know that the range of the principal value branch is 0,π-π2.
Thus,
secy=-2=sec3π4⇒y=3π4∈0,π, y≠π2
Hence, the principal value of sec-1-2 is 3π4.

(viii) Let cot-1-3=y
Then,
coty=-3
We know that the range of the principal value branch is 0,π.
Thus,
coty=-3=cot5π6⇒y=5π6∈0,π
Hence, the principal value of cot-1-3 is 5π6.

(ix) Let sec-12=y
Then,
secy=2
We know that the range of the principal value branch is 0,π-π2.
Thus,
secy=2=secπ3⇒y=π3∈0, π, y≠π2
Hence, the principal value of sec-12 is π3.

(x) Let cosec-123=y
Then,
cosecy=23
We know that the range of the principal value branch is -π2, π2-0.
Thus,
cosecy=23=cosecπ3⇒y=π3∈-π2, π2, y≠0
Hence, the principal value of cosec-123 is π3.

Q2.

Answer :

(i) cos-1cosx=x sin-1sinx=x

cos-112+2sin-112= cos-1cosπ3+2sin-1sinπ6=π3+2π6= 2π3

(ii) Let sin-112=y
Then,
siny=12
We know that the range of the principal value branch is -π2,π2.
Thus,
siny=12=sinπ6⇒y=π6∈-π2,π2
So,
tan-12cos2sin-112=tan-12cos2π6=tan-12cosπ3=tan-1212=tan-11=π4∈-π2,π2
∴tan-12cos2sin-112=π3

(iii) Let sin-1-12=y
Then,
siny=-12
We know that the range of the principal value branch is -π2,π2.
Thus,
siny=-12=sin-π6⇒y=-π6∈-π2,π2
Now,
Let cos-1-12=z
Then,
cosz=-12
We know that the range of the principal value branch is 0,π.
Thus,
cosz=-12=cos2π3⇒z=2π3∈0,π
So,
tan-11+cos-1-12+sin-112=π4+2π3-π6 =3π4
∴tan-11+cos-1-12+sin-112=3π4

(iv) Let tan-13=x
Then,
tanx=3
We know that the range of the principal value branch is -π2,π2.
Thus,
tanx=3=tanπ3⇒x=π3∈-π2,π2

Now,
Let sec-1-2=y
Then,
secy=-2
We know that the range of the principal value branch is 0,π-π2.
Thus,
secy=-2=sec2π3⇒y=2π3∈0,π, y≠π2
Now,
Let cosec-123=z
Then,
cosecz=23
We know that the range of the principal value branch is -π2, π2-0.
Thus,
cosecz=23=cosecπ3z=π3∈-π2, π2, z≠0
So,
tan-13-sec-1-2+cosec-123=π3-2π3+π3=0
∴tan-13-sec-1-2+cosec-123=0

Q3.

Answer :

(i)
sin-112-2sin-112=sin-1sinπ6-2sin-1sinπ4 ∵Range of sine is -π2, π2 and π6, π4∈ -π2, π2=π6-2π4=π6-π2=-π3
∴sin-112-2sin-112=-π3
(ii) sin-1-12+2cos-1-32=sin-1sin-π6+2cos-1cos5π6 ∵Range of sine is -π2, π2 ; -π6∈ -π2, π2 and range of cosine is 0, π ; 5π6∈ 0, π=-π6+25π6=-π6+5π3=9π6=3π2
∴sin-1-12+2cos-1-32=3π2

(iii)
tan-1-1+cos-1-12=tan-1tan-π4+cos-1cos3π4 ∵Range of tan is -π2, π2 ; -π4∈ -π2, π2 and range of cosine is 0, π ; 3π4∈ 0, π=-π4+3π4=π2
∴tan-1-1+cos-1-12=π2

(iv)

sin-1-32+cos-132=sin-1sin-π3+cos-1cosπ6 =-π3+π6 ∵Range of sine is -π2, π2 ; -π3∈ -π2, π2 and range of cosine is 0, π ; π6∈ 0, π=-π6
∴sin-1-32+cos-132=-π6

 

Page 4.71 Ex. 4.2

Q1.

Answer :

We know

sin θ=θ if -π2≤θ≤π2cos θ=θ if 0≤θ≤πtan θ=θ if -π2<θ<π2

(i) We have

sin-1sin5π6=sin-1sinπ-π6=sin-1sinπ6=π6

(ii) We have

cos-1cos-π4=cos-1cosπ4=π4
(iii) We have

tan-1tan3π4=tan-1tanπ-π4=tan-1-tanπ4=tan-1tan-π4=-π4
(iv) We have

sin-1sin2 =sin-1sinπ-2 ∵ 2∉ -π2,π2 =π-2
(v) We have

sinπ3-sin-1-32=sinπ3-sin-1sin-π3 ∵-π3∈-π2,π2=sinπ3–π3 =sin2π3=32
∴sinπ3-sin-1-32=32

(vi) We have

coscos-1-32+π4=coscos-1cos5π6+π4 =cos5π6+π4 =cos13π12=cosπ+π12=-cosπ12=-cosπ4-π6=-cosπ4cosπ6+sinπ4sinπ6=-12×32+12×12=-3+122
(vii) We have

costan-134=cos12cos-11-3421+342 ∵2tan-1x=cos-11-x21+x2=cos12cos-1725
Let y=cos-1725⇒cosy=725
Now,

cos12cos-1725=cos12y=cosy+12 ∵cos2x=2cos2x-1=725+12=3250=45
∴costan-134=45

(viii) We have

cos-1cos5π4=cos-1cos2π-3π4=cos-1cos3π4=3π4

(ix) We have

cos-1cos4π3=cos-1cos2π-2π3=cos-1cos2π3=2π3
(x) We have

tan-1tan2π3=tan-1tanπ-π3=tan-1-tanπ3=tan-1tan-π3=-π3

(xi) We have

cos-1cos13π6=cos-1cos2π+π6=cos-1cosπ6=π6
(xii) We have

tan-1tan7π6=tan-1tanπ+π6=tan-1tanπ6=π6

Q2.

Answer :

(i)
cossin-135=coscos-11-352 ∵sin-1x=cos-11-x2 =coscos-145 =45

(ii)
sincos-145=sinsin-11-452 ∵cos-1x=sin-11-x2 =sinsin-135 =35
(iii)
cossin-1-35=coscos-11–352 ∵sin-1x=cos-11-x2 =coscos-145 =45
(iv)
tancos-1817=tantan-11-8172817 ∵cos-1x=tan-11-x2x =tantan-11517817 =158

(v)

coseccos-1-1213=coseccosec-111–12132 ∵cos-1x=cosec-111-x2 =coseccosec-11513 =135
(vi)

tan2 tan-115-π4=tan2 tan-115-tan-1 1 =tantan-12×151-152-tan-1 1 ∵2 tan-1x=tan-12×1-x2 =tantan-1252425-tan-1 1 =tantan-1512+tan-1 1 =tantan-1512-11+512 ∵tan-1x-tan-1y=tan-1x-y1+xy =tantan-1-7121712 =tantan-1-717 =-717
(vii)

Let, cos-153=θ⇒cosθ=53⇒2cos2θ2-1=53⇒cos2θ2=3+56⇒cosθ2=3+56⇒θ2=cos-13+56 =tan-11-3+5623+56 =tan-11-3+563+56 =tan-13-563+56 =tan-13-53+5 =tan-13-53-53+53-5 =tan-13-529-5 =tan-13-52i.e., 12cos-153=tan-13-52⇒tan12cos-153=tantan-13-52∴tan12cos-153=3-52
(viii)
sin12cos-145=sin12×2sin-1±1-452 ∵cos-1x=2sin-1±1-x2 =sinsin-1±110 =±110
(ix)
cossin-135+sin-1513=cossin-1351-5132+5131-352 ∵sin-1x+sin-1y=sin-1×1-y2+y1-x2 =cossin-135×1213+513×45 =cossin-13665+413 =cossin-15665 =coscos-11-56652 ∵sin-1x=cos-11-x2 =coscos-13365 =3365

(x)
sin (tan−1 x + cot−1 x)=sinπ2 ∵tan-1x+cot-1x=π2
= 1

Q3.

