CBSE Sample Paper-05 (Solved)
 SUMMATIVE ASSESSMENT -I
 MATHEMATICS
 Class - IX

Time allowed: 3 hours
Maximum Marks: 90

General Instructions:

a) All questions are compulsory.
b) The question paper consists of 31 questions divided into four sections - A, B, C and D.
c) Section A contains 4 questions of 1 mark each. Section B contains 6 questions of 2 marks each, Section C contains 10 questions of 3 marks each and Section D contains 11 questions of 4 marks each.
d) Use of calculator is not permitted.

Section A

1. The $\frac{p}{q}$ form of the number 0.8 is
2. In figure the measure of $\angle a$ is

3. The distance of the point $(-6,-2)$ from y-axis is
4. Two angles of triangles are 65° and 45° respectively. Find third angles.

Section B

5. Write the following numbers in ascending order: $\sqrt[6]{6}, \sqrt[3]{7}, \sqrt[4]{8}$
6. Find the zeroes of the polynomial $p(x)=x^{2}-5 x+6$.
7. Find the remainder when $2 x^{4}+6 x^{3}+2 x^{2}-x+2$ is divided by $(x+2)$.
8. In figure, POQ is a line. Ray $O R$ is perpendicular to line PQ . OS is another ray lying between rays OP and OR. Prove that: $\quad \angle \mathrm{ROS}=\frac{1}{2}(\angle \mathrm{QOS}-\angle \mathrm{POS})$

9. In a $\triangle \mathrm{ABC}, 30 \mathrm{~A}+6 \mathrm{~B}=5 \mathrm{C}$. Determine $\angle \mathrm{A}, \angle \mathrm{B}$ and $\angle \mathrm{C}$.
10. Draw a triangle $A B C$ where vertices A, B and C are $(0,2),(2,-2)$ and $(-2,2)$ respectively.

Section C

11. Find five rational numbers between $\frac{3}{5}$ and $\frac{4}{5}$.
12. Simplify: $\frac{1}{2} \sqrt{486}-\sqrt{\frac{27}{2}}$

Or

Simplify: $\frac{\sqrt{a^{2}-b^{2}}+a}{\sqrt{a^{2}+b^{2}}+b} \div \frac{\sqrt{a^{2}+b^{2}}-b}{a-\sqrt{a^{2}-b^{2}}}$
13. Divide $f(y)=3 y^{4}-8 y^{3}-y^{2}-5 y-5$ by $y-3$.
14. If the polynomials $p x^{3}+4 x^{2}+3 x-4$ and $x^{3}-4 x+p$ are divided by $x-3$, then the remainder in each case is the same. Find the value of p.

Or

What must be added to $\left(x^{3}-3 x^{2}+4 x-13\right)$ to obtain a polynomial which is exactly divisible by $(x-3)$?
15. Factorize: $a^{2} p x+2 a^{2} q x-2 a p y-4 a q y+p z+2 q z$
16. If a point C lies between two points A and B such that $A C=B C$, then point C is called the midpoint of line segment $A B$. Prove that every line segment has one and only one mid-point.
17. In the figure, if $\angle \mathrm{AOC}+\angle \mathrm{BOD}=266^{\circ}$, then find all the four angles.

Or

If the figure, if $\angle \mathrm{AOC}+\angle \mathrm{BOC}=\angle \mathrm{BOD}=338^{\circ}$, then find the all four angles.

18. If a line is perpendicular to one of the two given parallel lines then prove that it is also perpendicular to the other line.
19. In a triangle $\mathrm{ABC}, \angle \mathrm{A}+\angle \mathrm{B}=84^{\circ}$ and $\angle \mathrm{B}+\angle \mathrm{C}=146^{\circ}$. Find the measure of each of the angles of the triangle.
20. In the figure, find x and y, if $\mathrm{AB} \| \mathrm{DF}$ and $\mathrm{AD} \| \mathrm{FG}$.

