Main Menu
  • School
    • Close
    • CBSE English Medium
    • CBSE Hindi Medium
    • UP Board
    • Bihar Board
    • Maharashtra Board
    • MP Board
    • Close
  • English
    • Close
    • English Grammar for School
    • Basic English Grammar
    • Basic English Speaking
    • English Vocabulary
    • English Idioms & Phrases
    • Personality Enhancement
    • Interview Skills
    • Close
  • Sarkari Exam Prep
    • Close
    • All Govt Exams Preparation
    • MCQs for Competitive Exams
    • Notes For Competitive Exams
    • NCERT Syllabus for Competitive Exam
    • Close
  • Study Abroad
    • Close
    • Study in Australia
    • Study in Canada
    • Study in UK
    • Study in Germany
    • Study in USA
    • Close
Class 8th Maths || Menu
  • Videos Maths Class 8
  • MCQ Maths Class 8
  • Important Questions Maths Class 8
  • Notes Maths Class 8
  • Question Answer Maths Class 8
  • Important Questions “Videos” Maths Class 8
  • Important Formulas Maths Class 8
  • Sample Paper 1 – Maths Class 8
  • Sample Paper 2 – Maths Class 8
  • Book Maths Class 8
  • Chapter Wise Practice Papers Maths Class 8
  • Previous Year Papers Maths Class 8
  • Marking Scheme Maths Class 8
  • Rational Numbers
    • Ex 1.1
    • MCQ Maths Class 8
    • Close
  • Linear Equations in One Variable
    • Ex 2.1
    • Ex 2.2
    • MCQ Maths Class 8
    • Close
  • Understanding Quadrilaterals
    • Ex 3.1
    • Ex 3.2
    • Ex 3.3
    • Ex 3.4
    • MCQ Maths Class 8
    • Close
  • Data Handling
    • Ex 4.1
    • Ex 4.2
    • MCQ Maths Class 8
    • Close
  • Squares & Square Root
    • Ex 5.1
    • Ex 5.2
    • Ex 5.3
    • Ex 5.4
    • MCQ Maths Class 8
    • Close
  • Cubes and Cube Roots
    • Ex 6.1
    • Ex 6.2
    • MCQ Maths Class 8
    • Close
  • Comparing Quantities
    • Ex 7.1
    • Ex 7.2
    • Ex 7.3
    • MCQ Maths Class 8
    • Close
  • Algebraic Expressions and Identities
    • Ex 8.1
    • Ex 8.2
    • Ex 8.3
    • Ex 8.4
    • MCQ Maths Class 8
    • Close
  • Mensuration
    • Ex 9.1
    • Ex 9.2
    • Ex 9.3
    • MCQ Maths Class 8
    • Close
  • Exponents and Powers
    • Ex 10.1
    • Ex 10.2
    • MCQ Maths Class 8
    • Close
  • Direct and Inverse Proportions
    • Ex 11.1
    • Ex 11.2
    • MCQ Maths Class 8
    • Close
  • Factorisation
    • Ex 12.1
    • Ex 12.2
    • Ex 12.3
    • MCQ Maths Class 8
    • Close
  • Introduction to Graphs
    • Ex 13.1
    • Ex 13.2
    • MCQ Maths Class 8
    • Close
  • Maths Class 8

Notes Class 8 Maths Chapter 12 Factorisation

Advertisement

Notes For All Chapters Maths Class 8

When an expression is the product of two or more expressions, then each of the expressions is called a factor of the given expression.

The process of writing a given expression as the product of two or more factors is called factorization.

The greatest common factor of two or more monomials is the product of the greatest common factors of the numerical coefficients and the common letters with smallest powers.

When a common monomial factor occurs in each term of an algebraic expression, then it can be expressed as a product of the greatest common factor of its terms and quotient of the given expression by the greatest common factor of its terms.

When a binomial is a common factor, we write the given expression as the product of this binomial and the quotient of the given expression by this binomial.

If the given expression is the difference of two squares, then to factorize it, we use the formula (a2 – b2) = (a + b) (a – b)

If the given expression is a complete square, we use one of the following formulae to factorize it:

  • a2 + 2ab + b2 = (a + b)2 = (a + b)(a + b)
  • a2 – 2ab + b2 = (a – b)2 = (a – b) (a – b)

For factorisation of the form (x2 + px + q), we find two numbers a and b such that (a + b) = p and ab = q, then x2 + px + q = x2 + (a + b)x + ab = (x + a) (x + b).

In case of division of a polynomial by a monomial, we may carry out the division either by dividing each term of the polynomial by the monomial or by the common factor method.

In case of division of a polynomial by a polynomial, we cannot proceed by dividing each term in the dividend polynomial by the division polynomial. Instead, we factorise both the polynomial and cancel their common factors.

In the case of division of algebraic expression, we have Dividend = Divisor × Quotient + Remainder.

Factors of Natural Numbers
A number, when written as a product of its prime factors, is said to be in the prime factor form. Similarly, we can express algebraic expressions as products of their factors.

Factors of Algebraic Expressions
An irreducible factor is one which cannot be expressed further as a product of factors.

What is Factorisation?
When we factorise an algebraic expression, we write it as a product of irreducible factors. These factors may be numbers, algebraic variables or algebraic expressions.

