Main Menu
  • School
    • Close
    • CBSE English Medium
    • CBSE Hindi Medium
    • UP Board
    • Bihar Board
    • Maharashtra Board
    • MP Board
    • Close
  • English
    • Close
    • English Grammar for School
    • Basic English Grammar
    • Basic English Speaking
    • English Vocabulary
    • English Idioms & Phrases
    • Personality Enhancement
    • Interview Skills
    • Close
  • Sarkari Exam Prep
    • Close
    • All Govt Exams Preparation
    • MCQs for Competitive Exams
    • Notes For Competitive Exams
    • NCERT Syllabus for Competitive Exam
    • Close
  • Study Abroad
    • Close
    • Study in Australia
    • Study in Canada
    • Study in UK
    • Study in Germany
    • Study in USA
    • Close
Class 11th Maths || Menu
  • Videos Maths Class 11
  • MCQ Maths Class 11
  • Question Answer Maths Class 11
  • Notes Maths Class 11
  • Important Questions Maths Class 11
  • Important Formulas Maths Class 11
  • Sample Papers Maths Class 11
  • Syllabus Maths Class 11
  • Book Maths Class 11
  • Previous Year Papers Maths Class 11
  • Chapter wise Practice Papers Maths Class 11
  • Sets
    • Set Notations
    • Subsets and Supersets
    • Operations on Sets
    • Algebra of Sets
    • Counting Theorems
    • R.D Sharma Solutions
    • Close
  • Relations and Functions
    • Cartesian Product of Sets
    • Relations
    • Functions
    • Graphs and Algebra of Functions
    • R.D Sharma Solutions
    • Close
  • Trigonometric Functions
    • Ex 3.1
    • Ex 3.2
    • Ex 3.3
    • Ex 3.4
    • Examples
    • MCQs
    • Miscellaneous Exercises
    • R.D Sharma Solutions
    • Close
  • Principle of Mathematical Induction
    • Ex 4.1
    • Examples
    • MCQs
    • R.D Sharma Solutions
    • Close
  • Complex Numbers and Quadratic Equations
    • Introduction to Complex Numbers
    • Geometry of Complex Numbers
    • Quadratic Equations
    • Square Root of A Complex Number
    • R.D Sharma Solutions
    • Close
  • Linear Inequalities
    • Linear Inequalities : One Variable
    • Linear Inequalities : 1 and 2 Variables
    • Graphical Solutions
    • Word Problems : Linear Inequalities
    • R.D Sharma Solutions
    • Close
  • Permutations and Combinations
    • Fundamental Principle of Counting
    • Permutations: Distinct Objects
    • Permutations: Non Distinct Objects
    • Combinations
    • Applications of Permutations and Combinations
    • R.D Sharma Solutions
    • Close
  • Binomial Theorem
    • Binomial Theorem for Positive Index
    • General Terms in Binomial Expansion
    • R.D Sharma Solutions
    • Close
  • Sequence and Series
    • Arithmetic Progressions
    • Arithmetic Mean
    • Geometric Progressions
    • Special Sequences and Series
    • Relation Between AM and GM
    • Introduction to Sequences
    • Sum to Infinity of A GP
    • R.D Sharma Solutions
    • Close
  • Straight Lines
    • Basic Concepts of 2D Geometry
    • Various Forms of Equation of A Line
    • Slope of A Line
    • Distance Between Lines
    • Normal and General Form of A Line
    • Shifting of Origin
    • R.D Sharma Solutions
    • Close
  • Conic Sections
    • Circles
    • Parabola
    • Ellipse
    • R.D Sharma Solutions
    • Close
  • Introduction To Three Dimensional Geometry
    • Introduction to 3-D Geometry
    • Distance Formula:3-D Geometry
    • Section Formula: 3- D Geometry
    • R.D Sharma Solutions
    • Close
  • Limits And Derivatives
    • Introduction and Algebra of Limits
    • Limits of Rational Functions
    • Limits of Trigonometric Functions
    • Sum and Difference Rule
    • Product and Quotient Rule
    • Infinite Limits
    • Meaning of Derivatives
    • Logarithmic and Exponential Limits
    • Close
  • R.D Sharma Solutions
  • Mathematical Reasoning
    • Mathematical Statements
    • Implications and Validating of Statements
    • R.D Sharma Solutions
    • Close
  • Statistics
    • Mean Deviation
    • Variance and Standard Deviation
    • Close
  • Probability
    • Introduction to Probability
    • Axiomatic Probability
    • Problems on Probability
    • R.D Sharma Solutions
    • Close
  • Maths Class 11

Mathematical Induction, Class 11 Mathematics R.D Sharma Question Answer

Advertisement

Page 12.2 Ex – 12.1

Q1.

Answer :

We have:
P(n): n(n + 1) is even.
Now,
P(3) = 3(3 + 1) = 12 (Even)
Therefore, P(3) is even.

 

Page 12.3 Ex – 12.1

Q2.

Answer :

We have:
P(n): n3+n is divisible by 3.Thus, we have:P(3) =33+3 =27+3=30 It is divisible by 3.Hence, P(3) is true.Now,P(4) =43+4=64+4=68 It is not divisible by 3.Hence, P(4) is not true.

Q3.

Answer :

We have:
P(n): 2n≥3nAlso,P(r) is true.∴2r≥3rTo Prove: P(r+1) is true.We have:2r≥3r⇒2r×2≥3r×2 Multiplying both sides by 2⇒2r+1≥6r∴2r+1≥3r+3 6r≥3r+3 for every r∈N.Hence, P(r+1) is true.

Q4.