Section D

21. Represent $\sqrt{5}$ on number line.
22. Rationalize the denominator of $\frac{1}{\sqrt{2}+\sqrt{3}+\sqrt{10}}$.

Or

Simplify:

$$
\frac{7 \sqrt{3}}{\sqrt{10}+\sqrt{3}}-\frac{2 \sqrt{5}}{\sqrt{6}+\sqrt{5}}-\frac{3 \sqrt{2}}{\sqrt{15}+3 \sqrt{2}}
$$

23. Ram has two rectangles in which their areas are given:
(a) $25 a^{2}-35 a+12$
(b) $35 y^{2}+13 y-12$
(i) Give possible expressions for the length and breadth of each of the rectangles.
(ii) Which mathematical concept is used in this problem?
(iii) Which value is depicted in this problem?
24. Factorize $x^{3}-23 x^{2}+142 x-120$, if $x-1$ is a factor of it.

Or

Factorize by using factor theorem: $y^{3}-7 y+6$
25. Factorize $\quad: x^{3}+\frac{1}{x^{3}}-2$
26. If lines $\mathrm{AB}, \mathrm{AC}, \mathrm{AD}$ and AE are parallel to a line l, then points $\mathrm{A}, \mathrm{B}, \mathrm{C} . \mathrm{D}$ and E are collinear.
27. In the figure, $A B \| C D$ and $P Q \| R S$, find the angles marked.

28. Two plane mirrors are placed perpendicular to each other, as shown in the figure. An incident ray $A B$ to the first mirror is first reflected in the direction of $B C$ and then reflected by the second mirror in the direction of $C D$. Prove that $A B \| C D$.
29. In the figure, it is given that $\angle \mathrm{A}=\angle \mathrm{C}$ and $\mathrm{AB}=\mathrm{BC}$. Prove that $\triangle \mathrm{ABD} \cong \triangle \mathrm{CBE}$.
30. Draw the graph of linear equation: $\quad 8 x-3 y+4=0$
31. The side of a square exceeds the side of another square by 4 cm and the sum of the areas of the two squares is 400 sq. cm . Find the dimensions of the squares.
(Solutions)

SECTION-A

1. $\frac{8}{10}$
2. 30^{0}
3. 6 units
4. 70°
5. L.C.M. of 6,3 and 4 is 12 .

\Rightarrow	$\sqrt[6]{6}=\sqrt[12]{36}$	$\sqrt[3]{7}=\sqrt[12]{2401}$	and
\Rightarrow	$36<512<2401$		\Rightarrow
12	$\sqrt[4]{36}<\sqrt[12]{512}<\sqrt[12]{512}$		

$\therefore \quad \sqrt[6]{6}<\sqrt[4]{8}<\sqrt[3]{7}$
6. $x^{2}-5 x+6=0 \quad \Rightarrow \quad x^{2}-3 x-2 x+6=0$
$\Rightarrow \quad x(x-3)-2(x-3)=0 \quad \Rightarrow \quad(x-3)(x-2)=0$
$\therefore \quad$ Zeroes are 2 and 3 .
7. By remainder theorem,

$$
\begin{aligned}
& f(-2)=2(-2)^{4}+6(-2)^{3}+2(-2)^{2}-(-2)+2 \\
\Rightarrow \quad & f(-2)=32-48+8+2+2=-4
\end{aligned}
$$

8. $\angle \mathrm{QOS}-\angle \mathrm{POS}=(\angle \mathrm{QOR}+\angle \mathrm{ROS})-\angle \mathrm{POS}$

$$
\begin{aligned}
& =90^{\circ}+\angle \mathrm{ROS}-\angle \mathrm{POS} \\
& =\left(90^{\circ}-\angle \mathrm{POS}\right)+\angle \mathrm{ROS} \\
& =(\angle \mathrm{ROP}-\angle \mathrm{POS})+\angle \mathrm{ROS} \\
& =2 \angle \mathrm{ROS}
\end{aligned}
$$

