eVidyarthi

Main Menu
  • eVidyarthi
  • School
    • Class 6th
      • Maths Class 6
      • Science Class 6
      • Hindi Class 6
      • व्याकरण
      • English Class 6
      • English Grammar
      • Sanskrit Class 6
      • Geography
      • Civics
      • History
    • Class 7th
      • Maths Class 7
      • Science Class 7
      • Hindi Class 7
      • व्याकरण
      • English Class 7
      • English Grammar
      • Sanskrit Class 7
      • Geography
      • Civics
      • History
    • Class 8th
      • Maths Class 8
      • Science Class 8
      • Hindi Class 8
      • व्याकरण
      • English Class 8
      • English Grammar
      • Sanskrit Class 8
      • Geography
      • Civics
      • History
    • Class 9th
      • Maths Class 9
      • Science Class 9
      • Hindi Class 9
      • English Class 9
      • English Grammar
      • व्याकरण
      • Economics Class 9
      • Geography Class 9
      • Civics Class 9
      • History Class 9
    • Class 10th
      • Maths Class 10
      • Science Class 10
      • Hindi Class 10
      • English Class 10
      • English Grammar
      • व्याकरण
      • Economics Class 10
      • History Class 10
      • Civics Class 10
      • Geography Class 10
    • Class 11th
      • Maths Class 11
      • Accounts Class 11
      • English Class 11
      • English Grammar
      • व्याकरण
      • Chemistry Class 11
      • Physics Class 11
      • Biology Class 11
    • Class 12th
      • Maths Class 12
      • Accounts Class 12
      • Chemistry Class 12
      • Physics Class 12
      • Biology Class 12
      • English Class 12
      • English Grammar
      • व्याकरण
    • Close
  • English
    • Basic English Grammar
    • Basic English Speaking
    • English Vocabulary
    • English Idioms & Phrases
    • Personality Enhancement
    • Interview Skills
    • Close
  • Softwares
    • Microsoft Word
    • PhotoShop
    • Excel
    • Illustrator
    • PowerPoint
    • Close
Maths Class 7 || Menu
  • Important
    • Sample Paper
    • Important Formulas
    • Revision Notes
    • Mathematics Book
    • MCQs
    • Close
  • Integers
    • Ex 1.1
    • Ex 1.2
    • Ex 1.3
    • Ex 1.4
    • MCQs
    • Ex. 1.1 NCERT Solutions
    • Ex. 1.2 NCERT Solutions
    • Ex. 1.3 NCERT Solutions
    • Ex. 1.4 NCERT Solutions
    • Close
  • Fractions and Decimals
    • Ex 2.1
    • Ex 2.2
    • Ex 2.3
    • Ex 2.4
    • Ex 2.5
    • Ex 2.6
    • Ex 2.7
    • MCQs
    • Ex. 2.1 NCERT Solutions
    • Ex. 2.2 NCERT Solutions
    • Ex. 2.3 NCERT Solutions
    • Ex. 2.4 NCERT Solutions
    • Ex. 2.5 NCERT Solutions
    • Ex. 2.6 NCERT Solutions