Answer :
(i)
LHS=cos-1513=tan-11-5132513 ∵cos-1x=tan-11-x2x =tan-11213513 =tan-1125=RHS

(ii)
LHS=sin-1-45=tan-1-451-452 ∵sin-1x=tan-1×1-x2 =tan-1-4535 =tan-1-43=RHSAgain, sin-1-45=-sin-145 =-cos-11-452 ∵sin-1x=cos-11-x2 =-cos-135 =-π-cos-1-35 =cos-1-35-π

(iii)
LHS=tancos-145+tan-123=tantan-11-45245+tan-123 ∵cos-1x=tan-11-x2x =tantan-134+tan-123 =tantan-134+231-34×23 ∵tan-1x+tan-1y=tan-1x+y1-xy =tantan-11712612 =tantan-1176 =176=RHS
(iv)

LHS=2 sin-135=sin-12×351-925 ∵ 2 sin-1x=sin-12×1-x2 =sin-165×45 =sin-12425 =tan-124251-24252 ∵sin-1x=tan-1×1-x2 =tan-12425725 =tan-1247=RHS

(v)

LHS=sin-1513+cos-135 =sin-1513+cos-135 =sin-1513+sin-11-352 ∵sin-1x=cos-11-x2 =sin-1513+sin-145 =sin-15131-452+451-5132 ∵sin-1x+sin-1y=sin-1×1-y2+y1-x2 =sin-1513×35+45×1213 =sin-1313+4865 =sin-16365 =tan-163651-63652 ∵sin-1x=tan-1×1-x2 =tan-163651665 =tan-16316=RHS

Q4.

Answer :

i) LHS=tan-117+tan-1 113 =tan-117+1131-17×113 ∵tan-1x+tan-1y=tan-1x+y1-xy =tan-120919091 =tan-129=RHS

ii) LHS=tan-114+tan-1 29 =tan-114+291-14×29 ∵tan-1x+tan-1y=tan-1x+y1-xy =tan-117363436 =tan-112 =12cos-11-141+14 ∵tan-1x=12cos-11-x21+x2 =12cos-13454 =12cos-135Now,tan-112=12sin-1221+14 ∵tan-1x=12sin-12×1+x2 =12sin-1154 =12sin-145

iii) LHS=tan-123 =12tan-12×231-232 ∵tan-1x=12tan-12×1-x2 =12tan-14359 =12tan-1125=RHS

iv) LHS=tan-117+2tan-1 13 =tan-117+tan-12×131-132 ∵2 tan-1x=tan-12×1-x2 = tan-117+tan-12389 = tan-117+tan-134 =tan-117+341-17×34 ∵tan-1x+tan-1y=tan-1x+y1-xy =tan-125282528 =tan-11=π4=RHS

v) LHS=sin-145+2tan-1 13 =sin-145+tan-12×131-132 ∵2 tan-1x=tan-12×1-x2 = sin-145+tan-12389 = sin-145+tan-134 = sin-145+cos-111+916 ∵tan-1x=cos-111+x2 = sin-145+cos-1154 = sin-145+cos-145 = π2=RHS

vi) LHS=sin-11213+cos-1 45+tan-16316 =tan-112131-144169+tan-11-162545+tan-16316 ∵sin-1x=tan-1×1-x2 and cos-1x=tan-11-x2x =tan-11213513+tan-13545+tan-16316 =tan-1125+tan-134+tan-16316 =π+tan-1125+341-125×34 +tan-16316 ∵tan-1x+tan-1y=π+tan-1x+y1-xy =π+tan-16320-1620+tan-16316 =π+tan-1-6316+tan-16316 =π-tan-16316+tan-16316 =π=RHS
vii) LHS=2 sin-135-tan-1 1731 =2 tan-1341-925-tan-1 1731 ∵sin-1x=tan-1×1-x2 =2 tan-13545-tan-1 1731 =2 tan-134-tan-1 1731 =tan-12×341-342-tan-1 1731 ∵2 tan-1x=tan-12×1-x2 =tan-132716-tan-1 1731 =tan-1247-tan-1 1731 =tan-1247-17311+247×1731 ∵tan-1x-tan-1y=tan-1x-y1+xy =tan-1625217625217 =tan-11=π4=RHS
viii) LHS=cot-17+cot-1 8+cot-118 =tan-117+tan-1 18+tan-1118 ∵cot-1x=tan-11x =tan-117+181-17×18 +tan-1118 ∵tan-1x+tan-1y=tan-1x+y1-xy =tan-115565556+tan-1118 =tan-1311+tan-1118 =tan-1311+1181-311×118 =tan-165198195198 =tan-113 =cot-13=RHS

ix) LHS=2 tan-115+tan-1 18 =tan-12×151-152+tan-1 18 ∵2 tan-1x=tan-12×1-x2 =tan-1252425+tan-1 18 =tan-1512+tan-1 18 =tan-1512+181-512×18 ∵tan-1x+tan-1y=tan-1x+y1-xy =tan-113249196 =tan-147=RHS
x) LHS=2 tan-134-tan-1 1731 =tan-12×341-342-tan-1 1731 ∵2 tan-1x=tan-12×1-x2 =tan-132716-tan-1 1731 =tan-1247-tan-1 1731 =tan-1247-17311+247×1731 ∵tan-1x-tan-1y=tan-1x-y1+xy =tan-1625217625217 =tan-11=π4=RHS

xi)  LHS=2 tan-112+tan-1 17 =tan-12×121-122+tan-1 17 ∵2 tan-1x=tan-12×1-x2 =tan-1134+tan-1 17 =tan-143+tan-1 17 =tan-143+171-43×17 ∵tan-1x+tan-1y=tan-1x+y1-xy =tan-131211721 =tan-13117=RHS

 

Page 4.72 Ex. 4.2

Q5.

Answer :

Let: a=tanm b=tann x=tany

Now,
sin-12a1+a2-cos-11-b21+b2=tan-12×1-x2⇒sin-12tanm1+tan2m-cos-11-tan2n1+tan2n=tan-12tany1-tan2y⇒sin-1sin2m-cos-1cos2n=tan-1tan2y ∵sin2x=2tanx1+tan2x and cos2x=1-tan2x1+tan2x⇒2m-2n=2y⇒m-n=y⇒tan-1a-tan-1b=tan-1x ∵a=tanm, b=tann and x=tany⇒tan-1a-b1+ab=tan-1x ∵tan-1x-tan-1y=tan-1x-y1+xy⇒a-b1+ab=x

∴a-b1+ab=x

Q6.

