

SET-2

Series BVM/2

कोड नं. Code No. 56/2/2

रोल नं.				
Roll No.				

परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Code on the title page of the answer-book.

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 15 हैं।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें ।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में 27 प्रश्न हैं।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें ।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा। 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अविध के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे।
- Please check that this question paper contains 15 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains **27** questions.
- Please write down the Serial Number of the question before attempting it.
- 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

रसायन विज्ञान (सैद्धान्तिक) CHEMISTRY (Theory)

निर्धारित समय : 3 घण्टे अधिकतम अंक : 70

Time allowed: 3 hours Maximum Marks: 70

सामान्य निर्देश:

- (i) सभी प्रश्न अनिवार्य हैं।
- (ii) खण्ड अ : प्रश्न संख्या 1 से 5 तक अति लघु-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 1 अंक है ।
- (iii) खण्ड ब : प्रश्न संख्या 6 से 12 तक लघु-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 2 अंक हैं ।
- (iv) खण्ड स : प्रश्न संख्या 13 से 24 तक भी लघु-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 3 अंक हैं ।
- (v) खण्ड द : प्रश्न संख्या 25 से 27 तक दीर्घ-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 5 अंक हैं ।
- (vi) प्रश्न पत्र में समग्र विकल्प नहीं दिया गया है। फिर भी एक अंक वाले दो प्रश्नों में, दो अंकों वाले दो प्रश्नों में, तीन अंकों वाले चार प्रश्नों में तथा पाँच अंकों वाले तीनों प्रश्नों में विकल्प दिया गया है। ऐसे सभी प्रश्नों में से आपको एक ही विकल्प का उत्तर देना है।
- (vii) यदि आवश्यकता हो, तो आप लघुगणकीय सारणियाँ माँग सकते हैं । कैल्कुलेटरों के प्रयोग की अनुमति **नहीं** है ।

General Instructions:

- (i) **All** questions are compulsory.
- (ii) Section A: Questions number 1 to 5 are very short answer questions and carry 1 mark each.
- (iii) Section B: Questions number 6 to 12 are short answer questions and carry 2 marks each.
- (iv) Section C: Questions number 13 to 24 are also short answer questions and carry 3 marks each.
- (v) Section D: Questions number 25 to 27 are long answer questions and carry 5 marks each.
- (vi) There is no overall choice. However, an internal choice has been provided in two questions of one mark, two questions of two marks, four questions of three marks and all the three questions of five marks weightage. You have to attempt only one of the choices in such questions.
- (vii) Use of log tables, if necessary. Use of calculators is **not** allowed.

खण्ड अ

SECTION A

1. स्टार्च और सेलुलोस में मूलभूत संरचनात्मक अंतर क्या है ?

1

अथवा

DNA के जल-अपघटन से प्राप्त उत्पाद लिखिए।

1

What is the basic structural difference between starch and cellulose?

OR.

Write the products obtained after hydrolysis of DNA.

56/2/2

 ${f 2.}$ निम्नलिखित को ${f p}{f K_h}$ मान के बढ़ते हुए क्रम में व्यवस्थित कीजिए :

 $C_6H_5CH_2NH_2$, $C_6H_5NHCH_3$, $C_6H_5NH_2$

Arrange the following in increasing order of pK_b values :

 $C_6H_5CH_2NH_2$, $C_6H_5NHCH_3$, $C_6H_5NH_2$

3. किस प्रकार का कोलॉइड बनता है जब किसी द्रव को ठोस में पिरिक्षिप्त किया जाता है ? एक उदाहरण दीजिए ।

What type of colloid is formed when a liquid is dispersed in a solid? Give an example.

4. क्लोरोबेन्ज़ीन और पैरा-नाइट्रोक्लोरोबेन्ज़ीन में से कौन नाभिकस्नेही प्रतिस्थापन अभिक्रिया के प्रति अधिक अभिक्रियाशील है और क्यों ?

Out of Chlorobenzene and p-nitrochlorobenzene, which one is more reactive towards nucleophilic substitution reaction and why?

5. KCl और AgCl में से कौन शॉट्की दोष दर्शाता है और क्यों ?

अथवा

गरम करने पर ZnO पीला क्यों प्रतीत होता है ?

Out of KCl and AgCl, which one shows Schottky defect and why?

OR

Why does ZnO appear yellow on heating?