Hence, $\angle \mathrm{ROS}=\frac{1}{2}(\angle \mathrm{QOS}-\angle \mathrm{POS})$
9. Given $30 \mathrm{~A}=6 \mathrm{~B}=5 \mathrm{C}$

$$
\begin{aligned}
& \Rightarrow \quad \frac{\mathrm{A}}{1}=\frac{\mathrm{B}}{5}=\frac{\mathrm{C}}{6} \quad \quad \quad[\text { Dividing by } 30] \\
& \Rightarrow \quad \angle \mathrm{A}: \angle \mathrm{B}: \angle \mathrm{C}=1: 5: 6
\end{aligned}
$$

Let $\angle \mathrm{A}=x, \angle \mathrm{~B}=5 x$ and $\angle \mathrm{C}=6 x$
$\Rightarrow \quad x+5 x+6 x=180^{\circ} \quad \Rightarrow \quad 12 x=180^{\circ} \quad \Rightarrow \quad x=15^{\circ}$
Hence $\angle \mathrm{A}=15^{\circ}, \angle \mathrm{B}=75^{\circ}$ and $\angle \mathrm{C}=90^{\circ}$
10.

11. A rational number between r and s is $\frac{r+s}{2}$.

Therefore a rational number between $\frac{3}{5}$ and $\frac{4}{5}=\frac{1}{2}\left(\frac{3}{5}+\frac{4}{5}\right)=\frac{7}{10}$
A rational number between $\frac{3}{5}$ and $\frac{7}{10}=\frac{1}{2}\left(\frac{3}{5}+\frac{7}{10}\right)=\frac{13}{20}$
Hence five rational numbers between $\frac{3}{5}$ and $\frac{4}{5}$ are $\frac{5}{8}, \frac{13}{20}, \frac{27}{40}, \frac{7}{10}, \frac{31}{40}$.
12. $\frac{1}{2} \sqrt{486}-\sqrt{\frac{27}{2}}=\frac{1}{2} \sqrt{9^{2} \times 6}-\sqrt{\frac{54}{4}}$
$=\frac{1}{2} \sqrt{9^{2}} \times \sqrt{6}-\sqrt{\frac{3^{2} \times 6}{2^{2}}}=\frac{1}{2} \times 9 \times \sqrt{6}-\frac{3}{2} \sqrt{6}=\sqrt{6}\left(\frac{9}{2}-\frac{3}{2}\right)=3 \sqrt{6}$

Or

$$
\begin{aligned}
& \frac{\sqrt{a^{2}-b^{2}}+a}{\sqrt{a^{2}+b^{2}}+b} \times \frac{a-\sqrt{a^{2}-b^{2}}}{\sqrt{a^{2}+b^{2}}-b}=\frac{a^{2}-\left(a^{2}-b^{2}\right)}{\left(a^{2}+b^{2}\right)-b^{2}} \\
& =\frac{b^{2}}{a^{2}}
\end{aligned}
$$

13.

$$
y-3 \left\lvert\, \begin{aligned}
& 3 y^{3}+y^{2}+2 y+1 \\
& \begin{array}{l}
3 y^{4}-8 y^{3}-y^{2}-5 y-5 \\
3 y^{4}-9 y^{3} \\
+
\end{array} \\
& \begin{array}{r}
y^{3}-y^{2}-5 y-5 \\
y^{3}-3 y^{2} \\
-\quad+
\end{array} \\
& \begin{array}{r}
2 y^{2}-5 y-5 \\
2 y^{2}-6 y \\
-\quad+
\end{array} \\
& \begin{array}{r}
y-5 \\
y-3
\end{array} \\
& -\quad+2
\end{aligned}\right.
$$