Answer :

P(n): n2+n is even.Also, P(r) is true.Thus, r2+r is even.To prove: P(r+1) is true.Now,P(r+1)=(r+1)2+r+1 =r2+1+2r+r+1 =r2+3r+2 =r2+r+2r+2 =P(r)+2(r+1)P(r) is even.Also, 2(r+1) is even, as it is a multiple of 2.Therefore, P(r+1) is even and true.

Q5.

Answer :

Proved:
P(n)=n2+n is even for P(n) and P(n+1).Therefore, n2+n 2 is also even for all n∈N. Dividing an even number by 2 gives an even number.Thus, we have:P(n) =1+2+…+n =n(n+1)2 (Even for all n∈N))

Q6.

Answer :

P(n): n2-n+41 is prime.Now,P(1) =12-1+41=41 (prime)P(2)=22-2+41 =4-2+41 =43 (prime)P(3) =32-3+41=9-3+41=47 (prime)P(41)=412-41+41=1681 (not prime)Thus, we can say that P(1), P(2) and P(3) are true, but P(41) is not true.

 

Page 12.28 Ex – 12.2

Q1.

Answer :

Let P(n) be the given statement.
Now,
P(n) = 1 + 2 + 3 +…+ n =n(n+1)2
Step 1: P(1) =1 =1(1+1)2=1Hence, P(1) is true.Step 2: Let P(m) be true.Then,1+2+3+…+m=m(m+1)2We shall now prove that P(m+1) is true.i.e., 1+2+…+(m+1) =(m+1)(m+2)2Now, 1+2+…+m =m(m+1)2⇒1+2+…m+m+1 =m(m+1)2+m+1 Adding m+1 to both sides =m2+m+2m+22 =(m+1)(m+2)2Hence, P(m+1) is true.
By the principle of mathematical induction, P(n) is true for all n∈N.

Q2.

Answer :

Let P(n) be the given statement.
Now,
P(n) =12+22+32+…+n2=n(n+1)(2n+1)6Step 1:P(1) =12=1(1+1)(2+1)6=66=1Hence, P(1) is true.Step 2:Let P(m) be true. Then,12+22+…+m2=m(m+1)(2m+1)6We shall now prove that P(m+1) is true.i.e., 12+22+32+…+(m+1)2=(m+1)(m+2)(2m+3)6Now,P(m) = 12+22+32+…+m2=m(m+1)(2m+1)6⇒12+22+32+…+m2+(m+1)2=m(m+1)(2m+1)6+(m+1)2 Adding (m+1)2 to both sides⇒12+22+32+…+(m+1)2=m(m+1)(2m+1)+6(m+1)26=(m+1)(2m2+m+6m+6)6=(m+1)(m+2)(2m+3)6Hence, P(m+1) is true.By the principle of mathematical induction, the given statement is true for all n∈N

Q3.

Answer :

Let P(n) be the given statement.
Now,
P(n) =1+3+32+…+3n-1=3n-12Step 1:P(1) =1 =31-12=22=1Hence, P(1) is true.Step 2:Let P(m) is true.Then,1+3+32+…+3m-1=3m-12We shall prove that P(m+1) is true.That is, 1+3+32+…+3m=3m+1-12Now, we have:1+3+32+…+3m-1=3m-12⇒1+3+32+…+3m-1+3m=3m-12+3m Adding 3m to both sides⇒1+3+32+…+3m=3m-1+2×3m2=3m(1+2)-12=3m+1-12Hence, P(m+1) is true.By the principle of mathematical induction, P(n) is true for all n∈N.

Q4.

Answer :

Let P(n) be the given statement.
Now,
P(n) =11.2+12.3+13.4+…+1n(n+1)=nn+1Step 1:P(1) =11.2=12=11+1Hence, P(1) is true.Step 2:Let P(m) be true.Then,11.2+12.3+13.4+…+1m(m+1)=mm+1We shall now prove that P(m+1) is true.i.e., 11.2+12.3+13.4+…+1(m+1)(m+2)=m+1m+2Now,P(m)= 11.2+12.3+13.4+…+1m(m+1)=mm+1⇒11.2+12.3+13.4+…+1m(m+1)+1(m+1)(m+2)=mm+1+1(m+1)(m+2) Adding 1(m+1)(m+2) to both sides⇒11.2+12.3+13.4+…+1(m+1)(m+2)=m2+2m+1(m+1)(m+2)=(m+1)2(m+1)(m+2)=m+1m+2Therefore, P(m+1) is true.By the principle of mathematical induction, P(n) is true for all n∈N.

Q5.

Answer :

Let P(n) be the given statement.
Now,
P(n) = 1+3+5+…+(2n-1)=n2Step 1:P(1) =1 = 12Hence, P(1) is true.Step 2 :Let P(m) be true.Then,1+3+5+…+(2m-1) = m2To prove: P(m+1) is true.i.e., 1+3 +5+…+2m+1-1=m+12 ⇒1+3 +5+…+2m+1=m+12Now, we have:1+3+5+…+(2m-1) =m2⇒1+3+…+(2m-1)+(2m+1) =m2+2m+1 Adding 2m+1 to both sides⇒1+3+5+…+(2m+1) =(m+1)2Hence, P(m+1) is true.By the principle of mathematical induction, P(n) is true for all n∈N.

Q6.