खण्ड ब

SECTION B

6. जब $FeCr_2O_4$ को वायु की उपस्थिति में Na_2CO_3 के साथ संगलित किया जाता है तो यौगिक (A) का पीला विलयन प्राप्त होता है । यौगिक (A) अम्लीकरण किए जाने पर यौगिक (B) देता है । यौगिक (B) KCl के साथ अभिक्रिया करके एक नारंगी रंग का यौगिक (C) बनाता है । यौगिक (C) का अम्लीय विलयन Na_2SO_3 को (D) में ऑक्सीकृत कर देता है । (A), (B), (C) और (D) की पहचान कीजिए ।

When $FeCr_2O_4$ is fused with Na_2CO_3 in the presence of air it gives a yellow solution of compound (A). Compound (A) on acidification gives compound (B). Compound (B) on reaction with KCl forms an orange coloured compound (C). An acidified solution of compound (C) oxidises Na_2SO_3 to (D). Identify (A), (B), (C) and (D).

1

1

1

1

1

7. कारण दीजिए :

2

- (a) एथेनॉल और ऐसीटोन को मिश्रित करने पर तापमान कम हो जाता है।
- (b) पोटैशियम क्लोराइड विलयन पानी की अपेक्षा कम तापमान पर जम जाता है। Give reasons:
- (a) A decrease in temperature is observed on mixing ethanol and acetone.
- (b) Potassium chloride solution freezes at a lower temperature than water.
- 8. निम्नलिखित प्रक्रमों के लिए संतुलित रासायनिक समीकरण लिखिए:

2

2

2

- (a) बुझे चूने से Cl_2 प्रवाहित की जाती है।
- (b) Fe(III) लवण के जलीय विलयन से SO_2 गैस प्रवाहित की जाती है ।

अथवा

- (a) क्लोरीन गैस से बनाई गई दो विषैली गैसों के नाम लिखिए।
- (b) अमोनिया से अभिक्रिया करने पर Cu^{2+} विलयन नीला रंग क्यों देता है ?

Write balanced chemical equations for the following processes:

- (a) Cl₂ is passed through slaked lime.
- (b) SO₂ gas is passed through an aqueous solution of Fe(III) salt.

OR

- (a) Write two poisonous gases prepared from chlorine gas.
- (b) Why does Cu²⁺ solution give blue colour on reaction with ammonia?
- 9. निम्नलिखित प्रत्येक अभिक्रिया में मुख्य यौगिकों A और B की संरचनाएँ लिखिए :

(a)
$$C_6H_5COOH \xrightarrow{PCl_5} A \xrightarrow{H_2/Pd-BaSO_4} B$$

(b)
$$CH_3CN \xrightarrow{(i) CH_3MgBr} A \xrightarrow{Zn(Hg)/ H \vdash \not\subseteq HCl} B$$

Write structures of main compounds A and B in each of the following reactions:

$$(a) \qquad C_6H_5COOH \xrightarrow{\quad PCl_5 \quad} A \xrightarrow{\quad H_2/Pd-BaSO_4 \quad} B$$

$$(b) \qquad CH_3CN \xrightarrow{\quad (i) \ CH_3MgBr \quad } A \xrightarrow{\quad Zn(Hg)/conc \ HCl \quad } B$$

10. प्रत्येक का एक उचित उदाहरण देते हुए निम्नलिखित पदों को परिभाषित कीजिए :

2

- (a) कीलेट संकुल
- (b) उभदंती लिगन्ड

अथवा

IUPAC मानदण्डों का उपयोग करते हुए निम्नलिखित संकुलों के सूत्र लिखिए :

2

- (a) टेट्राऐम्मीनडाइएक्वाकोबाल्ट(III) क्लोराइड
- (b) डाइब्रोमिडोबिस(एथेन-1,2-डाइऐमीन)प्लैटिनम(IV) नाइट्रेट

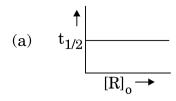
Define the following terms with a suitable example of each:

- (a) Chelate complex
- (b) Ambidentate ligand

OR

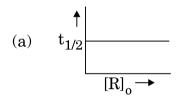
Using IUPAC norms, write the formulae for the following complexes:

- (a) Tetraamminediaquacobalt(III) chloride
- (b) Dibromidobis(ethane-1,2-diamine)platinum(IV) nitrate
- 11. (a) संयोजकता आबंध सिद्धांत का उपयोग करते हुए संकुल $[Fe(CN)_6]^{4-}$ की संकरण अवस्था और चुम्बकीय गुण लिखिए । (Fe का परमाणु क्रमांक = 26)
 - (b) क्रिस्टल क्षेत्र सिद्धान्त के आधार पर d⁶ का इलेक्ट्रॉनिक विन्यास लिखिए जबकि
 - (i) $\Delta_0 < P$ और
 - (ii) $\Delta_0 > P$