14. Let $A(x)=p x^{3}+4 x^{2}+3 x-4$

$$
\begin{aligned}
& B(x)=x^{3}-4 x+p \\
& g(x)=x-3
\end{aligned}
$$

According to question,

$$
A(3)=B(3)
$$

$\Rightarrow \quad p(3)^{3}+4(3)^{2}+3(3)-4=\left(3^{3}\right)-4(3)+p$
$\Rightarrow \quad 27 p+41=15+p$
$\Rightarrow \quad 27 p-p=15-41$
$\Rightarrow \quad p=-1$

Or

Let $f(x)=x^{3}-3 x^{2}+4 x-13$ and $g(x)=x-3$
Let k be added to $f(x)$ so that it may be exactly divisible by $(x-3)$.
$\therefore \quad p(x)=\left(x^{3}-3 x^{2}+4 x-13\right)+k$
$\therefore \quad p(3)=(3)^{3}-3(3)^{2}+4(3)-13+k=0$
$\Rightarrow \quad 27-27+12-13+k=0$
$\Rightarrow \quad-1+k=0 \quad \Rightarrow \quad k=1$
15. $a^{2} p x+2 a^{2} q x-2 a p y-4 a q y+p z+2 q z$
$=\left(a^{2} p x+2 a^{2} q x\right)+(-2 a p y-4 a q y)+(p z+2 q z)$
$=a^{2} x(p+2 q)-2 a y(p+2 q)+z(p+2 q)$
$=(p+2 q)\left(a^{2} x-2 a y+z\right)$
16. Given $\mathrm{AC}=\mathrm{BC}$

If possible let D be another mid-point of $A B$
$\therefore \quad \mathrm{AD}=\mathrm{DB}$
Subtracting eq. (i) from eq. (ii), we get

$$
\mathrm{AD}-\mathrm{AC}=\mathrm{DB}-\mathrm{CB}
$$

$\Rightarrow \quad-\mathrm{CD}=\mathrm{CD}$
$\Rightarrow \quad 2 \mathrm{CD}=0$
$\Rightarrow \quad \mathrm{CD}=0$
$\therefore \quad \mathrm{C}$ and D coincide.
Hence every line segment has one and only one mid-point.
17. $\angle \mathrm{AOC}+\angle \mathrm{BOD}=266^{\circ}$

But $\quad \angle \mathrm{BOD}=\angle \mathrm{AOC}$
$\therefore \quad \angle \mathrm{AOC}+\angle \mathrm{AOC}=266^{\circ}$
[Vertically opposite]

Now $\quad \angle \mathrm{AOC}+\angle \mathrm{BOC}=180^{\circ} \quad$ [Linear pair]
$\Rightarrow \quad 133^{\circ}+\angle \mathrm{BOC}=180^{\circ}$
$\Rightarrow \quad \angle B O C=47^{\circ}$
$\Rightarrow \quad \angle \mathrm{AOD}=\angle \mathrm{BOC}$
$\Rightarrow \quad \angle \mathrm{AOD}=47^{\circ}$

Or

$\angle \mathrm{AOC}+\angle \mathrm{BOC}+\angle \mathrm{BOD}=338^{\circ}$
$\angle \mathrm{AOC}+\angle \mathrm{BOC}+\angle \mathrm{BOD}+\angle \mathrm{AOD}=360^{\circ}$
From eq. (i) and eq. (ii), we get,
$338^{\circ}+\angle \mathrm{AOD}=360^{\circ}$
$\Rightarrow \quad \angle \mathrm{AOD}=22^{\circ}$
$\therefore \quad \angle \mathrm{BOC}=22^{\circ}, \angle \mathrm{BOD}=158^{\circ}$ and $\angle \mathrm{AOC}=158^{\circ}$
18. Given $\quad: l, m, n$ are three lines such that $m \| n$ and $l \perp m$.