    • Ex. 2.7 NCERT Solutions
    • Close
  • Data Handling
    • Ex 3.1
    • Ex 3.2
    • Ex 3.3
    • Ex 3.4
    • MCQs
    • Ex. 3.1 NCERT Solutions
    • Ex. 3.2 NCERT Solutions
    • Ex. 3.3 NCERT Solutions
    • Ex. 3.4 NCERT Solutions
    • Close
  • Simple Equations
    • Ex 4.1
    • Ex 4.2
    • Ex 4.3
    • Ex 4.4
    • MCQs
    • Ex. 4.1 NCERT Solutions
    • Ex. 4.2 NCERT Solutions
    • Ex. 4.3 NCERT Solutions
    • Ex. 4.4 NCERT Solutions
    • Close
  • Lines and Angles
    • Ex 5.1
    • Ex 5.2
    • MCQs
    • Ex. 5.1 NCERT Solutions
    • Ex. 5.2 NCERT Solutions
    • Close
  • Triangle and its Properties
    • Ex 6.1
    • Ex 6.2
    • Ex 6.3
    • Ex 6.4
    • Ex 6.5
    • MCQs
    • Ex. 6.1 NCERT Solutions
    • Ex. 6.2 NCERT Solutions
    • Ex. 6.3 NCERT Solutions
    • Ex. 6.4 NCERT Solutions
    • Ex. 6.5 NCERT Solutions
    • Close
  • Congruence of Triangles
    • Ex 7.1
    • Ex 7.2
    • MCQs
    • Ex. 7.1 NCERT Solutions
    • Ex. 7.2 NCERT Solutions
    • Close
  • Comparing Quantities
    • Ex 8.1
    • Ex 8.2
    • Ex 8.3
    • MCQs
    • Ex. 8.1 NCERT Solutions
    • Ex. 8.2 NCERT Solutions
    • Ex. 8.3 NCERT Solutions
    • Close
  • Rational Numbers
    • Ex 9.1
    • Ex 9.2
    • MCQs
    • Ex. 9.1 NCERT Solutions
    • Ex. 9.2 NCERT Solutions
    • Close
  • Practical Geometry
    • Ex 10.1
    • Ex 10.2
    • Ex 10.3
    • Ex 10.4
    • Ex 10.5
    • MCQs
    • Ex. 10.1 NCERT Solutions
    • Ex. 10.2 NCERT Solutions
    • Ex. 10.3 NCERT Solutions
    • Ex. 10.4 NCERT Solutions
    • Ex. 10.5 NCERT Solutions
    • Close
  • Perimeter and Area
    • Ex 11.1
    • Ex 11.2
    • Ex 11.3
    • Ex 11.4
    • MCQs
    • Ex. 11.1 NCERT Solutions
    • Ex. 11.2 NCERT Soluions
    • Ex. 11.3 NCERT Solutions
    • Ex 11.4 NCERT Solutions
    • Close
  • Algebraic Expressions
    • Ex 12.1
    • Ex 12.2
    • Ex 12.3
    • Ex 12.4
    • MCQs
    • Ex. 12.1 NCERT Solutions
    • Ex. 12.2 NCERT Solutions
    • Ex. 12.3 NCERT Solutions
    • Ex. 12.4 NCERT Solutions
    • Close
  • Exponents & Powers
    • Ex 13.1
    • Ex 13.2
    • Ex 13.3
    • MCQs
    • Ex. 13.1 NCERT Solutions
    • Ex. 13.2 NCERT Solutions
    • Ex. 13.3 NCERT Solutions
    • Close
  • Symmetry
    • Ex 14.1
    • Ex 14.2
    • Ex 14.3
    • MCQs
    • Ex. 14.1 NCERT Solutions
    • Ex. 14.2 NCERT Solutions
    • Ex. 14.3 NCERT Solutions
    • Close
  • Visualising Solid Shapes
    • Ex 15.1
    • Ex 15.2
    • Ex 15.3
    • Ex 15.4
    • MCQs
    • Ex. 15.1 NCERT Solutions
    • Ex. 15.2 NCERT Solutions
    • Ex. 15.3 NCERT Solutions
    • Ex. 15.4 NCERT Solutions
    • Close