Answer :

Let P(n) be the given statement.
Now,
P(n) =12.5+15.8+18.11+…+1(3n-1)(3n+2)=n6n+4Step 1:P(1) =12.5=110=16+4Hence, P(1) is true.Step 2:Let P(m) be true. Then,12.5+15.8+18.11+…+1(3m-1)(3m+2)=m6m+4To prove: P(m+1) is true.i.e.,12.5+15.8+…+1(3m+2)(3m+5)=m+16m+10Thus, we have: 12.5+15.8+18.11+…+1(3m-1)(3m+2)=m6m+4⇒12.5+15.8+…+1(3m-1)(3m+2)+1(3m+2)(3m+5)=m6m+4+1(3m+2)(3m+5) Adding 1(3m+2)(3m+5) to both sides⇒12.5+15.8+…+1(3m+2)(3m+5)=3m2+5m+22(3m+2)(3m+5)=(3m+2)(m+1)2(3m+2)(3m+5)=m+16m+10Thus, P(m+1) is true.By the principle of mathematical induction, P(n) is true for all n∈N.

Q7.

Answer :

Let P(n) be the given statement.
Now,
P(n) =11.4+14.7+17.10+…+1(3n-2)(3n+1)=n3n+1Step 1:P(1) =11.4=14=13×1+1Hence, P(1) is true.Step 2:Let P(m) be true.i.e.,11.4+14.7+…+1(3m-2)(3m+1)=m3m+1To prove: P(m+1) is true.i.e.,11.4+14.7+…+1(3m+1)(3m+4)=m+13m+4Now,P(m)=11.4+14.7+…+1(3m-2)(3m+1)=m3m+1⇒11.4+14.7+…+1(3m-2)(3m+1)+1(3m+1)(3m+4)=m3m+1+1(3m+1)(3m+4) Adding 1(3m+1)(3m+4) to both sides⇒11.4+14.7+…+1(3m+1)(3m+4)=3m2+4m+1(3m+1)(3m+4)=(3m+1)(m+1)(3m+1)(3m+4)=m+13m+4Thus, P(m+1) is true.By the principle of mathematical induction, P(n) is true for all n∈N.

Q8.

Answer :

Let P(n) be the given statement.
Now,
P(n)=13.5+15.7+17.9+…+1(2n+1)(2n+3)=n3(2n+3)Step 1: P(1)=13.5=115=13(2+3)Hence, P(1) is true.Step 2:Let P(m) be true. Then,13.5+15.7+17.9+…+1(2m+1)(2m+3)=m3(2m+3)To prove: P(m+1) is true.That is,13.5+15.7+17.9+…+1(2m+3)(2m+5)=m+13(2m+5)Now, P(m) = 13.5+15.7+17.9+…+1(2m+1)(2m+3)=m3(2m+3)⇒13.5+15.7+…+1(2m+1)(2m+3)+1(2m+3)(2m+5)=m3(2m+3)+1(2m+3)(2m+5) Adding 1(2m+3)(2m+5) to both sides⇒13.5+15.7+…+1(2m+3)(2m+5)=2m2+5m+33(2m+3)(2m+5)=(2m+3)(m+1)3(2m+3)(2m+5)=m+132m+5Thus, P(m+1) is true.By the principle of mathematical induction, P(n) is true for all n∈N.

Q9.

Answer :

Let P(n) be the given statement.
Now,
P(n) =13.7+17.11+111.15+…+1(4n-1)(4n+3)=n3(4n+3)Step 1:P(1) =13.7=121=13(4+3)Hence, P(1) is true.Step 2:Let P(m) is true. Then,13.7+17.11+…+1(4m-1)(4m+3)=m3(4m+3)To prove: P(m+1) is true.That is,13.7+17.11+…+1(4m+3)(4m+7)=m+13(4m+7)Now,P(m) =13.7+17.11+…+1(4m-1)(4m+3)=m3(4m+3)⇒13.7+17.11+…+1(4m-1)(4m+3)+1(4m+3)(4m+7)=m3(4m+3)+1(4m+3)(4m+7) Adding 1(4m+3)(4m+7) to both sides⇒13.7+17.11+…+1(4m+3)(4m+7)=4m2+7m+33(4m+3)(4m+7)=(4m+3)(m+1)3(4m+3)(4m+7)=m+13(4m+7)Thus, P(m+1) is true.By the principle of mathematical induction, P(n) is true for all n∈N.

Q10.

Answer :

Let P(n) be the given statement.
Now,
P(n) =1.2+2.22+3.23+…+n.2n=(n-1)2n+1+2Step 1:P(1)=1.2=2=(1-1)21+1+2Thus, P(1) is true.Step 2:Let P(m) be true.Then,1.2+2.22+…+m.2m=(m-1)2m+1+2To prove: P(m+1) is true.That is,1.2+2.22+…+(m+1)2m+1=m.2m+2+2Now, P(m) =1.2+2.22+…+m.2m=(m-1)2m+1+2⇒1.2+2.22+…+m.2m+(m+1).2m+1=(m-1)2m+1+2+(m+1).2m+1 Adding (m+1).2m+1 to both sides⇒P(m+1)=2m.2m+1+2=m.2m+2+2Thus, P(m+1) is true.By the principle of mathematical induction, P(n) is true for all n∈N.

Q11.

Answer :

Let P(n) be the given statement.
Now,
P(n) =2+5+8+…+(3n-1)=12n(3n+1)Step 1:P(1)=2=12×1(3+1) Hence, P(1) is true.Step 2:Let P(m) be true.Then,2+5+8+…+(3m-1)=12m(3m+1)To prove: P(m+1) is true.That is,2+5+8+…+(3m+2)=12(m+1)(3m+4)P(m) is equal to:2+5+8+…+(3m-1)=12m(3m+1)Thus, we have:2+5+8+…+(3m-1)+(3m+2)=12m(3m+1)+(3m+2) Adding (3m+2) to both sides⇒2+5+8+…+(3m+2)=12(3m2+m+6m+4)=12(3m2+7m+4)⇒2+5+8+…+(3m+2)=12(3m+4)(m+1)Thus, P(m+1) is true.By the principle of mathematical induction, P(n) is true for all n∈N.