Answer :

We know
cos-1x+cos-1y=cos-1xy-1-x21-y2
Now,

cos-1×2+cos-1y3=α⇒cos-1x2y3-1-x241-y23=α⇒x2y3-1-x241-y23=cosα⇒xy-4-x29-y2=6cosα⇒4-x29-y2=xy-6cosα⇒4-x29-y2=x2y2+36cos2α-12xycosα Squaring both sides⇒36-4y2-9×2+x2y2=x2y2+36cos2α-12xycosα⇒36-4y2-9×2=36cos2α-12xycosα⇒9×2-12xycosα+4y2=36-36cos2α⇒9×2-12xycosα+4y2=36sin2α

Q7.

Answer :

(i)
tan-11-x22x+cot-11-x22x=π2LHS=tan-11-x22x+cot-11-x22x =tan-11-x22x+π2-tan-11-x22x ∵tan-1x+cot-1x=π2 =π2=RHS

(ii)
sintan-11-x22x+cos-11-x21+x2=1LHS=sintan-11-x22x+cos-11-x21+x2 =sinsin-11-x22x1+1-x22x+cos-11-x21+x2 ∵tan-1x=sin-1×1+x2 =sinsin-11-x21+x2+cos-11-x21+x2 =sinπ2 ∵sin-1x+cos-1x=π2 =1=RHS

(iii)

9π8-94sin-113=94sin-1223LHS=9π8-94sin-113 =94π2-sin-113 =94cos-113 =94sin-11-19 =94sin-1223=RHS

Q8.

Answer :

LHS=2 tan-1a-ba+btanθ2=cos-11-a-ba+btanθ221+a-ba+btanθ22 ∵2 tan-1x=cos-11-x21+x2 =cos-11-a-ba+btan2θ21+a-ba+btan2θ2 =cos-1a+b-a-btan2θ2a+b+a-btan2θ2 =cos-1a+b-atan2θ2+btan2θ2a+b+atan2θ2-btan2θ2 =cos-1a1-tan2θ2+b1+tan2θ2a1+tan2θ2+b1-tan2θ2 =cos-1a1-tan2θ21+tan2θ2+b1+tan2θ21+tan2θ2a1+tan2θ21+tan2θ2+b1-tan2θ21-tan2θ2 Dividing Nr and Dr by 1+tan2θ2 =cos-1a1-tan2θ21+tan2θ2+ba+b1-tan2θ21-tan2θ2 =cos-1acosθ+ba+bcosθ=RHS

Q9.

Answer :

Let:
a=tanzb=tany

Then,
sin-12a1+a2+sin-12b1+b2=2tan-1x⇒sin-12tanz1+tan2z+sin-12tany1+tan2y=2tan-1x⇒sin-1sin2z+sin-1sin2y=2tan-1x ∵sin2x=2tanx1+tan2x⇒2z+2y=2tan-1x⇒tan-1a+tan-1b=tan-1x ∵a=tanz and b=tany⇒tan-1a+b1-ab=tan-1x ∵tan-1x+tan-1y=tan-1x+y1-xy ⇒x=a+b1-ab

Q10.

Answer :

We have
2tan-1x+sin-12×1+x21 For x>1,=2tan-1x+sin-12×1+x2=π-sin-12×1+x2+sin-12×1+x2 ∵ 2tan-1x=π-sin-12×1+x2 , x>1=π2 For x=1,=2tan-1x+sin-12×1+x2 =2tan-11+sin-1211+12=2tan-11+sin-11=2π4+π2 =π

Q11.

Answer :

We know
tan-1x+tan-1y=tan-1x+y1-xy, xy>1

∴ tan-12aba2-b2+tan-12xyx2-y2=tan-12aba2-b2+2xyx2-y21-2aba2-b22xyx2-y2=tan-12abx2-aby2+xya2-xyb2a2-b2x2-y2a2x2-a2y2-x2b2+y2b2-4abxya2-b2x2-y2=tan-12abx2-aby2+xya2-xyb2a2x2-a2y2-x2b2+y2b2-2abxy-2abxy=tan-12ax-byay+bxax-by2-ay+bx2=tan-12αβα2-β2 ∵ α=ax-by and β=ay+bx

Q12.

Answer :

(i)
sin-1×1-y2-y1-x2=sin-1x-sin-1yPutting y=x, sin-1×1-x2-x1-x2=sin-1x-sin-1x⇒sin-1×1-x-x1-x2=sin-1x-sin-1x

(ii) Let x=cotθ
Now,
tan-1x+1+x2=tan-1cotθ+1+cot2θ=tan-1cotθ+cosecθ =tan-1cosθ+1sinθ=tan-12cos2θ22sinθ2cosθ2=tan-1cotθ2=tan-1tanπ2-θ2 =π2-θ2=π2-cot-1×2

(iii) Let x=cotθ
Now,

tan-11+x2-x=tan-11+cot2θ-cotθ=tan-1cosecθ-cotθ=tan-11-cosθsinθ=tan-12sin2θ22sinθ2cosθ2=tan-1tanθ2=θ2=cot-1×2

(iv) Let x=tanθ
Now,

tan-11+x2-1x=tan-11+tan2θ-1tanθ=tan-1sec2θ-1tanθ =tan-1secθ-1tanθ=tan-11-cosθsinθ=tan-12sin2θ22sinθ2cosθ2=tan-1tanθ2=θ2=tan-1×2

(v) Let x=tanθ
Now,

tan-11+x2+1x=tan-11+tan2θ+1tanθ=tan-1sec2θ+1tanθ =tan-1secθ+1tanθ=tan-1cosθ+1sinθ=tan-12cos2θ22sinθ2cosθ2=tan-1cotθ2=tan-1tanπ2-θ2 =π2-θ2=π2-tan-1×2
(vi) Let x=acosθ
Now,

tan-1a-xa+x=tan-1a-acosθa+acosθ=tan-11-cosθ1+cosθ=tan-12sin2θ22cos2θ2=tan-1tanθ2=θ2 =12cos-1xa
∴ tan-1a-xa+x=cos-1xa2

(vii) Let x=asinθ
Now,

tan-1xa+a2-x2=tan-1asinθa+a2-a2cos2θ=tan-1asinθa+acos2θ=tan-1sinθ1+cosθ=tan-12sinθ2cosθ22cos2θ2=tan-1tanθ2 =θ2=12sin-1xa
(viii) Let x=sinθ
Now,

sin-1x+1-x22=sin-1sinθ+1-sin2θ2=sin-1sinθ+cosθ2=sin-112sinθ+12cosθ=sin-1cosπ4sinθ+sinπ4cosθ=sin-1sinθ+π4 =θ+π4=π4+sin-1x
∴ sin-1x+1-x22=cos-1x+π4

(ix) Let x=cosθ
Now,
sin-11+x+1-x2=sin-11+cosθ+1-cosθ2=sin-12cos2θ2+2sin2θ22=sin-1cosθ2+sinθ22=sin-112sinθ2+12cosθ2=sin-1sinθ2+π4 =θ2+π4=cos-1×2+π4
∴ sin-11+x+1-x2=cos-1×2+π4

(x) Let x=cosθ
Now,

sin2tan-11-x1+x=sin2tan-11-cosθ1+cosθ=sin2tan-12sin2θ22cos2θ2=sin2tan-1tanθ2=sinθ=sincos-1x =sinsin-11-x2=1-x2
(xi) Let x=asecθ
Now,

cot-1ax2-a2=cot-1aa2sec2θ-a2=cot-1aatan2θ=cot-1cotθ=θ =sec-1xa

 

Page 4.73 Ex. 4.2

Q13.