To prove: $l \perp n$
Proof : Since $l \perp m$

$$
\begin{equation*}
\Rightarrow \quad \angle 1=90^{\circ} \tag{i}
\end{equation*}
$$

Now, $m \| n$ and transversal intersects them.

$$
\begin{equation*}
\Rightarrow \quad \angle 2=\angle 1 \tag{ii}
\end{equation*}
$$

[Corresponding angles]
From eq. (i) and (ii), we get,

$$
\angle 2=\angle 1=90^{\circ} \quad \Rightarrow \quad \angle 2=90^{\circ}
$$

$$
\begin{equation*}
\therefore \quad l \perp n \tag{i}
\end{equation*}
$$

19. Given $\angle \mathrm{A}+\angle \mathrm{B}=84^{\circ}$

And $\quad \angle \mathrm{B}+\angle \mathrm{C}=146^{\circ}$
Adding eq. (i) and (ii), we get,

$$
\begin{array}{ll}
& \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{B}+\angle \mathrm{C}=230^{\circ} \\
\Rightarrow & (\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C})+\angle \mathrm{B}=230^{\circ} \\
\Rightarrow & 180^{\circ}+\angle \mathrm{B}=230^{\circ} \\
\Rightarrow & \angle \mathrm{B}=50^{\circ}
\end{array}
$$

Putting the value of $\angle \mathrm{B}$ in eq. (i), we get,

$$
\angle \mathrm{A}+50^{\circ}=84^{\circ} \quad \Rightarrow \quad \angle \mathrm{A}=34^{\circ}
$$

Putting the value of $\angle \mathrm{B}$ in eq. (ii), we get,

$$
50^{\circ}+\angle \mathrm{C}=146^{\circ} \quad \Rightarrow \quad \angle \mathrm{C}=96^{\circ}
$$

20.

$\angle y+125^{\circ}=180^{\circ}$
$\Rightarrow \quad \angle y=55^{\circ}$
[Straight angle]

Now $A B$ is parallel to $F D$ and transversal $A D$ cuts them.
$\angle \mathrm{D}=\angle \mathrm{A} \quad$ [Alternate angles]
$\angle \mathrm{D}=65^{\circ}$

Again $\mathrm{AD} \| \mathrm{FG}$, transversal FD cuts them.

$$
\begin{align*}
& \angle \mathrm{F}=\angle \mathrm{D} \\
& \angle \mathrm{~F}=65^{\circ} \tag{ii}
\end{align*}
$$

In triangle EFG,

$$
\angle x+\angle \mathrm{F}+\angle y=180^{\circ}
$$

$$
\begin{array}{ll}
\Rightarrow & \angle x+65^{\circ}+55^{\circ}=180^{\circ} \\
\Rightarrow & \angle x=60^{\circ}
\end{array}
$$

21.

22. $\frac{1}{\sqrt{2}+\sqrt{3}+\sqrt{10}} \cdot \times \frac{(\sqrt{2}+\sqrt{3})-\sqrt{10}}{(\sqrt{2}+\sqrt{3})-\sqrt{10}}$
$=\frac{\sqrt{2}+\sqrt{3}-\sqrt{10}}{(\sqrt{2}+\sqrt{3})^{2}-(\sqrt{10})^{2}}=\frac{\sqrt{2}+\sqrt{3}-\sqrt{10}}{2 \sqrt{6}-5}$
$=\frac{\sqrt{2}+\sqrt{3}-\sqrt{10}}{2 \sqrt{6}-5} \times \frac{2 \sqrt{6}+5}{2 \sqrt{6}+5}=\frac{(\sqrt{2}+\sqrt{3}-\sqrt{10})(2 \sqrt{6}+5)}{(2 \sqrt{6})^{2}-(5)^{2}}$
$=\frac{2 \sqrt{12}+5 \sqrt{2}+2 \sqrt{18}+5 \sqrt{3}-2 \sqrt{60}-5 \sqrt{10}}{24-25}=-4 \sqrt{3}-5 \sqrt{2}-6 \sqrt{2}-5 \sqrt{3}+4 \sqrt{15}+5 \sqrt{10}$
$=-11 \sqrt{2}-9 \sqrt{3}+5 \sqrt{0}+4 \sqrt{15}$