Q12.

Answer :

Let P(n) be the given statement.
Now,
P(n) = 1.3+2.4+3.5+…+n.(n+2)=16n(n+1)(2n+7)Step 1:P(1)= 1.3 =3 = 16×1(1+1)(2×1+7)Hence, P(1) is true.Step 2:Let P(m) be true.Then,1.3+2.4+…+m.(m+2)=16m(m+1)(2m+7)To prove: P(m+1) is true.That is,1.3+2.4+…+(m+1)(m+3)=16(m+1)(m+2)(2m+9)P(m) is equal to 1.3+2.4+…+m(m+2)=16m(m+1)(2m+7).Thus, we have:1.3+2.4+…+m(m+2)+(m+1)(m+3) = 16m(m+1)(2m+7)+(m+1)(m+3) Adding (m+1)(m+3) to both sides⇒1.3+2.4+…+(m+1)(m+3)=16(m+1)2m2+7m+6m+18 =16(m+1)(2m2+13m+18) =16(m+1)(2m+9)(m+2)Thus, P(m+1) is true.By the principle of mathematical induction, P(n) is true for all n∈N.

Q13.

Answer :

Let P(n) be the given statement.
Now,
P(n)=1.3+3.5+5.7+…+(2n-1)(2n+1)=n(4n2+6n-1)3Step 1:P(1)=1.3 =3 =1(4×12+6×1-1)3Hence, P(1) is true.Step 2:Let P(m) be true.Then,1.3+3.5+…+(2m-1)(2m+1)=m(4m2+6m-1)3To prove: P(m+1) is true.That is,1.3+3.5+…+(2m+1)(2m+3)=(m+1)4(m+1)2+6m+1-13Now, P(m) is equal to: 1.3+3.5+…+(2m-1)(2m+1)=m(4m2+6m-1)3⇒1.3+3.5+…+(2m-1)(2m+1)+(2m+1)(2m+3)=m(4m2+6m-1)3+(2m+1)(2m+3) Adding (2m+1)(2m+3) to both sides⇒P(m+1)=m(4m2+6m-1)+3(4m2+8m+3)3⇒P(m+1)=4m3+6m2-m+12m2+24m+93=4m3+18m2+23m+93⇒P(m+1)=4m(m2+2m+1)+10m2+19m+93 =4m(m+1)2+(10m+9)(m+1)3 =(m+1)4m(m+1)+10m+93 =(m+1)3(4m2+8m+4+6m+5) =(m+1)4(m+1)2+6m+1-13Thus, P(m+1) is true.By the principle of mathematical induction, P(n) is true for all n∈N.

Q14.

Answer :

Let P(n) be the given statement.
Now,
P(n)=1.2+2.3+3.4+…+n(n+1)=n(n+1)(n+2)3Step 1:P(1)=1.2=2=1(1+1)(1+2)3Hence, P(1) is true.Step 2:Let P(m) be true.Then,1.2+2.3+…+m(m+1)=m(m+1)(m+2)3To prove: P(m+1) is true.That is,1.2+2.3+…+(m+1)(m+2)=(m+1)(m+2)(m+3)3Now, P(m) is 1.2+2.3+…+m(m+1)=m(m+1)(m+2)3⇒1.2+2.3+…+m(m+1)+(m+1)(m+2)=m(m+1)(m+2)3+(m+1)(m+2)⇒P(m+1)=(m+1)(m+2)(m+3)3Thus, P(m+1) is true.By the principle of mathematical induction, P(n) is true for all n∈N.’

Q15.

Answer :

Let P(n) be the given statement.
Now,
P(n): 12+14+18+…+12n=1-12nStep 1: P(1)=12=1-121Thus, P(1) is true.Step 2:Suppose P(m) is true.Then,12+14+…+12m=1-12mTo show: P(m+1) is true whenever P(m) is true.That is,12+14+…+12m+1=1-12m+1Now, P(m) is true.Thus, we have:12+14+…+12m=1-12m⇒12+14+…+12m+12m+1=1-12m+12m+1 Adding 12m+1 to both sides⇒P(m+1)=1-12m+12m.2=1-12 m1-12=1-12m+1Thus, P(m+1) is true.
By the principle of mathematical induction, P(n) is true for all n∈N.

Q16.

Answer :

Let P(n) be the given statement.
Now,
P(n)=12+32+52+…+(2n-1)2=13n(4n2-1)Step 1: P(1)=12=1=13×1×(4-1)Hence, P(1) is true.Step 2:Let P(m) be true.Then,12+32+…+(2m-1)2=13m(4m2-1)To prove: P(m+1) is true whenever P(m) is true.That is, 12+32=…+(2m+1)2=13(m+1)4(m+1)2-1We know that P(m) is true.Thus, we have:12+32+…+(2m-1)2=13m(4m2-1)⇒12+32+…+(2m-1)2+(2m+1)2=13m(4m2-1)+(2m+1)2 Adding (2m+1)2 to both sides⇒P(m+1)=134m3-m+12m2+12m+3⇒P(m+1)=13(4m3-m+8m2+4m+4m2+8m+3) =13(m+1)(4m2+8m+3) =13(m+1)(4(m+1)2-1)Thus, P(m+1) is true.By the principle of mathematical induction, P(n) is true for all n∈N.

Q17.