Class 7 Ex. 4.4 Maths NCERT Solutions

NCERT Solutions for Class 7 Maths Chapter 4 Simple Equations Ex 4.4

Ex 4.4 Class 7 Maths Question 1.
Set up equations and solve them to find the unknown numbers in the following cases:
(a) Add 4 to eight times a number; you get 60.
(b) One-fifth of a number minus 4 gives 3.
(c) If I take three-fourths of a number and add 3 to it, I get 21.
(d) When I subtracted 11 from twice a number, the result was 15.
(e) Munna subtracts thrice the number of notebooks he has from 50, he finds the result to be 8.
(f) Ibenhal thinks of a number. If she adds 19 to it and divides the sum by 5, she will get 8.
(g) Anwar thinks of a number. If he takes away 7 from 5/2 of the numbers, the result is 23.

Solution:

(a) Let the required number be x.
Step I: 8x + 4
Step II: 8x + 4 = 60 is the required equation
Solving the equation, we have
8x + 4 = 60
⇒ 8x = 60 – 4 (Transposing 4 to RHS)
⇒ 8x = 56

⇒ 8 x/8 = 56/8 (Dividing both sides by 8)
⇒ x = 7
Thus, x – 7 is the required unknown number.

(b) Let the required number be x.
Step I: 1/5 x – 4
Step II: 1/5 x – 4 = 3 is the required equation. 5
Solving the equation, we get
1/5 x – 4 = 3
⇒ 1/5 x = 4 + 3 (Transposing 4 to RHS)
⇒ 1/5 x = 7
⇒ 1/ 5 x × 5 = 7 × 5 (Multiplying both sides by 5)
⇒ x = 35 is the required unknown number,

(c) Let the required number be x.
Step I: 3 /4 x + 3
Step II: 3 /4 x + 3 = 21 is the required equation.
Solving the equation, we have

⇒ x = 24 is the required unknown number.

(d) Let the required unknown number be x.
Step I: 2x – 11
Step II: 2x -11 = 15 is the required equations.
Solving the equation, we have
2x – 11= 15
⇒ 2x = 15 + 13 (Transposing 11 to RHS)
⇒ 2x = 28
⇒ 2 x/2 = 28/2 (Dividing both sides by 2)
⇒ x = 14 is the required unknown number,

(e) Let the required number be x.
Step I: 50 – 3x
Step II: 50 – 3x = 8 is the required equations.
Solving the equation, we have
50 – 3x = 8
⇒ -3x = 8 – 50 (Transposing 50 to RHS)
⇒ -3x = -42
⇒ -3 x/-3 = -42/-3 (Dividing both sides by -3)
⇒ x = 14 is the required unknown number.

(f) Let the required number be x.
Step I: x + 19
Step II: x + 19/5
Step III: x + 19/5 = 8 is the required equation.
Solving the equation, we have
x + 19/5 = 8
⇒ x + 19/5 × 5 = 8 × 5(Multiplying both sides by 5)
⇒ x + 19 = 40
⇒ x = 40 – 19 (Transposing 19 to RHS)
∴ x = 21 is the required unknown number.

(g) Let the required number be x.
Step I: 5/2x – 7
Step II: 5/5 – 7 = 23 is the required equation.
Solving the equation, we have


⇒ x = 12 is the required unknown number.

Ex 4.4 Class 7 Maths Question 2.
Solve the following:
(a) The teacher tells the class that the highest marks obtained by a student in her class is twice the lowest marks plus 7. The highest score is 87. What is the lowest score?
(b) In an isosceles triangle, the base angle are equal. The vertex angle is 40°. What are the base angles of the triangle? (Remember, the sum of three angles of a triangle is 180°?)
(c) Sachin scored twice as many runs as Rahul. Together, their runs fell two short of a double century. How many runs did each one score?

Solution:

(a) Let the lowest score be x.
Step I: Highest marks obtained = 2x + 7
Step II: 2x + 7 = 87 is the required equation. Solving the equation, we have
2x + 7 = 87
⇒ 2x = 87 – 7 (Transposing 7 to RHS)
⇒ 2x = 80
⇒ 2 x/2 = 80/2 (Dividing both sides by 2)
⇒ x = 40 is the required lowest marks.

