eVidyarthi

Main Menu
  • eVidyarthi
  • School
    • Class 6th
      • Maths Class 6
      • Science Class 6
      • Hindi Class 6
      • व्याकरण
      • English Class 6
      • English Grammar
      • Sanskrit Class 6
      • Geography
      • Civics
      • History
    • Class 7th
      • Maths Class 7
      • Science Class 7
      • Hindi Class 7
      • व्याकरण
      • English Class 7
      • English Grammar
      • Sanskrit Class 7
      • Geography
      • Civics
      • History
    • Class 8th
      • Maths Class 8
      • Science Class 8
      • Hindi Class 8
      • व्याकरण
      • English Class 8
      • English Grammar
      • Sanskrit Class 8
      • Geography
      • Civics
      • History
    • Class 9th
      • Maths Class 9
      • Science Class 9
      • Hindi Class 9
      • English Class 9
      • English Grammar
      • व्याकरण
      • Economics Class 9
      • Geography Class 9
      • Civics Class 9
      • History Class 9
    • Class 10th
      • Maths Class 10
      • Science Class 10
      • Hindi Class 10
      • English Class 10
      • English Grammar
      • व्याकरण
      • Economics Class 10
      • History Class 10
      • Civics Class 10
      • Geography Class 10
    • Class 11th
      • Maths Class 11
      • Accounts Class 11
      • English Class 11
      • English Grammar
      • व्याकरण
      • Chemistry Class 11
      • Physics Class 11
      • Biology Class 11
    • Class 12th
      • Maths Class 12
      • Accounts Class 12
      • Chemistry Class 12
      • Physics Class 12
      • Biology Class 12
      • English Class 12
      • English Grammar
      • व्याकरण
    • Close
  • English
    • Basic English Grammar
    • Basic English Speaking
    • English Vocabulary
    • English Idioms & Phrases
    • Personality Enhancement
    • Interview Skills
    • Close
  • Softwares
    • Microsoft Word
    • PhotoShop
    • Excel
    • Illustrator
    • PowerPoint
    • Close
Class 11th Maths || Menu
  • Important
    • Sample Papers
    • MCQs
    • Important Formulas
    • Revision Notes
    • Mathematics Syllabus
    • Mathematics Book
    • Close
  • Sets
    • Set Notations
    • Subsets and Supersets
    • Operations on Sets
    • Algebra of Sets
    • Counting Theorems
    • NCERT Solutions
    • R.D Sharma Solutions
    • Close
  • Relations and Functions
    • Cartesian Product of Sets
    • Relations
    • Functions
    • Graphs and Algebra of Functions
    • NCERT Solutions
    • R.D Sharma Solutions
    • Close
  • Trigonometric Functions
    • Ex 3.1
    • Ex 3.2
    • Ex 3.3
    • Ex 3.4
    • Examples
    • MCQs
    • Miscellaneous Exercises
    • NCERT Solutions
    • R.D Sharma Solutions
    • Close
  • Principle of Mathematical Induction
    • Ex 4.1
    • Examples
    • MCQs
    • NCERT Solutions
    • R.D Sharma Solutions
    • Close
  • Complex Numbers and Quadratic Equations
    • Introduction to Complex Numbers
    • Geometry of Complex Numbers
    • Quadratic Equations
    • Square Root of A Complex Number
    • NCERT Solutions
    • R.D Sharma Solutions
    • Close
  • Linear Inequalities
    • Linear Inequalities : One Variable
    • Linear Inequalities : 1 and 2 Variables
    • Graphical Solutions
    • Word Problems : Linear Inequalities
    • NCERT Solutions
    • R.D Sharma Solutions
    • Close
  • Permutations and Combinations
    • Fundamental Principle of Counting
    • Permutations: Distinct Objects
    • Permutations: Non Distinct Objects
    • Combinations
    • Applications of Permutations and Combinations
    • NCERT Solutions
    • R.D Sharma Solutions
    • Close
  • Binomial Theorem
    • Binomial Theorem for Positive Index
    • General Terms in Binomial Expansion
    • NCERT Solutions
    • R.D Sharma Solutions
    • Close
  • Sequence and Series
    • Arithmetic Progressions
    • Arithmetic Mean
    • Geometric Progressions
    • Special Sequences and Series
    • Relation Between AM and GM
    • Introduction to Sequences
    • Sum to Infinity of A GP
    • NCERT Solutions
    • R.D Sharma Solutions
    • Close
  • Straight Lines
    • Basic Concepts of 2D Geometry
    • Various Forms of Equation of A Line
    • Slope of A Line
    • Distance Between Lines
    • Normal and General Form of A Line
    • Shifting of Origin
    • NCERT Solutions
    • R.D Sharma Solutions
    • Close
  • Conic Sections
    • Circles
    • Parabola
    • Ellipse
    • NCERT Solutions
    • R.D Sharma Solutions
    • Close
  • Introduction To Three Dimensional Geometry
    • Introduction to 3-D Geometry
    • Distance Formula:3-D Geometry
    • Section Formula: 3- D Geometry
    • NCERT Solutions
    • R.D Sharma Solutions
    • Close
  • Limits And Derivatives
    • Introduction and Algebra of Limits
    • Limits of Rational Functions
    • Limits of Trigonometric Functions
    • Sum and Difference Rule
    • Product and Quotient Rule
    • Infinite Limits
    • Meaning of Derivatives
    • Logarithmic and Exponential Limits
    • NCERT Solutions
    • Close
  • R.D Sharma Solutions
  • Mathematical Reasoning
    • Mathematical Statements
    • Implications and Validating of Statements
    • NCERT Solutions
    • R.D Sharma Solutions
    • Close
  • Statistics
    • Mean Deviation
    • Variance and Standard Deviation
    • NCERT Solutions
    • Close
  • Probability
    • Introduction to Probability
    • Axiomatic Probability
    • Problems on Probability
    • NCERT Solutions
    • R.D Sharma Solutions
    • Close