Answer :

Let P(n) be the given statement.
Now,
P(n)= a+ar+ar2+…+arn-1=arn-1r-1, r≠1Step 1:P(1)=a=ar1-1r-1Hence, P(1) is true.Step 2:Suppose P(m) is true. Then,a+ar+ar2+…+arm-1=arm-1r-1, r≠1To show: P(m+1) is true whenever P(m) is true.That is,a+ar+ar2+…+arm=arm+1-1r-1, r≠1We know that P(m) is true.Thus, we have:a+ar+ar2+…+arm-1=arm-1r-1⇒a+ar+ar2+…+arm-1+arm=arm-1r-1+arm Adding arm to both sides⇒P(m+1)=arm-1+r.rm-rmr-1⇒P(m+1)=arm+1-1r-1, r≠1Thus, P(m+1) is true.By the principle of mathematical induction, P(n) is true for all n∈N.

Q18.

Answer :

Let P(n) be the given statement.
Now,
P(n): a+(a+d)+(a+2d)+…+(a+(n-1)d)=n22a+(n-1)dStep1:P(1)= a= 12(2a+(1-1)d)Hence, P(1) is true.Step 2:Suppose P(m) is true.Then,a+(a+d)+…+(a+(m-1)d)=m22a+(m-1)dWe have to show that P(m+1) is true whenever P(m) is true.That is,a+(a+d)+…+(a+md)=(m+1)22a+mdWe know that P(m) is true.Thus, we have:a+(a+d)+…+(a+(m-1)d)=m22a+(m-1)d⇒a+(a+d)+…+(a+(m-1)d)+(a+md)=m22a+(m-1)d+(a+md) Adding (a+md) to both sides⇒P(m+1)=122am+m2d-md+2a+2md⇒P(m+1)=122a(m+1)+md(m+1) =12(m+1)(2a+md)Thus, P(m+1) is true.By the principle of mathematical induction, P(n) is true for all n∈N.

Q19.

Answer :

Let P(n) be the given statement.
Now,
P(n): 7+77+777+…+777…n digits…7=781(10n+1-9n-10)Step(1): P(1) = 7 =781(102-9-10)=781×81 Thus, P(1) is true.Step 2: Let P(m) be true.Then, 7+77+777+…+777…m digits…7=781(10m+1-9m-10)We need to show that P(m+1) is true whenever P(m) is true.

Now, P(m + 1) = 7 + 77 + 777 +….+ 777…(m + 1) digits…7

This is a geometric progression with n= m+1.∴Sum P(m+1): =799+99+999+…m+1term=7910-1+100-1+…(m+1) term=7910+100+1000+…(m+1) term -(1+1+1…m+1 times…+1=791010m+1-19-m+1=78110m+2-9m-19Thus, P(m+1) is true.By the principle of mathematical induction, Pn is true for all n∈N.

 

Page 12.29 Ex – 12.2

Q20.

Answer :

Let P(n) be the given statement.
Now,
P(n): n77+n55+n33+n22-37210n is a positive integer.Step 1: P(1)=17+15+13+12-37210=30+42+70+105-37210=210210=1 It is a positive integer.Thus, P(1) is true.Step 2:Let P(m) be true.Then, m77+m55+m33+m22-37210m is a positive integer.Let m77+m55+m33+m22-37210m=λ for some λ∈positive N.To show: Pm+1 is a positive integer.Now,P(m+1)=m+177+m+155+m+133+m+122-37210m+1=17m7+7m6+21m5+35m4+35m3+21m2+7m+1+15m5+5m4+10m3+10m2+5m+1+13m3+3m2+3m+1+12m2+2m+1-37210m-37210 =m77+m55+m33+m22-37210m +m6+3m5+6m4+7m3+6m2+4m=λ+ m6+3m5+6m4+7m3+6m2+4mIt is a positive integer, as λ is a positive integer.Thus, Pm+1 is true,By the principle of mathematical induction, P(n) is true for all n∈N.

Q21.

Answer :

Let P(n) be the given statement.
Now,
P(n): n1111+n55+n33+62165n is a positive integer for all n∈N.Step 1:P(1) =111+15+13+62165=15+33+55+62165=165165=1 It is certainly a positive integer.Hence, P(1) is true.Step2:Let P(m) be true.Then, m1111+m55+m33+62165m is a positive integer.Now, let m1111+m55+m33+62165m =λ, where λ∈N is a positive integer.We have to show that P(m+1) is true whenever P(m) is true.To prove: (m+1)1111+(m+1)55+(m+1)33+62165(m+1) is a positive integer.Now,(m+1)1111+(m+1)55+(m+1)33+62165(m+1)=111m11+11m10+55m9+165m8+330m7+462m6+462m5+330m4+165m3+55m2+11m+1+15m5+5m4+10m3+10m2+5m+1+13m3+3m2+3m+1+62165m+62165=m1111+m55+m33+62165m+m10+5m9+15m8+30m7+42m6+42m5+31m4+17m3+8m2+3m+111+15+13+6105=λ+m10+5m9+15m8+30m7+42m6+42m5+31m4+17m3+8m2+3m+1It is a positive integer.Thus, P(m+1) is true.By the principle of mathematical induction, P(n) is true for all n∈N.

Q22.

Answer :

Let P(n) be the given statement.
Now,
P(n): 52n-1 is divisible by 24 for all n∈N.Step 1: P(1)=52-1=25-1=24 It is divisible by 24.Thus, P(1) is true.Step 2:Let P(m) be true.Then, 52m-1 is divisible by 24.Now, let 52m-1 = 24λ, where λ∈N.We need to show that P(m+1) is true whenever P(m) is true.Now,P(m+1) =52m+2-1 =52m52-1 =25(24λ+1) -1 =600λ+24 =24(25λ+1)It is divisible by 24.Thus, P(m+1) is true.By the principle of mathematical induction, P(n) is true for all n∈N.

Q23.