Or

$\frac{7 \sqrt{3}}{\sqrt{10}+\sqrt{3}} \times \frac{\sqrt{10}-\sqrt{3}}{\sqrt{10}-\sqrt{3}}-\frac{2 \sqrt{5}}{\sqrt{6}+\sqrt{5}} \times \frac{\sqrt{6}-\sqrt{5}}{\sqrt{6}-\sqrt{5}}-\frac{3 \sqrt{2}}{\sqrt{15}+3 \sqrt{2}} \times \frac{\sqrt{15}-3 \sqrt{2}}{\sqrt{15}-3 \sqrt{2}}$
$=\frac{7 \sqrt{30}-21}{10-3}-\frac{2 \sqrt{30}-10}{6-5}-\frac{3 \sqrt{30}-18}{15-18}$
$=\sqrt{30}-3-2 \sqrt{30}+10+\sqrt{30}-6$
$=(\sqrt{30}-2 \sqrt{30}+\sqrt{30})+(-3+10-6)$
= 1
23. (i) (a) Area $=25 a^{2}-35 a+12=25 a^{2}-15 a-20 a+12$

$$
=5 a(5 a-3)-4(5 a-3)=(5 a-3)(5 a-4)
$$

So possible length and breadth are $(5 a-3)$ and $(5 a-4)$ units respectively.
(b) Area $=35 y^{2}+13 y-12=35 y^{2}+28 y-15 y-12$

$$
=7 y(5 y+4)-3(5 y+4)=(7 y-3)(5 y+4)
$$

So possible length and breadth are $(7 y-3)$ and $(5 y+4)$.
(ii) Factorization of Polynomials.
(iii) Expression of one's desires and news is very necessary.
24. Let us divide $x^{3}-23 x^{2}+142 x-120$ by $x-1$ to get the other factors.

$$
x-1 \left\lvert\, \begin{aligned}
& x^{2}-22 x+120 \\
& \cline { 2 - 3 } x^{3}-23 x^{2}+142 x-120 \\
& x^{3}-x^{2} \\
& -+ \\
& \hline-22 x^{2}+142 x-120 \\
& -22 x^{2}+22 x \\
& +\quad- \\
& \hline \begin{array}{l}
120 x-120 \\
120 x-120 \\
- \\
\hline
\end{array} \\
& \hline
\end{aligned}\right.
$$

$$
\begin{aligned}
x^{3}-23 x^{2}+142 x-120 & =(x-1)\left(x^{2}-22 x+120\right) \\
& =(x-1)\left(x^{2}-12 x-10 x+120\right) \\
& =(x-1)[x(x-12)-10(x-12)] \\
& =(x-1)(x-12)(x-10)
\end{aligned}
$$

Or

Let $f(y)=y^{3}-7 y+6$
The constant term in $f(y)$ is 6 and its factors are $\pm 1, \pm 2, \pm 3, \pm 6$.
On putting $y=-1$ in given expression, we get,

$$
\begin{aligned}
& f(-1)=(-1)^{3}-7(-1)+6=-1+7+6 \neq 0 \\
& f(+1)=(1)^{3}-7(1)+6=0
\end{aligned}
$$

So $(y-1)$ is a factor of $f(y)$.
Now we divide $f(y)=y^{3}-7 y+6$ by $y-1$ to get other factors.

$$
\begin{aligned}
\therefore \quad y^{3}-7 y+6= & (y-1)\left(y^{2}+y-6\right) \\
& =(y-1)\left(y^{2}+3 y-2 y-6\right) \\
& =(y-1)[y(y+3)-2(y+3)] \\
& =(y-1)(y+3)(y-2)
\end{aligned}
$$