Answer :

(i) Let sin-112=y
Then,
siny=12

∴ tan-12cos2sin-112=tan-12cos2y=tan-121-2sin2y ∵cos2x=1-2sin2x=tan-121-2×14 ∵siny=12=tan-12×12=tan-11=π4

∴ tan-12cos2sin-112=π4

(ii)

We havecottan-1a+cot-1a=cotπ2 tan-1x+cot-1x=π2=0

∴ cottan-1+cot-1a=0

(iii)
We have
cossec-1x+cosec-1x=cosπ2 ∵sec-1x+cosec-1x=π2=0

∴ cossec-1x+cosec-1x=0 , |x|≥1

Q14.

Answer :

Let a=btanm and x=ytann
Then,

23tan-13ab2-a3b3-3a2b+23tan-13xy2-x3y3-3x2y=23tan-13b3tanm-b3tan3mb3-3b3tan2m+23tan-13y3tann-y3tan3ny3-3y3tan2n=23tan-13tanm-tan3m1-3tan2m+23tan-13tann-tan3n1-tan2n=23tan-1tan3m+23tan-1tan3n ∵ tan3x=3tanx-tan3x1-3tan2x=233m+233n =2m+2n=2tan-1ab+tan-1xy ∵ a=btanm, x=ytann=2tan-1ab+xy1-abxy=2tan-1ay+bxby-ax=tan-12ay+bxby-ax1-ay+bxby-ax2=tan-12ay+bxby-axby-ax2-ay+bx2=tan-12αβα2-β2 ∵ β=ay+bx and α=by-ax

Q15.

Answer :

(i) We know
tan-1x+tan-1y=tan-1x+y1-xy

∴ tan-12x+tan-13x=nπ+3π4⇒tan-12x+3×1-2x×3x=nπ+3π4⇒5×1-6×2=tannπ+3π4⇒5×1-6×2=-1⇒5x=-1+6×2⇒6×2-5x-1=0⇒6x+1x-1=0⇒x=-16 As x=1 is not satisfying the equation
(ii) We know
tan-1x+tan-1y=tan-1x+y1-xy

∴ tan-1x+1+tan-1x-1=tan-1831⇒tan-1x+1+x-11-x+1×x-1=tan-1831⇒2×1-x2+1=831⇒2×2-x2=831⇒31x=8-4×2⇒4×2+31x-8=0⇒4×2+32x-x-8=0⇒4x-1x+8=0⇒x=14 As x=-8 is not satisfying the equation
(iii) We know
tan-1x+tan-1y=tan-1x+y1-xy

∴ tan-114+2tan-115+tan-116+tan-11x=π4⇒tan-114+tan-115+tan-115+tan-116+tan-11x=π4⇒tan-114+151-14×15+tan-115+161-15×16+tan-11x=π4⇒tan-19201920+tan-111302930+tan-11x=π4⇒tan-1919+tan-11129+tan-11x=π4⇒tan-1919+11291-1129×919+tan-11x=π4⇒tan-1235226+tan-11x=π4⇒tan-1235226+1×1-235226×1x=π4⇒235x+226226x-235=tanπ4⇒235x+226226x-235=1⇒235x+226=226x-235⇒9x=-461⇒x=-4619
(iv) We know
sin-1x+sin-1y=sin-1×1-y2+y1-x2

∴ sin-1x+sin-12x=π3⇒sin-1x+sin-12x=sin-132⇒sin-1x-sin-132=-sin-12x⇒sin-1×1-34+321-x2=-sin-12x⇒sin-1×2+321-x2=sin-1-2x⇒x2+321-x2=-2x⇒x+31-x2=-4x⇒5x=-31-x2Squaring both the sides,25×2=3-3×2⇒28×2=3⇒x=±1237
(v)
3sin-12×1+x2-4cos-11-x21+x2+2tan-12×1-x2=π3⇒6tan-1x-8tan-1x+4tan-1x=π3 ∵ 2tan-1x=sin-12×1+x2, 2tan-1x=cos-11-x21+x2 and 2tan-1x=tan-12×1-x2 ⇒2tan-1x=π3⇒tan-1x=π6 ⇒x=tanπ6⇒x=13

∴ x=13

(vi)

cos-1x+sin-1×2=π6⇒cos-1x+sin-1×2=sin-112⇒cos-1x=sin-112-sin-1×2⇒cos-1x=sin-1121-x24-x21-14 ∵ sin-1x-sin-1y=sin-1×1-y-y1-x2⇒cos-1x=sin-13×4-3×4⇒sin-11-x2=sin-13×4-3×4⇒1-x2=0Squaring both the sides,⇒1-x2=0 ⇒x=±1 As x=-1 is not satisfying the equation

(vii) We know
tan-1x+tan-1y=tan-1x+y1-xy and tan-1x-tan-1y=tan-1x-y1+xy

∴ tan-1x+1+tan-1x-1+tan-1x=tan-13x⇒tan-1x+1+x-11-x+1×x+1=tan-13x-tan-1x⇒tan-12×2-x2=tan-13x-x1+3×2⇒2×2-x2=2×1+3×2⇒2-x2=1+3×2⇒4×2-1=0⇒x2=14⇒x=±12
(viii)
tancos-1x=sincot-112 ⇒tancos-1x=sintan-12 ∵ cot-1x=tan-11x⇒tantan-11-x2x=sinsin-121+4 ∵ cos-1x=tan-11-x2x and tan-1x=sin-1×1+x2⇒1-x2x=25Squaring both the sides,⇒1-x2x2=45⇒5-5×2=4×2⇒9×2=5⇒x=±53

(ix)
tan-11-x1+x-12tan-1x=0⇒tan-11-x1+x=12tan-1x⇒tan-11- tan-1x=12tan-1x ∵ tan-11- tan-1x=tan-11-x1+x⇒tan-11=32tan-1x⇒π4=32tan-1x⇒π6=tan-1x⇒x=13

(x)

⇒cot-1x-cot-1x+2=π12⇒tan-11x+cot-11x+2=π12 ∵ cot-1x=tan-11x⇒tan-11x-1x+21+1xx+2=π12 ⇒tan-12xx+2×2+2x+1xx+2=π12⇒tan-12×2+2x+1=π12⇒2×2+2x+1=tanπ12 ⇒2×2+2x+1=tanπ3-π4 ⇒2×2+2x+1=tanπ3-tanπ41+tanπ3×tanπ4⇒2×2+2x+1=3-13+1⇒2×2+2x+1=3-13+1×3+13+1⇒2×2+2x+1=23+12⇒1x+12=13+12⇒x+1=3+1⇒x=3
(xi) We know
tan-1x+tan-1y=tan-1x+y1-xy