Answer :

Let P(n) be the given statement.
Now,
P(n): 32n+7 is divisible by 8 for all n∈N.Step 1:P(1)= 32+7=9+7=16 It is divisible by 8.Step 2: Let P(m) be true.Then, 32m+7 is divisible by 8.Thus, 32m+7=8λ for some λ∈N. …(1)We need to show that P(m+1) is true whenever P(m) is true.Now,P(m+1) =32m+2+7 =32m.9 +7 =(8λ-7).9+7 From (1) =72λ-63+7 =72λ-56 =8(9λ-7) It is a multiple of 8.Thus, P(m+1) is divisible by 8.By the principle of mathematical induction, P(n) is true for all n∈N.

Q24.

Answer :

Let P(n) be the given statement.
Now,
P(n): 52n+2-24n-25 is divisible by 576 for all n∈N.Step 1:P(1)= 52+2-24-25=625-49=576 It is divisible by 576.Thus, P(1) is true.Step2: Let P(m) be true.Then,52m+2-24m-25 is divisible by 576.Let 52m+2-24m-25 =576λ, where λ∈N.We need to show that P(m+1) is true whenever P(m) is true.Now, P(m+1)=52m+4-24(m+1)-25=52×(576λ+24m+25)-24m-49=25×576λ+600m+625-24m-49=25×576λ+576m+576=576(25λ+m+1) It is divisible by 576.Thus, P(m+1) is true.By the principle of mathematical induction, P(n) is true for all n∈N.

Q25.

Answer :

Let P(n) be the given statement.
Now,
P(n): 32n+2-8n-9 is divisible by 8 for all n∈N.Step 1:P(1)=32+2-8-9=81-17=64 It is divisible by 8.Thus, P(1) is true.Step(2):Let P(m) be true.Then, 32m+2-8m-9 is divisible by 8.Let:32m+2-8m-9 =8λ where λ∈N …(1)We need to show that P(m+1) is true whenever P(m) is true.Now,P(m+1)=32m+4-8m+1-17=(8λ+8m+9) -8m -8-17 From (1)=8λ -16 =8(λ-1) It is divisible by 8.Thus, P(m+1) is true.By the principle of mathematical induction, P(n) is true for all n∈N.

Q26.

Answer :

Let P(n) be the given statement.
Now,
P(n): (ab)n=anbn for all n∈N.Step 1:P(1):(ab)1=a1b1=abThus, P(1) is true.Step 2:Let P(m) be true.Then,(ab)m=ambmWe need to show that P(m+1) is true whenever P(m) is true.Now, P(m+1): (ab)m+1=(ab)m. ab =ambm.ab =ama.bmb =am+1bm+1Hence, P(m+1) is true.By the principle of mathematical induction, P(n) is true for all n∈N.

Q27.

Answer :

Let P(n) be the given statement.
Now,
P(n):n(n+1)(n+5) is a multiple of 3.Step1:P(1): 1(1+1)(1+5)=12 It is a multiple of 3.Hence, P(1) is true.Step2: Let Pm be true.Then, mm+1m+5 is a multiple of 3.Suppose mm+1m+5=3λ, where λ∈N.We have to show that Pm+1 is true whenever P(m) is true.Now,P(m+1)=m+1m+2m+6 =mm+1m+6+2m+1m+6 =mm+1m+5+1+2m+1m+6 =mm+1m+5+m(m+1)+2m+1m+6 =3λ+m+1m+2m+6 From P(m) =3λ+3m+1m+2It is clearly a multiple of 3.Thus, P(m+1) is true.By the principle of mathematical induction, P(n) is true for all n∈N.

Q28.

Answer :

Let P(n) be the given statement.
Now,
P(n): 72n+23n-3.3n-1 is divisible by 25.Step1: P(1): 72+23-3.31-1=49+1=50 It is divisible by 25.Thus, P(1) is trueStep2: Let Pm be true.Now,72m+23m-3.3m-1 is divisible by 25.Suppose: 72m+23m-3.3m-1= 25λ …(1)We have to show that Pm+1 is true whenever P(m) is true.Now, Pm+1=72m+2+23m.3m =72m+2+72.23m-3.3m-1-72.23m-3.3m-1+23m.3m =7272m+23m-3.3m-1+23m.3m1-4924 =72×25λ-23m.3m×2523.31 Using (1) =2549λ-23m-3.3m-1 It is divisible by 25.Thus, Pm+1 is true.By the principle of mathematical induction, P(n) is true for all n∈N.

Q29.

Answer :

Let P(n) be the given statement.
Now,
P(n): 2.7n+3.5n-5 is divisible by 24.Step1:P(1): 2.71+3.51-5 = 24 It is divisible by 24.Thus, P1 is true.Step2: Let Pm be true.Then,2.7m+3.5m-5 is divisible by 24.Suppose:2.7m+3.5m-5=24λ …1We need to show that Pm+1 is true whenever Pm is true.Now, Pm+1=2.7m+1+3.5m+1-5 =2.7m+1+(24λ+5-2.7m)5-5 =2.7m+1+120λ+25-10.7m-5 =2.7m.7-10.7m+120λ+24-4 =7m 14-10+120λ+24-4 =7m.4+120λ+24-4 =47m-1+245λ+1 =4×6μ+24(5λ+1) Since 7m-1 is a multiple of 6 for all n∈N, 7m-1=μ. =24(μ+5λ+1) It is a multiple of 24.Thus, P(m+1) is true.By the principle of mathematical induction, P(n) is true for n∈N.

Q30.