25. $x^{3}+\frac{1}{x^{3}}-2=x^{3}+\left(\frac{1}{x}\right)^{3}+1-3$

$$
\begin{aligned}
& =x^{3}+\left(\frac{1}{x}\right)^{3}+(1)^{3}-3 \times x \times \frac{1}{x} \times 1 \\
& =\left(x+\frac{1}{x}+1\right)\left[x^{2}+\left(\frac{1}{x}\right)^{2}+1-x \times \frac{1}{x}-\frac{1}{x} \times 1-1 \times x\right] \\
& =\left(x+\frac{1}{x}+1\right)\left(x^{2}+\left(\frac{1}{x}\right)^{2}+1-1-\frac{1}{x}-x\right) \\
& =\left(x+\frac{1}{x}+1\right)\left(x^{2}+\frac{1}{x^{2}}-\frac{1}{x}-x\right)
\end{aligned}
$$

26. Given : Lines $\mathrm{AB}, \mathrm{AC}, \mathrm{AD}$ and AE are parallel to line l.

To prove: A, B, C, D and E are collinear.
Proof : Since AB, AC, AD and AE are all parallel to line l. Therefore point A is outside l and lines $\mathrm{AB}, \mathrm{AC}, \mathrm{AE}$ are drawn through A and each line is parallel to l.
But by parallel lines axiom, one and only one line can be drawn through A outside it and parallel to l.
This is possible only when A, B, C, D and E all lie on the same line. Hence A, B, C, D and E are collinear.
27. $\mathrm{PQ} \| \mathrm{RS} \quad \Rightarrow \quad \angle 1+\angle \mathrm{EFS}=180^{\circ}$
[consecutive interior angles are supplementary when lines are parallel]

$$
\begin{aligned}
& \angle 1=90^{\circ} \\
& \angle 7+\angle \mathrm{EFS}=180^{\circ} \quad \text { [Linear pair] } \\
& \Rightarrow \quad \angle 7+90^{\circ}=180^{\circ} \quad \Rightarrow \quad \angle 7=90^{\circ} \\
& \angle 3=\angle \mathrm{BEQ} \quad \text { [Vertically opposite angles] } \\
& \Rightarrow \quad \angle 3=36^{\circ} \\
& \angle 1+\angle 2+\angle 3=180^{\circ} \\
& \text { [Straight angles] } \\
& \Rightarrow \quad 90^{\circ}+\angle 2+36^{\circ}=180^{\circ} \Rightarrow \quad \angle 2=54^{\circ} \\
& \angle \mathrm{EFD}=\angle 2=54^{\circ} \\
& \angle 6+\angle \mathrm{EFD}=90^{\circ} \quad \Rightarrow \quad \angle 6+54^{\circ}=90^{\circ} \quad \Rightarrow \quad \angle 6=36^{\circ} \\
& \angle 4=\angle 6=36^{\circ} \quad \text { [Vertically opposite angles] } \\
& \angle 4+\angle 5=180^{\circ} \quad \Rightarrow \quad \angle 5=144^{\circ}
\end{aligned}
$$

28. Let BO and CO be the normals to the mirrors. As mirrors are perpendicular to each other. SO their normals BO and CO are perpendicular.

$$
\therefore \quad \angle B O C=90^{\circ}
$$

In right angled triangle $0 B C, \angle 2+\angle 3=90^{\circ}$

$$
\begin{equation*}
\angle 1=\angle 2 \tag{i}
\end{equation*}
$$

[Angle of incident $=$ Angle of reflection]
$\angle 3=\angle 4$
[Angle of incident $=$ Angle of reflection]
On adding, $\angle 1+\angle 4=\angle 2+\angle 3$
\Rightarrow $\angle 1+\angle 4=90^{\circ}$

On adding eq. (i) and (ii), we get,

$$
\begin{align*}
& \angle 2+\angle 3+\angle 1+\angle 4=180^{\circ} \tag{ii}\\
& \angle \mathrm{ABC}+\angle \mathrm{BCD}=180^{\circ}
\end{align*}
$$

But $\angle \mathrm{ABC}$ and $\angle \mathrm{BCD}$ are consecutive interior angles formed when the transversal BC intersect AB and CD .