∴ tan-12×1-x2+cot-11-x22x=2π3⇒tan-12×1-x2+tan-12×1-x2=2π3 ∵ cot-1x=tan-11x⇒tan-12×1-x2=π3⇒2tan-1x=π3 ∵ 2tan-1x tan-12×1-x2⇒tan-1x=π6⇒x=tanπ6⇒x=13

(xii) We know
tan-1x+tan-1y=tan-1x+y1-xy

∴ tan-1x+2+tan-1x-2=tan-1879⇒tan-1x+2+x-21-x+2×x-2=tan-1879⇒2×1-x2+4=879⇒x5-x2=479⇒79x=20-4×2⇒4×2+79x-20=0⇒4×2+80x-x-20=0⇒4x-1x+20=0⇒x=14 or- 20∴ x=14 ∵ x>0

(xiii) We know
tan-1x+tan-1y=tan-1x+y1-xy

∴ tan-1×2+tan-1×3=π4⇒tan-1×2+x31-x2×x3=π4⇒tan-15×66-x26=π4⇒5×6-x2=tanπ4⇒5×6-x2=1⇒5x=6-x2⇒x2+5x-6=0⇒x-1x+6=0⇒x=1 ∵ 0<x<6

Q16.

Answer :

We know
tan-1x-tan-1y=tan-1x-y1+xy,xy>-1
Now,
tan-1xy-tan-1x-yx+y
=tan-1xy-x-yx+y1+xyx-yx+y=tan-1×2+xy-xy+y2yx+yx2+y2+xy-xyyx+y=tan-11=tan-1tanπ4=π4
∴ tan-1xy-tan-1x-yx+y=π4

 

Page 4.76 (Very Short Answers)

Q1.

Answer :

sin-1-x=-sin-1x, x∈-1,1cos-1-x=π-cos-1x, x∈-1,1
∴ sin-1-32+cos-1-12=-sin-132+π-cos-112 = -sin-1sinπ3+π-cos-1cosπ3=-π3+π-π3=π3
∴ sin-1-32+cos-1-12=π3

Q2.

Answer :

The maximum value of sin-1x in x∈-1,1 is at 1.
So, the maximum value is

sin-11 = sin-1sinπ2=π2

Again, the minimum value is at -1.
Thus, the minimum value is

sin-1-1=-sin-11 = -sin-1π2=-π2
So, the difference between the maximum and the minimum value is
π2–π2=π

Q3.

Answer :

sin-1x+sin-1y+sin-1z=3π2⇒sin-1x+sin-1y+sin-1z=π2+π2+π2 As the maximum value in the range of sin-1x is π2And here sum of three inverse of sine is 3 times π2. i.e., every sin inverse function is equal to π2 here.⇒sin-1x=π2, sin-1y=π2 and sin-1z=π2⇒x=1, y=1 and z=1∴ x+y+z=1+1+1=3

Q4.

Answer :

sin-12×1+x2=π-2tan-1x ∵ 2tan-1x=π- sin-12×1+x2 for x>1

Q5.

Answer :

Let x=tany
Then,
cos-11-x21+x2=cos-11-tan2y1+tan2y=cos-1cos2y ∵ 1-tan2x1+tan2x=cos2x=2y …1

The value of x is negative.
So, let x = -a where a > 0.

-a=tany⇒y=tan-1-a
Now,

cos-11-x21+x2=2y Using 1=2tan-1-a =-2tan-1x ∵ x=-a

Q6.

Answer :

tan-1x+tan-1y=tan-1x+y1-xy, xy<1

∴ tan-1x+tan-11x=tan-1x+1×1-x1x,x>0=tan-1×2+10=tan-1∞=tan-1tanπ2=π2

∴ tan-1x+tan-11x=π2

Q7.

Answer :

tan-1x+tan-1y=tan-1x+y1-xy
When x<0, 1x<0, then both are negative.
Let x = – y, y>0
Then,
tan-1x+tan-11x=tan-1-y+tan-1-1y=-tan-1y+tan-11y=-tan-1y+1y1-y1y,y>0=-tan-1y2+10=-tan-1∞=-tan-1tanπ2=-π2
∴ tan-1x+tan-11x=-π2, x<0

Q8.

Answer :

cos-1cos 2π3+sin-1sin 2π3=cos-1cos 2π3+sin-1sin π-π3 =cos-1cos 2π3+sin-1sin π3 ∵ Range of sine is -π2, π2 ; π3∈ -π2, π2 and range of cosine is 0, π ; 2π3∈ 0, π =2π3+π3=π

 

Page 4.77 (Very Short Answers)

Q9.

Answer :

Let x=-tany
where 0<y<π2
Then,
sin-12×1+x2+cos-11-x21+x2=sin-1-2tany1+tan2y+cos-11-tan2y1+tan2y=sin-1-sin 2y+cos-1cos2y =-sin-1sin 2y+cos-1cos2y =-2y+2y =0

∴ sin-12×1+x2+cos-11-x21+x2=0

Q10.

Answer :

We know
cot-1x=tan-11x
Now, we have
sincot-1x=sintan-11x=sinsin-11×1+1×2 ∵ tan-1x=sin-1×1+x2=sinsin-11xx2+1x=sinsin-1 1×2+1=1×2+1 ∵ sinsin-1x=x

Hence, sincot-1x=1×2-1

Q11.

Answer :

We have
cos-112+2sin-112=cos-1cosπ3+2sin-1sinπ6 ∵The range of sine is -π2, π2; π6∈ -π2, π2 and the range of cosine is 0, π; π3∈ 0, π =π3+2π6=π3+π3=2π3
∴ cos-112+2sin-112=2π3

Q12.

Answer :

The range of tan-1x is-π2,π2.

Q13.

Answer :

We know that
cos-1cosx=x
Now,
cos-1cos1540∘=cos-1cos1440+100∘=cos-1cos100∘ ∵cos4π+100∘=cos100°=100∘

Q14.

Answer :

We know that sin-1sinx=x.
Now,

sin-1sin-600∘=sin-1sin720∘-600∘=sin-1sin120∘=sin-1sin180∘-120∘ ∵sinx = sinπ-x=sin-1sin60∘=60∘

∴ sin-1sin-600∘=60∘

Q15.

Answer :

Let y=sin-113
Then, siny=13

Now, cosy=1-sin2y,

⇒cosy=1-19=89=223

cos2sin-113=cos(2y)=cos2y-sin2y ∵cos 2x= cos2x-sin2x=2232-132=89-19=79

∴ cos2sin-113=79

Q16.

Answer :

We know that sin-1sinx=x.
Now,
sin-1sin1550∘=sin-1sin1620∘-1550∘ ∵sinx =sin1620∘-x=sin-1sin70∘=70∘

∴ sin-1sin1550∘=70∘

Q17.

Answer :

We know that
cos-1x=2tan-11-x1+xtan-1x=sin-1×1+x2

∴ sin12cos-145=sin122tan-11-451+45=sintan-11595=sintan-113=sinsin-1131+19=sinsin-1110=110 ∵sinsin-1x=x

∴ sin12cos-145=110

Q18.