Answer :

Let P(n) be the given statement.
Now,
Pn: 11n+2+122n+1 is divisible by 133.Step1: P1=111+2+122+1=1331+1728=3059 It is divisible by 133.Step2:Let Pm be divisible by 133.Now,11m+2+122m+1 is divisible by 133.Suppose:11m+2+122m+1=133λ …(1)We shall show that Pm+1 is true whenever Pm is true.Now, Pm+1=11m+3+122m+3 =11m+2.11+122m+1.122+11.122m+1-11.122m+1 =1111m+2+122m+1+122m+1144-11 =11.133λ+122m+1.133 From (1) =13311λ+122m+1 It is divisible by 133.Thus, Pm+1 is true.By the principle of mathematical induction, P(n) is true for all n∈N.

Q31.

Answer :

We need to prove 12tanx2+14tanx4+…+12ntanx2n=12ncotx2n-cot x for all n ∈ N and 0<x<π2 using mathematical induction.

For n = 1,

LHS = 12tanx2

and

RHS=12cotx2-cotx=12tanx2-1tanx⇒RHS=12tanx2-12tanx21-tan2x2⇒RHS=12tanx2-1-tan2x22 tanx2=1-1+tan2x22tanx2=tanx22

Therefore, the given relation is true for n = 1.

Now, let the given relation be true for n = k.

We need to prove that the given relation is true for n = k + 1.

∴12tanx2+14tanx4+…+12ktanx2k=12kcotx2k-cot x

Now,

12tanx2+14tanx4+…+12ktanx2k+12k+1tanx2k+1=12kcotx2k-cot x+12k+1tanx2k+1

Let:

L=12kcotx2k-cot x+12k+1tanx2k+1.

⇒L=12kcotx2k+12k+1tanx2k+1-cot x⇒L=12ktanx2k+12k+1tanx2k+1-cot x⇒L=12ktan2x2k+1+12k+1tanx2k+1-cot x⇒L=12k×2tanx2k+11-tan2x2k+1+12k+1tanx2k+1-cot x⇒L=1-tan2x2k+12k+1tanx2k+1+12k+1tanx2k+1-cot x

⇒L=1-tan2x2k+1+tan2x2k+12k+1tanx2k+1-cot x=12k+1cotx2k+1-cot x
Now,

12tanx2+14tanx4+…+12ktanx2k+12k+1tanx2k+1=12k+1cotx2k+1-cot x

Thus, 12tanx2+14tanx4+…+12ntanx2n=12ncotx2n-cot x for all n ∈ N and 0<x<π2.

Q32.

Answer :

Pn:2n≥3nWe know that Pr is true.Thus, we have:2r≥3rTo show: P(r+1) is true.We know:P(r) is true.∴2r≥3r⇒2r.2≥3r.2 Multiplying both sides by 2⇒2r+1≥6r⇒2r+1≥3r+3r=2r+1≥3r+3 Since 3r≥3 for all r∈N=2r+1≥3r+1 Hence, P(r+1) is true.However, we cannot conclude that Pn is true for all n∈N.P(1): 21≱3.1Therefore, Pn is not true for all n∈N.

Q33.

Answer :

Let P(n) be the given statement.
Thus, we have:

Pn:2n!22nn!2≤13n+1Step1: P(1): 2!22.1=12≤13+1Thus, P(1) is true.Step2: Let P(m) be true. Thus, we have:2m!22mm!2≤13m+1We need to prove that P(m+1) is true.

Now,

P(m+1): (2m+2)!22m+2(m+1)!2=2m+22m+12m!22m.22m+12m!2⇒(2m+2)!22m+2(m+1)!2≤2m!22mm!2×2m+22m+122m+12⇒(2m+2)!22m+2(m+1)!2≤2m+12m+13m+1

⇒2m+2!22m+2m+1!2≤2m+124m+123m+1⇒2m+2!22m+2m+1!2≤4m2+4m+1×3m+443m3+7m2+5m+13m+4⇒2m+2!22m+2m+1!2≤12m3+28m2+19m+412m3+28m2+20m+43m+4∵12m3+28m2+19m+412m3+28m2+20m+4<1∴2m+2!22m+2m+1!2<13m+4

Thus, P(m + 1) is true.

Hence, by mathematical induction (2n)!22n(n!)2≤13n+1 is true for all n ∈ N

Q34.

Answer :

Let P(n) be the given statement.
Thus, we have:
Pn:1+14+19+…+1n2<2-1nStep1: P(2):122=14<2-12Thus, P2 is true. We have not taken n =1 because it is not possible. We will start this function from n=2 onwards.Step2: Let Pm be true. Now,1+14+19+…+1m2<2-1mWe need to prove that P(m+1) is true.We know that P(m) is true.Thus, we have:1+14+19+…+1m2<2-1m⇒1+14+19+…+1m2+1m+12<2-1m+1m+12 Adding 1(m+1)2 to both sides⇒Pm+1<2-1m+1 ∵ m+12>m+1, 1m+12<1m+1⇒1m-1m+12<1m+1 as m<m+1 Thus, Pm+1 is true.By principle of mathematical induction, P(n) is true for all n∈N, n≥2.

Q35.

Answer :

Let P(n) be the given statement.
Now,
P(n): x2n-1+y2n-1 is divisible by x+y.Step1:P(1):x2-1+y2-1=x+y is divisible by x+yStep2:Let P(m) be true.Also,x2m-1+y2m-1 is divisible by x+y.Suppose: x2m-1+y2m-1=λx+y where λ∈N …(1)We shall show that Pm+1 is true whenever Pm is true.Now, Pm+1=x2m+1+y2m+1 =x2m+1+y2m+1-x2m-1.y2+x2m-1.y2 =x2m-1×2-y2+y2x2m-1+y2m-1 From (1) =x2m-1×2-y2+y2.λx+y =x+yx2m-1x-y+λy2 [It is divisible by (x+y).]Thus, Pm+1 is true.By the principle of mathematical induction, P(n) is true for all n∈N.