$$
\therefore \quad \mathrm{AB} \| \mathrm{CD}
$$

29. In $\triangle s$ AOE and COD,

	$\angle \mathrm{A}=\angle \mathrm{C}$ and $\angle \mathrm{AOE}=\angle \mathrm{COD}$	[Vertically opposite angles]
$\therefore \quad \angle \mathrm{A}+\angle \mathrm{AOE}=\angle \mathrm{C}+\angle \mathrm{COD}$		
\Rightarrow	$180^{\circ}-\angle \mathrm{AEO}=180^{\circ}-\angle \mathrm{CDO}$	$\begin{aligned} & {\left[\because \angle \mathrm{A}+\angle \mathrm{AEO}=180^{\circ}\right. \text { and }} \\ & \left.\quad \angle \mathrm{C}+\angle \mathrm{COD}+\angle \mathrm{CDO}=180^{\circ}\right] \end{aligned}$
\Rightarrow	$\angle \mathrm{AEO}=\angle \mathrm{CDO}$.........(i)	
Now,	$\angle \mathrm{AEO}+\angle \mathrm{OEB}=180^{\circ}$	[Angles of a linear pair]
And	$\angle \mathrm{CDO}+\angle \mathrm{ODB}=180^{\circ}$	[Angles of a linear pair]
\Rightarrow	$\angle \mathrm{AEO}+\angle \mathrm{OEB}=\angle \mathrm{CDO}+\angle \mathrm{ODB}$	
\Rightarrow	$\angle \mathrm{OEB}=\angle \mathrm{ODB}$	
\Rightarrow	$\angle \mathrm{CEB}=\angle \mathrm{ADB}$.........(ii)	$[\because \angle \mathrm{OEB}=\angle \mathrm{CEB}$ and $\angle \mathrm{ODB}=\angle \mathrm{ADB}]$
In $\triangle \mathrm{ADB}$ and $\triangle \mathrm{CBE}$,$\angle \mathrm{ADB}=\angle \mathrm{CEB}$		[Given]
		[From eq. (ii)]
And	$\mathrm{AB}=\mathrm{BC}$	[Given]
	$\triangle \mathrm{ADB} \cong \triangle \mathrm{CBE}$	[By AAS]
	$c_{(4,12)}$	

FREE Education
30. We have, $8 x-3 y+4=0$
$\begin{array}{ll}\Rightarrow & 3 y=8 x+4 \\ \Rightarrow & y=\frac{8 x}{3}+\frac{4}{3}\end{array}$
Table of coordinates:

x	1	4	7
y	4	12	20
points	A	B	C

Join the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$.
The straight line AC is the graph of the linear equation $8 x-3 y+4=0$.
31. Let S_{1} and S_{2} be the two squares. Let the side of the square S_{2} be $x \mathrm{~cm}$ in length. Then the side of square S_{1} is $(x+4) \mathrm{cm}$.
$\therefore \quad$ Area of square $\mathrm{S}_{1}=(x+4)^{2}$
And Area of square $S_{2}=x^{2}$
We are given that, Area of square $S_{1}+$ Area of square $S_{2}=400 \mathrm{~cm}^{2}$
$\Rightarrow \quad(x+4)^{2}+x^{2}=400$
$\Rightarrow \quad x^{2}+8 x+16+x^{2}=400$
$\Rightarrow \quad 2 x^{2}+8 x-384=0$
$\Rightarrow \quad x^{2}+4 x-192=0$
$\Rightarrow \quad x^{2}+16 x-12 x-192=0$
$\Rightarrow \quad x(x+16)-12(x+16)=0$
$\Rightarrow \quad(x+16)(x-12)=0$
$\Rightarrow \quad x=-16,12$

As the length of the side of a square cannot be negative, therefore $x=12$
$\therefore \quad$ Side of square $\mathrm{S}_{1}=x+4=12+4=16 \mathrm{~cm}$ and side of square $\mathrm{S}_{2}=12 \mathrm{~cm}$.