- (a) Using valence bond theory, write the hybridisation and magnetic character of the complex $[Fe(CN)_6]^{4-}$. (Atomic no. of Fe = 26)
- (b) Write the electronic configuration of \mathbf{d}^6 on the basis of crystal field theory when
 - (i) $\Delta_0 < P$ and
 - (ii) $\Delta_0 > P$

12. अभिक्रिया की कोटि पिरभाषित कीजिए । दिए गए आलेखों में अभिक्रिया की कोटि की प्रागुक्ति कीजिए :

2


3

(b) $t_{1/2}$ $[R]_{o}$

जहाँ $[R]_0$ अभिकर्मक की प्रारम्भिक सान्द्रता है और $\mathbf{t}_{1/2}$ अर्ध आयु है ।

Define order of reaction. Predict the order of reaction in the given graphs:

(b) $t_{1/2}$ $[R]_0 \rightarrow$

where $[R]_0$ is the initial concentration of reactant and $t_{1/2}$ is half-life.

खण्ड स SECTION C

- 13. (a) दूध की परिक्षिप्त प्रावस्था और परिक्षेपण माध्यम लिखिए।
 - (b) अधिशोषण ऊष्माक्षेपी प्रक्रम क्यों होता है ?
 - (c) उच्च दाब पर गैसों के लिए फ्रॉयन्डलिक अधिशोषण समतापी वक्र लिखिए।
 - (a) Write the dispersed phase and dispersion medium of milk.
 - (b) Why is adsorption exothermic in nature?
 - (c) Write Freundlich adsorption isotherm for gases at high pressure.

 ${f 14.}$ अभिक्रिया ${
m A}$ + ${
m 2B}$ \longrightarrow ${
m C}$ के लिए निम्नलिखित आँकड़े प्राप्त हुए :

प्रयोग	[A]/M	[B]/M	C के विरचन का प्रारम्भिक वेग			
	. ,		/M min ⁻¹			
1	0.2	0.3	4.2×10^{-2}			
2	0.1	0.1	6.0×10^{-3}			
3	0.4	0.3	1.68×10^{-1}			
4	0.1	0.4	$2 \cdot 40 \times 10^{-2}$			

- (a) A और B के प्रति अभिक्रिया की कोटि ज्ञात कीजिए।
- (b) वंग नियम और अभिक्रिया की कुल कोटि लिखिए।
- (c) वेग स्थिरांक (k) परिकलित कीजिए।

The following data were obtained for the reaction:

$$A + 2B \longrightarrow C$$

Experiment	[A]/M	[B]/M	Initial rate of formation of C /M min ⁻¹
1	0.2	0.3	4.2×10^{-2}
2	0.1	0.1	6.0×10^{-3}
3	0.4	0.3	1.68×10^{-1}
4	0.1	0.4	$2{\cdot}40\times10^{-2}$

- (a) Find the order of reaction with respect to A and B.
- (b) Write the rate law and overall order of reaction.
- (c) Calculate the rate constant (k).
- 15. (a) टिन, (b) कॉपर, (c) निकैल के लिए प्रयुक्त परिष्करण विधि का नाम और सिद्धान्त लिखिए। उ Write the name and principle of the method used for refining of (a) Tin, (b) Copper, (c) Nickel.
- 16. निम्नलिखित के लिए कारण दीजिए:
 - (a) संक्रमण धातुएँ परिवर्तनीय ऑक्सीकरण अवस्थाएँ दर्शाती हैं ।
 - (b) (Zn^{2+}/Zn) का E^{0} मान ऋणात्मक है जबिक (Cu^{2+}/Cu) का धनात्मक है ।
 - (c) Mn की उच्च ऑक्सीकरण अवस्था फ्लुओरीन के साथ +4 है जबकि ऑक्सीजन के साथ +7 है।

3

Give reasons for the following:

- (a) Transition metals show variable oxidation states.
- (b) E^0 value for (Zn^{2+}/Zn) is negative while that of (Cu^{2+}/Cu) is positive.
- (c) Higher oxidation state of Mn with fluorine is +4 whereas with oxygen is +7.
- 17. परमाणु द्रव्यमान 81~u के किसी तत्त्व X का घनत्व $10\cdot 2~g~cm^{-3}$ है। यदि एकक कोष्ठिका का आयतन $2\cdot 7\times 10^{-23}~cm^3$ है, तो घनीय एकक कोष्ठिका के प्रकार की पहचान कीजिए। (दिया गया है: $N_A=6\cdot 022\times 10^{23}~mol^{-1}$)

