SAMPLE QUESTION PAPER

CLASS-XII (2016-17)
MATHEMATICS (041)

Time allowed: $\mathbf{3}$ hours
Maximum Marks: $\mathbf{1 0 0}$

General Instructions:

(i) All questions are compulsory.
(ii) This question paper contains 29 questions.
(iii) Question 1-4 in Section A are very short-answer type questions carrying 1 mark each.
(iv) Question 5-12 in Section B are short-answer type questions carrying $\mathbf{2}$ marks each.
(v) Question 13-23 in Section C are long-answer-I type questions carrying 4 marks each.
(vi) Question 24-29 in Section D are long-answer-II type questions carrying 6 marks each.

SECTION-A

Questions from 1 to 4 are of 1 mark each.

1. What is the principal value of $\tan ^{-1}\left(\tan \frac{2 \pi}{3}\right)$?
2. A and B are square matrices of order 3 each, $|A|=2$ and $|B|=3$. Find $|3 A B|$
3. What is the distance of the point (p, q, r) from the x-axis?
4. Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be defined by $\mathrm{f}(\mathrm{x})=3 \mathrm{x}^{2}-5$ and $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ be defined by $\mathrm{g}(\mathrm{x})=\frac{x}{x^{2}+1}$. Find g of

SECTION-B

Questions from $\mathbf{5}$ to $\mathbf{1 2}$ are of $\mathbf{2}$ marks each.

5. How many equivalence relations on the set $\{1,2,3\}$ containing $(1,2)$ and $(2,1)$ are there in all ? Justify your answer.
6. Let $l_{i}, m_{i,}, n_{i} ; i=1,2,3$ be the direction cosines of three mutually perpendicular vectors in space. Show that $\mathrm{AA}^{\prime}=I_{3}$, where $\mathrm{A}=\left[\begin{array}{lll}l_{1} & m_{1} & n_{1} \\ l_{2} & m_{2} & n_{2} \\ l_{3} & m_{3} & n_{3}\end{array}\right]$.
7. If $\mathrm{e}^{y}(\mathrm{x}+1)=1$, show that $\frac{d y}{d x}=-e^{y}$
8. Find the sum of the order and the degree of the following differential equations:

$$
\frac{d^{2} y}{d x^{2}}+\sqrt[3]{\frac{d y}{d x}}+(1+\mathrm{x})=0
$$

9. Find the Cartesian and Vector equations of the line which passes through the point $(-2,4,-5)$ and parallel to the line given by $\frac{x+3}{3}=\frac{y-4}{5}=\frac{8-z}{-6}$
10. Solve the following Linear Programming Problem graphically:

Maximize $Z=3 x+4 y$
subject to $x+y \leq 4, x \geq 0$ and $y \geq 0$
11. A couple has 2 children. Find the probability that both are boys, if it is known that (i) one of them is a boy (ii) the older child is a boy.
12. The sides of an equilateral triangle are increasing at the rate of $2 \mathrm{~cm} / \mathrm{sec}$. Find the rate at which its area increases, when side is 10 cm long.

SECTION-C

Questions from 13 to 23 are of 4 marks each.

13. If $A+B+C=\pi$, then find the value of

$$
\left|\begin{array}{ccc}
\sin (A+B+C) & \sin B & \cos C \\
-\sin B & 0 & \tan A \\
\cos (A+B) & -\tan A & 0
\end{array}\right|
$$

Using properties of determinant, prove that

$$
\left|\begin{array}{lll}
b+c & a-b & a \\
c+a & b-c & b \\
a+b & c-a & c
\end{array}\right|=3 a b c-a^{3}-b^{3}-c^{3}
$$

14. It is given that for the function $f(x)=x^{3}-6 x^{2}+a x+b$ Rolle's theorem holds in [1,3] with c $=2+\frac{1}{\sqrt{3}}$. Find the values of ' a ' and ' b '
15. Determine for what values of x, the function $f(x)=x^{3}+\frac{1}{x^{3}}(x \neq 0)$ is strictly increasing or strictly decreasing

OR

Find the point on the curve $\mathrm{y}=\mathrm{x}^{3}-11 x+5$ at which the tangent is $\mathrm{y}=\mathrm{x}-11$
16. Evaluate $\int_{0}^{2}\left(x^{2}+3\right) \mathrm{dx}$ as limit of sums.
17. Find the area of the region bounded by the y-axis, $y=\cos x$ and $y=\sin x, 0 \leq x \leq \frac{\pi}{2}$
18. Can $\mathrm{y}=\mathrm{ax}+\frac{b}{a}$ be a solution of the following differential equation?

$$
\begin{equation*}
\mathrm{y}=\mathrm{x} \frac{d y}{d x}+\frac{b}{\frac{d y}{d x}} \ldots \ldots \ldots \ldots \ldots \tag{*}
\end{equation*}
$$

If no, find the solution of the D.E.(*).