Q36.

Answer :

Let:Pn:an-Aan+A=a1-Aa1+A2n-1Step I P(1):a1-Aa1+A=a1-Aa1+A21-1 (which is true)P(2):a2-Aa2+A=12a1+Aa1-A12a1+Aa1+A=a1+Aa1-2Aa1+Aa1+2A=a1+A-2Aa1+A+2A=a1-Aa1+A22-1Thus, P(1) and P(2) are true.Step II Let P(k) be true.Now, ak-Aak+A=a1-Aa1+A2k-1 …..(i)andP(k+1):ak+1-Aak+1+A=12ak+Aak-A12ak+Aak+A=ak+Aak-2Aak+Aak+2A=ak-Aak2ak+Aak2=ak-Aakak+Aak2=ak-Aak+A2=a1-Aa1+A2k-12=a1-Aa1+A2k=a1-Aa1+A2k+1-1 Thus, P(k+1) is also true.

Q37.

Answer :

Let P(n) be the given statement.
P(n): sin x+sin 3x+…+sin2n-1x=sin2nxsin xStep 1:P(1): sinx=sin2xsinx Thus, P(1) is true. Step 2:Let P(m) be true.∴ sin x+sin 3x+…+sin2m-1x=sin2mxsin xWe shall show that P(m+1) is true. We know that P(m) is true. ∴ sin x+sin 3x+…+sin (2m-1) =sin2mxsin x⇒sin x+sin 3x+…sin (2m-1)x+ sin (2m+1)x=sin2mxsin x+sin (2m+1)x Adding sin (2m+1)x to both the sides⇒P(m+1)x=sin2mx+sin xsin mxcosm+1x+sinm+1x cosmxsin x =sin2mx+sin xsin mxcos mxcos x-sin2mxsinx+sin mxcos xcos mx+cos2mxsin xsin x =sin2mx+2sin xcos xcos mx-sin2x sin2mx+cos2mx sin2xsin x =sin2mx1-sin2x+2sin xcos xcos mx+cos2mx sin2xsin x =sin2mxcos2x+2sin xcos xcos mx+cos2mx sin2xsin x =sin mx cos x+cos mx sinx2sin x =sinm+12sin xHence, P(m+1) is true. By the principle of mathematical induction, the given statement P(n) is true for all n∈N.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Advertisement

CBSE Delhi Question Answer of Chapters in PDF

Free Sample Papers and Previous Years' Question Papers for CBSE Exams from the Official CBSE Academic Website (CBSE.nic.in) in Delhi, Rajasthan, Uttar Pradesh and Bihar

Download CBSE / NCERT Book, Notes & MCQ Online Test / Mock Test

Online Quiz with Answers for Objective Questions in Hindi and English

Advertisement

Maharashtra Board Marathi & English Medium

Just Launched! Access Maharashtra Board Exam MCQs, Previous Year Papers, Textbooks, Solutions, Notes, Important Questions, and Summaries—available in both Marathi and English mediums—all in one place Maharashtra Board

Android APP

सरकारी Exam Preparation

Sarkari Exam Preparation Youtube

CBSE – दिल्ली, उत्तर प्रदेश, मध्य प्रदेश, बिहार, राजस्थान & हरियाणा Board हिंदी माध्यम

कक्षा 6 to 8 हिंदी माध्यम
कक्षा 9 & 10 हिंदी माध्यम
कक्षा 11 हिंदी माध्यम

State Board

यूपी बोर्ड 6,7 & 8
बिहार बोर्ड हिंदी माध्यम

CBSE Board

Mathematics Class 6
Science Class 6
Social Science Class 6
हिन्दी Class 6
सामाजिक विज्ञान कक्षा 6
विज्ञान कक्षा 6

Mathematics Class 7
Science Class 7
SST Class 7
सामाजिक विज्ञान कक्षा 7
हिन्दी Class 7

Mathematics Class 8
Science Class 8
Social Science Class 8
हिन्दी Class 8

Mathematics Class 9
Science Class 9
English Class 9

Mathematics Class 10
SST Class 10
English Class 10

Mathematics Class XI
Chemistry Class XI
Accountancy Class 11

Accountancy Class 12
Mathematics Class 12

Learn English
English Through हिन्दी
Job Interview Skills
English Grammar
हिंदी व्याकरण - Vyakaran
Microsoft Word
Microsoft PowerPoint
Adobe PhotoShop
Adobe Illustrator
Learn German
Learn French
IIT JEE

Study Abroad

Study in Australia: Australia is known for its vibrant student life and world-class education in fields like engineering, business, health sciences, and arts. Major student hubs include Sydney, Melbourne, and Brisbane. Top universities: University of Sydney, University of Melbourne, ANU, UNSW.

Study in Canada: Canada offers affordable education, a multicultural environment, and work opportunities for international students. Top universities: University of Toronto, UBC, McGill, University of Alberta.

Study in the UK: The UK boasts prestigious universities and a wide range of courses. Students benefit from rich cultural experiences and a strong alumni network. Top universities: Oxford, Cambridge, Imperial College, LSE.

Study in Germany: Germany offers high-quality education, especially in engineering and technology, with many low-cost or tuition-free programs. Top universities: LMU Munich, TUM, University of Heidelberg.

Study in the USA: The USA has a diverse educational system with many research opportunities and career advancement options. Top universities: Harvard, MIT, Stanford, UC Berkeley.

Privacy Policies, Terms and Conditions, About Us, Contact Us
Copyright © 2025 eVidyarthi and its licensors. All Rights Reserved.