Answer :

We know that
tan-1x=sin-1×1+x2

∴ sintan-134=sinsin-1341+916=sinsin-13454=sinsin-135=35 ∵sinsin-1x=x

∴ sintan-134=35

Q19.

Answer :

We have
cos-1tan3π4=cos-1-tanπ-3π4 ∵tanπ-x=-tanx=cos-1tan-π4=cos-1-tanπ4=cos-1-1=cos-1cosπ ∵cosπ=-1 =π

∴ cos-1tan3π4=π

Q20.

Answer :

We have, cos 2 sin-112 = cos2×π6=cosπ3=12

Q21.

Answer :

We have
cos-1cos350∘-sin-1sin350∘=cos-1cos360∘-350∘-sin-1sin360∘-350∘ ∵sin360∘-x=-sinx , cos360∘-x=cosx =cos-1cos10∘-sin-1sin-10∘=10∘–10∘=20∘

∴ cos-1cos350∘-sin-1sin350∘=20∘

Q22.

Answer :

Let y=cos-135⇒cosy=35
Now,
cos212cos-135=cos212y=cosy+12 ∵cos2x = 2cos2x-1=35+12=852=45
∴ cos212cos-135=45

Q23.

Answer :

We know that tan-1x+tan-1y=tan-1x+y1-xy.
Now,
tan-1x+tan-1y=π4⇒tan-1x+y1-xy=π4⇒x+y1-xy=tanπ4⇒x+y1-xy=1 ⇒x+y=1-xy⇒x+y+xy=1

∴ x+y+xy=1

Q24.

Answer :

We know that cos-1cosx=x.
Now,
cos-1cos6=cos-1cos2π-6=2π-6

Q25.

Answer :

Consider,
sin-1cosπ9=sin-1sinπ2-π9 ∵cos x =sinπ2-x=sin-1sin7π18=7π18 ∵ sin-1sinx =x

∴ sin-1cosπ9=7π18

Q26.

Answer :

We have
sinπ3-sin-1-12=sinπ3–π6=sinπ3+π6=sinπ2=1

∴ sinπ3-sin-1-12 = 1

Q27.

Answer :

We have
tan-1tan15π4=tan-1tan4π-π4tan-1-tanπ4 ∵tan4π-x=-tanx=tan-1tan-π4 =-π4 ∵tan-1tanx =x
∴ tan-1tan15π4=-π4

Q28.

Answer :

cos-1-x=π-cos-1 x, x∈-1,1
Now, we have

sin-112+cos-1-12=sin-112+π-cos-112=sin-1sinπ6+π-cos-1cosπ3=π6+π-π3=5π6
∴ sin-112+cos-1-12=5π6

Q29.

Answer :

We know that tan-1x-tan-1y=tan-1x-y1+xy.
Now,
tan-1ab-tan-1a-ba+b=tan-1ab-a-ba+b1+aba-ba+b=tan-1a2+ab-ab+b2ba+bab+b2-ab+a2ba+b=tan-11=tan-1tanπ4 ∵tanπ4=1=π4

∴ tan-1ab-tan-1a-ba+b=π4

Q30.

Answer :

cos-1cos5π4≠5π4 as 5π4 does not lie between 0 and π.
We have

cos-1cos5π4=cos-1cos2π-3π4=cos-1cos3π4=3π4

Q31.

Answer :

We have
LHS=sin-12×1-x2Putting x=sin a, we get=sin-12 sin a1-sin2a =sin-12sin a cos a=sin-1sin 2a=2a=2sin-1x ∵x=sin a

Q32.

Answer :

We know that sin-1sinx=x.
We have
sin-1sin3π5=sin-1sinπ-3π5 ∵π-3π5∈-π2,π2=sin-1sin2π5=2π5

∴ sin-1sin3π5=2π5

Q33.

Answer :

We know that tan-1x+cot-1x=π2.
We have
tan-13+cot-1x=π2⇒tan-13=π2-cot-1x⇒tan-13=tan-1x⇒x=3

∴x=3

Q34.

Answer :

We know that sin-1x+cos-1x=π2.
We have
sin-113+cos-1x=π2⇒sin-113=π2-cos-1x⇒sin-113=sin-1x⇒x=13

∴ x=13

 

Page 4.78 (Very Short Answers)

Q35.

Answer :

We know that sin-1x+cos-1x=π2 and cos-1-x=π-cos-1x.

∴ sin-113-cos-1-13=sin-113-π-cos-113=sin-113-π+cos-113=sin-113+cos-113-π=π2-π ∵sin-1x+cos-1x=π2=-π2

∴ sin-113-cos-1-13=-π2

Q36.

Answer :

We know that sin-1x+cos-1x=π2

∴ 4sin-1x+cos-1x=π⇒4sin-1x+π2-sin-1x=π ∵sin-1x+cos-1x=π2⇒3sin-1x=π 2⇒sin-1x=π 6⇒x=sinπ 6⇒x=12

∴ x=12

Q37.

Answer :

We know
tan-1x+tan-1y=tan-1x+y1-xy

x<0, y<0 such that
xy=1

Let x = -a and y = -b where both a and b are positive.

∴ tan-1x+tan-1y=tan-1x+y1-xy=tan-1-a-a1-1=tan-1-∞=tan-1tan-π2=-π2

Q38.

Answer :

Let y=sin-1-32
Then,
siny=-32=sin-π3y=-π3∈-π2,π2

Here, -π2,π2 is the range of the principal value branch of inverse sine function.

∴ sin-1-32=-π3

Q39.

Answer :

Let y=sin-1-12
Then,
siny=-12=sin-π6y=-π6∈-π2,π2

Here, -π2,π2 is the range of the principal value branch of the inverse sine function.

∴ sin-1-12=-π6

Q40.

Answer :

We have, cos-1cos2π3+sin-1sin2π3=cos-1cos2π3+sin-1sinπ-π3 ∵ π-2π3∈-π2,π2=cos-1cos2π3+sin-1sinπ3=2π3+π3=π

∴ cos-1cos2π3+sin-1sin2π3=π

 

Page 4.78 (Multiple Choice Questions)

Q1.

Answer :

(a) sin 2α

tan-11+x2-1-x21+x2+1-x2=α⇒1+x2-1-x21+x2+1-x2=tanα⇒ 1+x2-1-x21+x2+1-x2×1+x2-1-x21+x2-1-x2 =tanα⇒1+x22+1-x22-21+x21-x21+x22-1-x22=tanα⇒1-1-x4x2=tanα⇒x2tanα=1-1-x4⇒1-x4=1-x2tanα⇒1-x4=1+x4tan2α-2x2tanα⇒x4+x4tan2α-2x2tanα=0⇒x4sec2α-2x2tanα=0⇒x2x2sec2α-2tanα=0⇒x2sec2α-2tanα=0 ∵x2≠0⇒x2sec2α=2tanα⇒x2=2tanαsec2α=2sinαcosα=sin2α

Q2.

Answer :

(d) 329

Let, cos-1152=y and sin-1417=z

∴ cosy=152⇒siny=752⇒tany=7sinz=417⇒cosz=117⇒tanz=4

∴ tancos-1152-sin-1417=tany-z=tany-tanz1+tany tanz=7-41+7×4=329

Q3.