OR

Check whether the following differential equation is homogeneous or not

$$
x^{2} \frac{d y}{d x}-x y=1+\cos \left(\frac{y}{x}\right), x \neq 0
$$

Find the general solution of the differential equation using substitution $\mathrm{y}=\mathrm{vx}$.
19. If the vectors $\overrightarrow{\mathrm{p}}=\mathrm{a} \hat{\imath}+\hat{\jmath}+\hat{k}, \overrightarrow{\mathrm{q}}=\hat{\imath}+\mathrm{b} \hat{\jmath}+\hat{k}$ and $\overrightarrow{\mathrm{r}}=\hat{\imath}+\hat{\jmath}+\widehat{C K}$ are coplanar, then for a, b, $c \neq 1$ show that

$$
\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}=1
$$

20. A plane meets the coordinate axes in A, B and C such that the centroid of $\triangle A B C$ is the point (α, β, γ). Show that the equation of the plane is $\frac{x}{\alpha}+\frac{y}{\beta}+\frac{z}{\gamma}=3$
21. If a 20 year old girl drives her car at $25 \mathrm{~km} / \mathrm{h}$, she has to spend $\mathrm{Rs} 4 / \mathrm{km}$ on petrol. If she drives her car at $40 \mathrm{~km} / \mathrm{h}$, the petrol cost increases to Rs $5 / \mathrm{km}$. She has Rs 200 to spend on petrol and wishes to find the maximum distance she can travel within one hour. Express the above problem as a Linear Programming Problem. Write any one value reflected in the problem.
22. The random variable X has a probability distribution $P(X)$ of the following form, where k is some number:

$$
P(X)=\left\{\begin{array}{c}
k, \text { if } x=0 \\
2 k, \text { if } x=1 \\
3 k, \text { if } x=2 \\
0, \text { otherwise }
\end{array}\right.
$$

(i) Find the value of k (ii) Find $\mathrm{P}(\mathrm{X}<2$) (iii) Find $\mathrm{P}(\mathrm{X} \leq 2)$ (iv)Find $\mathrm{P}(\mathrm{X} \geq 2)$
23. A bag contains $(2 n+1)$ coins. It is known that ' n ' of these coins have a head on both its sides whereas the rest of the coins are fair. A coin is picked up at random from the bag and is tossed. If the probability that the toss results in a head is $\frac{31}{42}$, find the value of ' n '.

SECTION-D

Questions from 24 to 29 are of 6 marks each

24. Using properties of integral, evaluate $\int_{0}^{\pi} \frac{x}{1+\sin x} d x$

OR

Find: $\int \frac{\sin x}{\sin ^{3} x+\cos ^{3} x} d x$
25. Does the following trigonometric equation have any solutions? If Yes, obtain the solution(s):

$$
\begin{gathered}
\tan ^{-1}\left(\frac{x+1}{x-1}\right)+\tan ^{-1}\left(\frac{x-1}{x}\right)=-\tan ^{-1} 7 \\
\text { OR }
\end{gathered}
$$

Determine whether the operation * define below on \mathbb{Q} is binary operation or not.

$$
a * b=a b+1
$$

If yes, check the commutative and the associative properties. Also check the existence of identity element and the inverse of all elements in \mathbb{Q}.
26.

Find the value of x, y and z , if $\mathrm{A}=\left[\begin{array}{ccc}0 & 2 y & z \\ x & y & -z \\ x & -y & z\end{array}\right]$ satisfies $\mathrm{A}^{\prime}=\mathrm{A}^{-1}$

OR

Verify: $\mathrm{A}(\operatorname{adj} \mathrm{A})=(\operatorname{adj} \mathrm{A}) \mathrm{A}=|A| \mid \mathrm{I}$ for matrix $\mathrm{A}=\left[\begin{array}{ccc}1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3\end{array}\right]$
27. Find $\frac{d y}{d x}$, if $\mathrm{y}=\mathrm{e}^{\sin ^{2} \mathrm{x}}\left\{2 \tan ^{-1} \sqrt{\frac{1-x}{1+x}}\right\}$
28. Find the shortest distance between the line $x-y+1=0$ and the curve $y^{2}=x$
29. Define skew lines. Using only vector approach, find the shortest distance between the following two skew lines:

$$
\begin{aligned}
& \vec{r}=(8+3 \lambda) \hat{\imath}-(9+16 \lambda) \hat{\jmath}+(10+7 \lambda) \hat{k} \\
& \vec{r}=15 \hat{\imath}+29 \hat{\jmath}+5 \hat{k}+\mu(3 \hat{\imath}+8 \hat{\jmath}-5 \hat{k})
\end{aligned}
$$