Method of Common Factors
We factorise each term of the given algebraic expression as a product of irreducible factors and separate the common factors. Then, we combine the remaining factors in each term using the distributive law.

Factorisation By Regrouping Terms
Sometimes it so happens that all the terms in a given algebraic expression do not have a common factor; but the terms can be grouped in such a manner that all the terms in each group have a common factor. In doing so, we get a common factor across all the groups formed. This leads to the required factorisation of the given algebraic expression.

Factorisation Using Identities
The following identities prove to be quite helpful in factorisation of an algebraic expression:
(a + b)2 = a2 + 2ab + b2
(a – b)2 = a2 – 2ab + b2
(a + b) (a – b) = a2 – b2

Factors of the Form (x + a) (x + b)
(x + a) (x + b) = x2 + (a + b) x + ab
To factorise an algebraic expression of the type x2 + px + q, we find two factors a and b of q such that ab = q and a + b = p
Then, the given expression becomes
x2 + (a + b) x + ab = x2 + ax + bx + ab = x (x + a) + b (x + b) = (x + a) (x + b) which are the required factors.

Division of Algebraic Expressions
Here, we shall divide one algebraic expression by another.

Division of a Monomial by Another Monomial
We shall factorise the numerator and denominator into irreducible factors and cancel out the common factors from the numerator and the denominator.

Division of a Polynomial by a Monomial
We divide each term of the polynomial in the numerator by the monomial in the denominator.

Division of Algebraic Expressions Continued (Polynomial ÷ Polynomial)
We factorise the algebraic expressions in the numerator and the denominator into irreducible factors and cancel the common factors from the numerator and the denominator.

Rules to be Followed You Find The Errors

  1. Coefficient 1 of a term is usually not written. But while adding like terms, we should include it in the sum.
  2. When we are going to substitute a negative value, we should remember to make use of brackets.
  3. When we have to multiply an expression enclosed within a bracket by a constant or a variable outside, we should multiply each term of the expression by that constant or variable.
  4. When we have to square a polynomial, we should square the numerical coefficient and each factor.
  5. When we have to divide a polynomial by a monomial, we should divide each term of the polynomial in the numerator by the monomial in the denominator.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Advertisement

CBSE Delhi Question Answer of Chapters in PDF

Free Sample Papers and Previous Years' Question Papers for CBSE Exams from the Official CBSE Academic Website (CBSE.nic.in) in Delhi, Rajasthan, Uttar Pradesh and Bihar

Download CBSE / NCERT Book, Notes & MCQ Online Test / Mock Test

Online Quiz with Answers for Objective Questions in Hindi and English

Advertisement

Maharashtra Board Marathi & English Medium

Just Launched! Access Maharashtra Board Exam MCQs, Previous Year Papers, Textbooks, Solutions, Notes, Important Questions, and Summaries—available in both Marathi and English mediums—all in one place Maharashtra Board

Android APP

सरकारी Exam Preparation

Sarkari Exam Preparation Youtube

CBSE – दिल्ली, उत्तर प्रदेश, मध्य प्रदेश, बिहार, राजस्थान & हरियाणा Board हिंदी माध्यम

कक्षा 6 to 8 हिंदी माध्यम
कक्षा 9 & 10 हिंदी माध्यम
कक्षा 11 हिंदी माध्यम

State Board

यूपी बोर्ड 6,7 & 8
बिहार बोर्ड हिंदी माध्यम

CBSE Board

Mathematics Class 6
Science Class 6
Social Science Class 6
हिन्दी Class 6
सामाजिक विज्ञान कक्षा 6
विज्ञान कक्षा 6

Mathematics Class 7
Science Class 7
SST Class 7
सामाजिक विज्ञान कक्षा 7
हिन्दी Class 7

Mathematics Class 8
Science Class 8
Social Science Class 8
हिन्दी Class 8

Mathematics Class 9
Science Class 9
English Class 9

Mathematics Class 10
SST Class 10
English Class 10

Mathematics Class XI
Chemistry Class XI
Accountancy Class 11

Accountancy Class 12
Mathematics Class 12

Learn English
English Through हिन्दी
Job Interview Skills
English Grammar
हिंदी व्याकरण - Vyakaran
Microsoft Word
Microsoft PowerPoint
Adobe PhotoShop
Adobe Illustrator
Learn German
Learn French
IIT JEE

Study Abroad

Study in Australia: Australia is known for its vibrant student life and world-class education in fields like engineering, business, health sciences, and arts. Major student hubs include Sydney, Melbourne, and Brisbane. Top universities: University of Sydney, University of Melbourne, ANU, UNSW.

Study in Canada: Canada offers affordable education, a multicultural environment, and work opportunities for international students. Top universities: University of Toronto, UBC, McGill, University of Alberta.

Study in the UK: The UK boasts prestigious universities and a wide range of courses. Students benefit from rich cultural experiences and a strong alumni network. Top universities: Oxford, Cambridge, Imperial College, LSE.

Study in Germany: Germany offers high-quality education, especially in engineering and technology, with many low-cost or tuition-free programs. Top universities: LMU Munich, TUM, University of Heidelberg.

Study in the USA: The USA has a diverse educational system with many research opportunities and career advancement options. Top universities: Harvard, MIT, Stanford, UC Berkeley.

Privacy Policies, Terms and Conditions, About Us, Contact Us
Copyright © 2025 eVidyarthi and its licensors. All Rights Reserved.