Answer :

(c) tan-1 x

Let tan-1x=y
So, x=tany

∴ 2tan-1cosectan-1x-tancot-1x=2tan-1cosectan-1x-tantan-11x =2tan-1cosectan-1x-1x=2tan-1cosec y-1tany=2tan-11-cosysiny=2tan-12sin2y2siny =2tan-12sin2y22siny2cosy2=2tan-1tany2=y=tan-1x

Q4.

Answer :

(a) sin2 α

We know that cos-1x+cos-1y=cos-1xy-1-x21-y2.

∴ cos-1xa+cos-1yb=α⇒cos-1xayb-1-x2a21-y2b2=α⇒xyab-1-x2a21-y2b2=cosα⇒1-x2a21-y2b2=xyab-cosα⇒1-x2a21-y2b2=x2a2y2b2+cos2α-2xyabcosα Squaring both the sides⇒1-x2a2-y2b2+x2a2y2b2=x2a2y2b2+cos2α-2xyabcosα⇒x2a2+y2b2-2xyabcosα=1-cos2α=sin2α

Q5.

Answer :

(a) x = 1, y = 2

We have,tan-1x+cos-1y1+y2=sin-1310⇒tan-1x+tan-11-y1+y22y1+y2=tan-13101-3102⇒tan-1x+tan-11y=tan-13⇒tan-1x+1y1-x×1y=tan-13⇒xy+1y-x=3⇒3y-3x=xy+1⇒3x+xy=3y-1⇒x3+y=3y-1⇒x=3y-13+yFor, y=1 ⇒x=12For, y=2 ⇒x=1For, y=3 ⇒x=43For, y=4 ⇒x=117For, y=1 ⇒x=73 and so on……Therefore, only integral solutions are :x=1 and y=2

 

Page 4.79 (Multiple Choice Questions)

Q6.

Answer :

(b) 32
We know that sin-1x+cos-1x=π2.

∴ sin-1x-cos-1x=π6⇒π2-cos-1x -cos-1x=π6⇒-2cos-1x =π6-π2⇒-2cos-1x =-π3⇒cos-1x =π6⇒x=cosπ6⇒x=32

Q7.

Answer :

(a) x

Let cos-1x=y

Then,
sincot-1tancos-1x=sincot-1tan y =sincot-1cot π2-y =sinπ2-y=cosy =x ∵cosy=x

Q8.

Answer :

(a) 2
We know that tan-1x+tan-1y=tan-1x+y1-xy.

∴ tan-12x+tan-13x=π4⇒tan-12x+3×1-2x ×3x=π4⇒2x+3×1-2x ×3x=tanπ4⇒5×1-6×2=1 ⇒5x=1-6×2⇒6×2+5x-1=0

Therefore, there are two solutions.

Q9.

Answer :

(a) 4 α = 3 β

We know that tan-1tanx=x.

∴ α=tan-1tan5π4=tan-1tanπ+π4=tan-1tanπ4=π4
and
β=tan-1-tan2π3=tan-1-tanπ-π3=tan-1tanπ3=π3

∴ 4α=π3β=π
∴ 4α = 3β

Q10.

Answer :

(c) 2

For, -π≤x≤-π21+cos 2x=2sin-1(sin x)⇒2 cos x=2 -π-x⇒2 -cos x=2 -π-x⇒cosx=π+x It does not satisfy for any value of x in the interval -π, -π2

For, -π2≤x≤π21+cos 2x=2sin-1(sin x)⇒2 cos x=2 x⇒2 cos x=2 x⇒cosx= x It gives one value of x in the interval -π2, π2

For, π2≤x≤π1+cos 2x=2sin-1(sin x)⇒2 cos x=2 -π-x⇒2 -cos x=2 π-x⇒cosx=-π+x It gives one value of x in the interval π2, π

∴1+cos 2x=2sin-1(sin x) gives two real solutions in the interval -π, π

Q11.

Answer :

(b) -π2
We know that tan-1x+tan-1y=tan-1x+y1-xy.
x<0, y<0 such that
xy=1

Let x = -a and y = -b, where a and b both are positive.

∴ tan-1x+tan-1y=tan-1x+y1-xy=tan-1-a-a1-1=tan-1-∞=tan-1tan-π2=-π2

Q12.

Answer :

(a) tan θ

Let y=tanθ
Then,
u=cot-1tanθ-tan-1tanθ⇒u=cot-1y-tan-1y⇒u=π2-2tan-1y ∵ tan-1x+cot-1x=π2 ⇒2tan-1y=π2-u ⇒tan-1y=π4-u2⇒y=tanπ4-u2⇒tanθ=tanπ4-u2 ∵y=tanθ

Q13.

Answer :

(c) 18 − 18 cosθ

We know
cos-1x+cos-1y=cos-1xy-1-x21-y2

∴ cos-1×3+cos-1y2=θ2⇒cos-1x3y2-1-x291-y24=θ2⇒xy6-9-x294-y24=cosθ2⇒xy-6cosθ2=9-x2 4-y2

Squaring both the sides, we get
x2y2-12xycosθ2+36cos2θ2=9-x24-y2⇒x2y2-12xycosθ2+36cos2θ2=36-9y2-4×2+x2y2⇒4×2+9y2-12xycos2θ2=36-36cos2θ2⇒4×2+9y2-12xycos2θ2=361-cosθ+12 ∵cos2x =2cos2x-1⇒4×2+9y2-12xycos2θ2=18-18cosθ

Q14.

Answer :

(a) π6
We have
α = tan-13x2y-x, β=tan-12x-y3y
Now, α-β=tan-13x2y-x-tan-12x-y3y =tan-13x2y-x-2x-y3y1+3x2y-x×2x-y3y =tan-13xy-4xy+2y2+2×2-xy3y2y-x3y2y-x+3x2x-y3y2y-x =tan-13xy-4xy+2y2+2×2-xy23y2-3xy+23×2-3xy =tan-12y2+2×2-2xy23y2+23×2-23xy =tan-113=π6

Q15.
Answer :

(b) e13π/18

Given: fx=ecos-1sinx+π3

Then,
f8π9=ecos-1sin8π9+π3=ecos-1sin11π9=ecos-1cosπ2+13π18 ∵cosπ2+θ=sinθ=ecos-1cos13π18=e13π18

Q16.

Answer :

(d) none of these

We know that tan-1x+tan-1y=tan-1x+y1-xy.
Now,
tan-1111+tan-1211=tan-1111+2111-111211=tan-1311121-2121=tan-1311119121=tan-133119=0.27

Q17.

Answer :

(c) 36 sin2 θ

We know
cos-1x+cos-1y=cos-1xy-1-x21-y2

Now,
cos-1×2+cos-1y3=θ⇒cos-1x2y3-1-x241-y23=θ⇒x2y3-1-x241-y23=cosθ⇒xy-4-x29-y2=6cosθ⇒4-x29-y2=xy-6cosθ⇒4-x29-y2=x2y2+36cos2θ-12xycosθ (Squaring both the sides)⇒36-4y2-9×2+x2y2=x2y2+36cos2θ-12xycosθ⇒36-4y2-9×2=36cos2θ-12xycosθ⇒9×2-12xycosθ+4y2=36-36cos2θ⇒9×2-12xycosθ+4y2=36sin2θ

Q18.