CBSE Class 11 Maths Chapter 1 Sets Notes

Set
A set is a well-defined collection of objects.

Representation of Sets
There are two methods of representing a set

  • Roster or Tabular form In the roster form, we list all the members of the set within braces { } and separate by commas.
  • Set-builder form In the set-builder form, we list the property or properties satisfied by all the elements of the sets.

Types of Sets – Class 11 Maths Notes

  • Empty Sets: A set which does not contain any element is called an empty set or the void set or null set and it is denoted by {} or Φ.
  • Singleton Set: A set consists of a single element, is called a singleton set.
  • Finite and infinite Set: A set which consists of a finite number of elements, is called a finite set, otherwise the set is called an infinite set.
  • Equal Sets: Two sets A and 6 are said to be equal, if every element of A is also an element of B or vice-versa, i.e. two equal sets will have exactly the same element.
  • Equivalent Sets: Two finite sets A and 6 are said to be equal if the number of elements are equal, i.e. n(A) = n(B)

Subset – Class 11 Maths Notes

A set A is said to be a subset of set B if every element of set A belongs to set B. In symbols, we write
A ⊆ B, if x ∈ A ⇒ x ∈ B

Note:

  • Every set is o subset of itself.
  • The empty set is a subset of every set.
  • The total number of subsets of a finite set containing n elements is 2n.

Intervals as Subsets of R
Let a and b be two given real numbers such that a < b, then

  • an open interval denoted by (a, b) is the set of real numbers {x : a < x < b}.
  • a closed interval denoted by [a, b] is the set of real numbers {x : a ≤ x ≤ b}.
  • intervals closed at one end and open at the others are known as semi-open or semi-closed interval and denoted by (a, b] is the set of real numbers {x : a < x ≤ b} or [a, b) is the set of real numbers {x : a ≤ x < b}.

Power Set
The collection of all subsets of a set A is called the power set of A. It is denoted by P(A). If the number of elements in A i.e. n(A) = n, then the number of elements in P(A) = 2n.

Universal Set
A set that contains all sets in a given context is called the universal set.

Venn-Diagrams
Venn diagrams are the diagrams, which represent the relationship between sets. In Venn-diagrams the universal set U is represented by point within a rectangle and its subsets are represented by points in closed curves (usually circles) within the rectangle.

