Solutions For All Chapters Maths Class 7
Ex 6.3 Class 7 Maths Question 1.
 Find the value of the unknown x in the following diagrams:
 
Solution:
(i) By angle sum property of a triangle, we have
 ∠x + 50° + 60° = 180°
 ⇒ ∠x + 110° = 180°
 ∴ ∠x = 180° – 110° = 70°
(ii) By angle sum property of a triangle, we have
 ∠x + 90° + 30 = 180° [∆ is right angled triangle]
 ⇒ ∠x + 120° = 180°
 ∴ ∠x – 180° – 120° = 60°
(iii) By angle sum property of a triangle, we have
 ∠x + 30° + 110° – 180°
 ⇒ ∠x + 140° = 180°
 ∴ ∠x = 180° – 140° = 40°
(iv ) By angle sum property of a triangle, we have
 ∠x + ∠x + 50° = 180°
 ⇒ 2x + 50° = 180°
 ⇒ 2x = 180° – 50°
 ⇒ 2x = 130°
 ∴ x = 130°/2 = 65°
(v) By angle sum property of a triangle, we have
 ∠x + ∠x +∠x =180°
 ⇒ 3 ∠x = 180°
 ∴ ∠x = 180°/3 = 60°
(vi) By angle sum property of a triangle, we have
 x + 2 x + 90° = 180° (∆ is right angled triangle)
 ⇒ 3x + 90° = 180°
 ⇒ 3x = 180° – 90°
 ⇒ 3x = 90°
 ∴ x = 90°/3 = 30°
Ex 6.3 Class 7 Maths Question 2.
 Find the values of the unknowns x and y in the following diagrams:
 
Solution:
(i) ∠x + 50° = 120° (Exterior angle of a triangle)
 ∴ ∠x = 120°- 50° = 70°
 ∠x + ∠y + 50° = 180° (Angle sum property of a triangle)
 70° + ∠y + 50° = 180°
 ∠y + 120° = 180°
 ∠y = 180° – 120°
 ∴ ∠y = 60°
 Thus ∠x = 70 and ∠y – 60°
(ii) ∠y = 80° (Vertically opposite angles are same)
 ∠x + ∠y + 50° = 180° (Angle sum property of a triangle)
 ⇒ ∠x + 80° + 50° = 180°
 ⇒ ∠x + 130° = 180°
 ∴ ∠x = 180° – 130° = 50°
 Thus, ∠x = 50° and ∠y = 80°
(iii) ∠y + 50° + 60° = 180° (Angle sum property of a triangle)
 ∠y + 110° = 180°
 ∴ ∠y = 180°- 110° = 70°
 ∠x + ∠y = 180° (Linear pairs)
 ⇒ ∠x + 70° = 180°
 ∴ ∠x = 180° – 70° = 110°
 Thus, ∠x = 110° and y = 70°
(iv) ∠x = 60° (Vertically opposite angles)
 ∠x + ∠y + 30° = 180° (Angle sum property of a triangle)
 ⇒ 60° + ∠y + 30° = 180°
 ⇒ ∠y + 90° = 180°
 ⇒ ∠y = 180° – 90° = 90°
 Thus, ∠x = 60° and ∠y = 90°
(v) ∠y = 90° (Vertically opposite angles)
 ∠x + ∠x + ∠y = 180° (Angle sum property of a triangle)
 ⇒ 2 ∠x + 90° = 180°
 ⇒ 2∠x = 180° – 90°
 ⇒ 2∠x = 90°
 ∴ ∠x = 90°/2 = 45°
 Thus, ∠x = 45° and ∠y = 90°
(vi) From the given figure, we have
Adding both sides, we have
 ∠y + ∠1 + ∠2 = 3∠x
 ⇒ 180° = 3∠x (Angle sum property of a triangle)
 ∴ ∠x = 180°/3 = 60°
 ∠x = 60°, ∠y = 60°




Thank you sir