An element X with an atomic mass of 81 u has density $10\cdot 2$ g cm⁻³. If the volume of unit cell is $2\cdot 7\times 10^{-23}$ cm³, identify the type of cubic unit cell. (Given: $N_A = 6\cdot 022\times 10^{23}$ mol⁻¹)

18. 1.9 g प्रति 100 mL KCl (M = 74.5 g mol^{-1}) का विलयन 3 g प्रति 100 mL यूरिया (M = 60 g mol^{-1}) के साथ समपरासरी है | KCl विलयन की वियोजन की मात्रा परिकलित कीजिए | मान लीजिए कि दोनों विलयन समान ताप पर हैं |

A solution containing 1.9 g per 100 mL of KCl (M = 74.5 g mol⁻¹) is isotonic with a solution containing 3 g per 100 mL of urea (M = 60 g mol⁻¹). Calculate the degree of dissociation of KCl solution. Assume that both the solutions have same temperature.

- 19. निम्नलिखित बहुलकों को प्राप्त करने के लिए प्रयुक्त एकलकों की संरचनाएँ लिखिए :
 - (a) नाइलॉन-6,6
 - (b) बैकेलाइट
 - (c) ब्यूना-S

अथवा

- (a) प्रत्येक का एक उदाहरण लिखिए:
 - (i) तापसुघट्य बहुलक
 - (ii) प्रत्यास्थ बहुलक
- (b) निम्नलिखित बहुलकों को उनके अंतराआण्विक बलों के बढ़ते हुए क्रम में व्यवस्थित कीजिए :

पॉलिथीन, नाइलॉन-6,6, ब्यूना-S

(c) कौन-सा गुण नाइलॉन जैसे बहुलक को क्रिस्टलीय प्रकृति प्रदान करता है ?

3

3

3

Write the structures of monomers used for getting the following polymers:

- (a) Nylon-6,6
- (b) Bakelite
- (c) Buna-S

OR

- (a) Write one example each of
 - (i) Thermoplastic polymer
 - (ii) Elastomers
- (b) Arrange the following polymers in the increasing order of their intermolecular forces:

Polythene, Nylon-6,6, Buna-S

(c) Which factor provides crystalline nature to a polymer like Nylon?

20. अणुसूत्र C_4H_9Br के सभी समावयवों में से, पहचानिए

- (a) एक समावयव जो ध्रवण घूर्णक है।
- (b) एक समावयव जो $S_{N}2$ के प्रति अत्यधिक अभिक्रियाशील है ।
- (c) ऐसे दो समावयव जो ऐल्कोहॉली पोटैशियम हाइड्रॉक्साइड द्वारा विहाइड्रोजनन के फलस्वरूप एक जैसा उत्पाद देते हैं।

Among all the isomers of molecular formula C₄H₉Br, identify

- (a) the one isomer which is optically active.
- (b) the one isomer which is highly reactive towards $S_N 2$.
- (c) the two isomers which give same product on dehydrohalogenation with alcoholic KOH.
- 21. (a) निम्नलिखित में से उनके चिकित्सीय गुणों के आधार पर एक विषम को छाँटिए : इक्वैनिल, सेकोनल, बाइथायोनल, ल्यूमिनल
 - (b) बर्तन धोने के उपयोग में आने वाले द्रव अपमार्जक किस प्रकार के अपमार्जक होते हैं ?
 - (c) ऐस्पार्टेम का उपयोग केवल ठंडे खाद्य पदार्थों तक ही सीमित क्यों है ?

3

3

अथवा

22.

प्रत्येक के लिए उचित उदाहरण सहित निम्नलिखित पदों को परिभाषित कीजिए : 3 प्रतिजैविक (एन्टिबायोटिक) (a) पतिरोधी (एन्टिसेप्टिक) (b) ऋणायनी अपमार्जक (c) Pick out the odd one from the following on the basis of their (a) medicinal properties: Equanil, Seconal, Bithional, Luminal (b) What type of detergents are used in dishwashing liquids? Why is the use of aspartame limited to cold foods? (c) Define the following terms with a suitable example of each: **Antibiotics** (a) (b) **Antiseptics** Anionic detergents (c) माल्टोस के जल-अपघटन के उत्पाद क्या हैं ? (a) प्रोटीन की α -हेलिक्स संरचना को किस प्रकार का आबन्धन स्थायित्व प्रदान करता (b) है ? उस विटामिन का नाम लिखिए जिसकी कमी से प्रणाशी रक्ताल्पता हो जाती है। (c) 3 अथवा निम्नलिखित पदों को परिभाषित कीजिए : 3 प्रतीप शर्करा (a) प्राकृत प्रोटीन (b) न्युक्लिओटाइड (c) What are the products of hydrolysis of maltose? (a) What type of bonding provides stability to α -helix structure of (b) protein? Name the vitamin whose deficiency causes pernicious anaemia. (c) Define the following terms: (a) Invert sugar Native protein (b) (c) Nucleotide