(b) Let each base angle be x degrees.
Step I: Sum of all angles of the triangle (x + x + 40) degrees.
Step II: x + x + 40 = 180°
⇒ 2x + 40° = 180°
Solving the equation, we have
2x + 40° = 180°
2x = 180° – 40° (Transposing 40° to RHS)
2x = 140°
⇒ 2 x/2 =140°/2 (Dividing both sides by 2)
⇒ x = 70°
Thus the required each base angle = 70°

(c) Let the runs scored by Rahul = x
Runs scored by Sachin = 2x
Step I: x + 2x = 3x
Step II: 3x + 2 = 200
Solving the equation, we have
3x + 2 = 200
⇒ 3x = 200 – 2 (Transposing 2 to RHS)
⇒ 3x = 198
⇒ 3 x/ 3 = 198/3 (Dividing both sides by 3)
⇒ x = 66
Thus, the runs scored by Rahul is 66 and the runs scored by Sachin = 2 × 66 = 132

Ex 4.4 Class 7 Maths Question 3.
Solve the following:
(i) Irfan says that he has 7 marbles more than five times the marbles Parmit has. Irfan has 37 marbles. How many marbles does Parmit have?
(ii) Laxmi’s father is 49 years old. He is 4 years older than three times Laxmi’s age. What is Laxmi’s age?
(iii) People of Sundargram planted trees in a village garden. Some of the trees were fruit trees. The number of non-fruit trees were two more than three times the number of fruit trees. What was the number of fruit trees planted if the number of non-fruit trees planted was 77?

Solution:

(i) Let the number of marbles with Parmit be
Step I: Number of marbles that Irfan has = 5x + 7
Step II: 5x + 7 = 37 Solving the equation, we have 5x + 7 = 37
⇒ 5x = 37 – 7 (Transposing 7 to RHS)
⇒ 5x = 30
⇒5 x/5 = 30/5 (Dividing both sides by 5)
⇒ x = 6
Thus, the required number of marbles = 6.

(ii) Let Laxmi’s age be x years.
Step I: Father’s age = 3x + 4
Step II: 3x + 4 = 49
Solving the equation, we get
3x + 4-= 49
⇒ 3x = 49 – 4 (Transposing to RHS)
⇒ 3x = 45
⇒ 3 x/3 = 45/3 (Dividing both sides by 3)
⇒ x = 15
Thus, the age of Laxmi = 15 years

(iii) Let the number of planted fruit tree be x.
Step I: Number of non-fruit trees = 3x + 2
Step II: 3x + 2 = 77
Solving the equation, we have
3x + 2 = 77
⇒ 3x = 77 – 2 (Transposing 2 to RHS)
⇒ 3x = 75
⇒ 3 x/ 3 = 75/3 (Dividing both sides by 3)
⇒ x = 25
Thus, the required number of fruit tree planted = 25

Ex 4.4 Class 7 Maths Question 4.
Solve the following riddle:

I am a number,

Tell my identity!

Take me seven times over

And add a fifty!

To reach a triple century

You still need forty!

Solution:

Suppose my identity number is x.
Step I: 7 + 50
Step II: 7x + 50 + 40 = 300
or 7x + 90 = 300
Solving the equation, we have
7x + 90 = 300
⇒ 7x = 300 – 90 (Transforming 90 to RHS)
⇒ 7x = 210
⇒ 7x/7 = 210/7 (Dividing both sides by 7)
⇒ x = 30
Thus, my identity is 30.

Android App

eVidyarthi

Search On eVidyarthi

Evidyarthi on Facebook

Like us on Facebook

Follow Evidyarthi on Youtube

Learn English
Learn English Through हिन्दी
Job Interview Skills
English Grammar
हिंदी व्याकरण - Vyakaran
Mathematics Class 6th
Science Class 6th
हिन्दी Class 6th
Mathematics Class 7th
Science Class 7th
हिन्दी Class 7th
Mathematics Class 8th
Science Class 8th
हिन्दी Class 8th
Mathematics Class 9th
English Class 9th
Science Class 9th
Mathematics Class 10th
English Class 10th
Mathematics Class XI
Chemistry Class XI
Accountancy Class 11th
Accountancy Class 12th
Mathematics Class 12th
Microsoft Word
Microsoft Excel
Microsoft PowerPoint
Adobe PhotoShop
Adobe Illustrator
Learn German
Learn French
IIT JEE
Privacy Policies, Contact Us
Copyright © 2020 eVidyarthi and its licensors. All Rights Reserved.