Answer :

(b) 15
We know that tan-1x+tan-1y=tan-1x+y1-xy.
Now,
tan-13+tan-1x=tan-18⇒tan-13+x1-3x=tan-18⇒3+x1-3x=8⇒3+x=8-24x⇒3-8=-24x-x⇒-5=-25x⇒x=525=15

Q19.

Answer :

(b) -π10

sin-1cos33π5=sin-1cos6π+3π5=sin-1cos3π5=sin-1sinπ2-3π5=π2-3π5=-π10

 

Page 4.80 (Multiple Choice Questions)

Q20.

Answer :

(d) 0

We have
cos-1cos5π3+sin-1sin5π3=cos-1cos2π-π3+sin-1sin2π-π3=cos-1cosπ3+sin-1-sinπ3=cos-1cosπ3-sin-1sinπ3=π3-π3=0

Q21.

Answer :

(d) -2425

Let cos-1-35=x, 0≤x≤π
Then, cos x=-35

∴ sinx=1-cos2x=1–352=1625=45
Now,
sin2cos-1-35=sin2x=2sinx cosx=2×45×-35=-2425

Q22.

Answer :

(a) π3

We know
sin-1sinx=x

Now,

θ=sin-1sin-600∘=sin-1sin720∘-600∘=sin-1sin120∘=sin-1sin180∘-120∘ ∵sinx = sinπ-x=sin-1sin60∘=60∘

Q23.

Answer :

Answer :

(a) 13

Let x=tany
Then,
3sin-12tany1+tan2y-41-tan2y1+tan2y+2tan-12tany1-tan2y=π3⇒3sin-1sin 2y-4cos-1cos 2y+2tan-1tan2y=π3 ∵sin2y=2tany1+tan2y,cos2y=1-tan2y1+tan2y and tan2y=2tany1-tan2y⇒3×2y-4×2y+2×2y=π3⇒6y-8y+4y=π3⇒2y=π3⇒y=π6⇒tan-1x=π6 ∵tan-1x=y⇒x=tanπ6⇒x=13

Q24.

Answer :

(c) 32
We know that sin-1x+cos-1x=π2.

4cos-1x+sin-1x=π⇒4cos-1x+π2-cos-1x=π⇒3cos-1x=π-π2⇒3cos-1x=π2⇒cos-1x=π6⇒x=cosπ6⇒x=32

Q25.

Answer :

(d) 2

We know that tan-1x+tan-1y=tan-1x+y1-xy.

∴ tan-1x+1x-1+tan-1x-1x=tan-1-7⇒tan-1x+1x-1+x-1×1-x+1x-1×x-1x=tan-1-7⇒tan-1×2+x+x2-2x+1xx-1×2-x-x2+1xx-1=tan-1-7⇒tan-12×2-x+1-x+1=tan-1-7

So, we get

2×2-x+1-x+1=-7⇒2×2-x+1=7x-7⇒2×2-8x+8=0⇒x2-4x+4=0⇒x-22=0⇒x=2

Q26.

Answer :

(b) 32

We know that sin-1x+cos-1x=π2.

∴ π2-cos-1x-cos-1x=π6⇒-2cos-1x=π6-π2⇒-2cos-1x=-π3⇒cos-1x=π6⇒x=cosπ6⇒x=32

Q27.

Answer :

(b) π4

We know
tan-1x+tan-1y=tan-1x+y1-xy

∴ tan-1ab+c+tan-1bc+a=tan-1ab+c+bc+a1-ab+c×bc+a =tan-1ac+a2+b2+bcb+cc+aac+c2+bcb+cc+a

=tan-1ac+c2+bcac+c2+bc ∵a2+b2=c2 =tan-11=tan-1tanπ4=π4

Q28.

Answer :

(c) 122

Let sin-1638=y
Then,
siny=638cosy=1-sin2y=1-6364=18
Now, we have

sin14sin-1638=sin14y=1-cosy22 ∵cos2x=1-2sin2x=1-1+cosy22 ∵cos2x=2cos2x-1=1-1+1822=1-9162=1-342=18=122

Q29.

Answer :

(a) 7

Let 2cot-13=y
Then, coty2=3

cotπ4-2cot-13=cotπ4-y=cotπ4coty+1coty-cotπ4=coty+1coty-1 =cot2y2-12coty2+1cot2y2-12coty2-1=cot2y2+2coty2-1cot2y2-2coty2-1=9+6-19-6-1=7

Q30.

Answer :

(c) ±π6
We have,tan-1cotθ=2θ⇒tan2θ=cotθ⇒2tanθ1-tan2θ=1tanθ⇒2tan2θ=1-tan2θ⇒3tan2θ=1⇒tan2θ=13⇒tanθ=±13∴ θ=±π6

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Advertisement

CBSE Delhi Question Answer of Chapters in PDF

Free Sample Papers and Previous Years' Question Papers for CBSE Exams from the Official CBSE Academic Website (CBSE.nic.in) in Delhi, Rajasthan, Uttar Pradesh and Bihar

Download CBSE / NCERT Book, Notes & MCQ Online Test / Mock Test

Online Quiz with Answers for Objective Questions in Hindi and English

Advertisement

Maharashtra Board Marathi & English Medium

Just Launched! Access Maharashtra Board Exam MCQs, Previous Year Papers, Textbooks, Solutions, Notes, Important Questions, and Summaries—available in both Marathi and English mediums—all in one place Maharashtra Board

Android APP

सरकारी Exam Preparation

Sarkari Exam Preparation Youtube

CBSE – दिल्ली, उत्तर प्रदेश, मध्य प्रदेश, बिहार, राजस्थान & हरियाणा Board हिंदी माध्यम

कक्षा 6 to 8 हिंदी माध्यम
कक्षा 9 & 10 हिंदी माध्यम
कक्षा 11 हिंदी माध्यम

State Board

यूपी बोर्ड 6,7 & 8
बिहार बोर्ड हिंदी माध्यम

CBSE Board

Mathematics Class 6
Science Class 6
Social Science Class 6
हिन्दी Class 6
सामाजिक विज्ञान कक्षा 6
विज्ञान कक्षा 6

Mathematics Class 7
Science Class 7
SST Class 7
सामाजिक विज्ञान कक्षा 7
हिन्दी Class 7

Mathematics Class 8
Science Class 8
Social Science Class 8
हिन्दी Class 8

Mathematics Class 9
Science Class 9
English Class 9

Mathematics Class 10
SST Class 10
English Class 10

Mathematics Class XI
Chemistry Class XI
Accountancy Class 11

Accountancy Class 12
Mathematics Class 12

Learn English
English Through हिन्दी
Job Interview Skills
English Grammar
हिंदी व्याकरण - Vyakaran
Microsoft Word
Microsoft PowerPoint
Adobe PhotoShop
Adobe Illustrator
Learn German
Learn French
IIT JEE
Privacy Policies, Terms and Conditions, About Us, Contact Us
Copyright © 2025 eVidyarthi and its licensors. All Rights Reserved.