Operations of Sets
Union of sets: The union of two sets A and B, denoted by A ∪ B is the set of all those elements which are either in A or in B or in both A and B. Thus, A ∪ B = {x : x ∈ A or x ∈ B}.

Intersection of sets: The intersection of two sets A and B, denoted by A ∩ B, is the set of all elements which are common to both A and B.
Thus, A ∩ B = {x : x ∈ A and x ∈ B}

Disjoint sets: Two sets Aand Bare said to be disjoint, if A ∩ B = Φ.

Intersecting or Overlapping sets: Two sets A and B are said to be intersecting or overlapping if A ∩ B ≠ Φ

Difference of sets: For any sets A and B, their difference (A – B) is defined as a set of elements, which belong to A but not to B.
Thus, A – B = {x : x ∈ A and x ∉ B}
also, B – A = {x : x ∈ B and x ∉ A}

Complement of a set: Let U be the universal set and A is a subset of U. Then, the complement of A is the set of all elements of U which are not the element of A.
Thus, A’ = U – A = {x : x ∈ U and x ∉ A}

Some Properties of Complement of Sets

  • A ∪ A’ = ∪
  • A ∩ A’ = Φ
  • ∪’ = Φ
  • Φ’ = ∪
  • (A’)’ = A

Symmetric difference of two sets: For any set A and B, their symmetric difference (A – B) ∪ (B – A)
(A – B) ∪ (B – A) defined as set of elements which do not belong to both A and B.
It is denoted by A ∆ B.
Thus, A ∆ B = (A – B) ∪ (B – A) = {x : x ∉ A ∩ B}.

Laws of Algebra of Sets – Class 11 Maths Notes

Idempotent Laws: For any set A, we have

  • A ∪ A = A
  • A ∩ A = A

Identity Laws: For any set A, we have

  • A ∪ Φ = A
  • A ∩ U = A

Commutative Laws: For any two sets A and B, we have

  • A ∪ B = B ∪ A
  • A ∩ B = B ∩ A

Associative Laws: For any three sets A, B and C, we have

  • A ∪ (B ∪ C) = (A ∪ B) ∪ C
  • A ∩ (B ∩ C) = (A ∩ B) ∩ C

Distributive Laws: If A, B and Care three sets, then

  • A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)
  • A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

De-Morgan’s Laws: If A and B are two sets, then

  • (A ∪ B)’ = A’ ∩ B’
  • (A ∩ B)’ = A’ ∪ B’

Formulae to Solve Practical Problems on Union and Intersection of Two Sets
Let A, B and C be any three finite sets, then

  • n(A ∪ B) = n(A) + n (B) – n(A ∩ B)
  • If (A ∩ B) = Φ, then n (A ∪ B) = n(A) + n(B)
  • n(A – B) = n(A) – n(A ∩ B)
  • n(A ∪ B ∪ C) = n(A) + n(B) + n(C) – n(A ∩ B) – n(B ∩ C) – n(A ∩ C) + n(A ∩ B ∩ C)

Android App

eVidyarthi

Search On eVidyarthi

Evidyarthi on Facebook

Like us on Facebook

Follow Evidyarthi on Youtube

Learn English
Learn English Through हिन्दी
Job Interview Skills
English Grammar
हिंदी व्याकरण - Vyakaran
Mathematics Class 6th
Science Class 6th
हिन्दी Class 6th
Mathematics Class 7th
Science Class 7th
हिन्दी Class 7th
हिन्दी Class 8th
Mathematics Class 8th
Mathematics Class 9th
English Class 9th
Science Class 9th
Mathematics Class 10th
English Class 10th
Mathematics Class XI
Chemistry Class XI
Accountancy Class 11th
Accountancy Class 12th
Mathematics Class 12th
Microsoft Word
Microsoft Excel
Microsoft PowerPoint
Adobe PhotoShop
Adobe Illustrator
Learn German
Learn French
IIT JEE
Privacy Policies, Contact Us
Copyright © 2020 eVidyarthi and its licensors. All Rights Reserved.