56/2/2

23. (a) कारण दीजिए :

- (i) ऐसीटिक अम्ल की अपेक्षा बेन्ज़ोइक अम्ल प्रबलतर अम्ल होता है।
- (ii) एथेनेल की अपेक्षा मेथैनेल नाभिकस्नेही योगज अभिक्रियाओं के प्रति अधिक अभिक्रियाशील होता है।
- (b) प्रोपेनैल और प्रोपेनोन के बीच विभेद करने के लिए एक सरल रासायनिक परीक्षण दीजिए।
- (a) Give reasons:
 - (i) Benzoic acid is a stronger acid than acetic acid.
 - (ii) Methanal is more reactive towards nucleophilic addition reaction than ethanal.
- (b) Give a simple chemical test to distinguish between propanal and propanone.

24. निम्नलिखित अभिक्रियाओं को पूर्ण कीजिए:

(a) $\frac{\text{CN}}{\text{H}_2/\text{Ni}}$

(b)
$$\stackrel{\text{CH}_3}{\underset{\text{N}_2^+\text{Cl}^-}{\bigoplus}} \text{Br} \quad \stackrel{\text{H}_3\text{PO}_2 + \text{H}_2\text{O}}{\underset{\text{N}_2^+\text{Cl}^-}{\bigoplus}}$$

(c)
$$CH_2 - NH_2 + CHCl_3$$
 एथेनॉलिक KOH

अथवा

आप निम्नलिखित रूपांतरण कैसे करेंगे:

- (a) N-फेनिलएथेनेमाइड से p-ब्रोमोऐनिलीन
- (b) बेन्ज़ीन डाइएज़ोनियम क्लोराइड से नाइट्टोबेन्ज़ीन
- (c) बेन्ज़ोइक अम्ल से ऐनिलीन

3

3

56/2/2

Complete the following reactions:

(a)
$$H_2/Ni$$

(b)
$$\xrightarrow{\text{CH}_3} \text{Br} \xrightarrow{\text{H}_3\text{PO}_2 + \text{H}_2\text{O}} \xrightarrow{\text{N}_2^+\text{Cl}^-}$$

(c)
$$CH_2 - NH_2 + CHCl_3 \xrightarrow{Ethanolic KOH}$$

OR

How do you convert the following:

- (a) N-phenylethanamide to p-bromoaniline
- (b) Benzene diazonium chloride to nitrobenzene
- (c) Benzoic acid to aniline

खण्ड द

SECTION D

- 25. (a) निम्नलिखित अभिक्रियाओं के लिए समीकरण दीजिए:
 - (i) फ़ीनॉल की सान्द्र HNO3 के साथ अभिक्रिया की जाती है।
 - (ii) प्रोपीन की B_2H_6 से अभिक्रिया करके H_2O_2/OH^- से अभिक्रिया की जाती है ।
 - (iii) सोडियम तृतीयक-ब्यूटॉक्साइड की $\mathrm{CH_3Cl}$ के साथ अभिक्रिया की जाती है।

5

- (b) ब्यूटेन-1-ऑल और ब्यूटेन-2-ऑल के बीच आप कैसे विभेद करेंगे ?
- (c) निम्नलिखित को अम्लीयता के बढ़ते हुए क्रम में व्यवस्थित कीजिए : फ़ीनॉल, एथेनॉल, जल

अथवा

56/2/2

- (a) (i) क्यूमीन, (ii) बेन्ज़ीन सल्फोनिक अम्ल, (iii) बेन्ज़ीन डाइएज़ोनियम क्लोराइड से आप फ़ीनॉल कैसे प्राप्त कर सकते हैं ?
- (b) 3-मेथिलफ़ीनॉल के द्विनाइट्रोकरण से प्राप्त मुख्य उत्पाद की संरचना लिखिए।
- (c) कोल्बे अभिक्रिया से सम्बद्ध अभिक्रिया लिखिए।

5

- (a) Give equations of the following reactions:
 - (i) Phenol is treated with conc. HNO₃.
 - (ii) Propene is treated with B₂H₆ followed by H₂O₂/OH⁻.
 - (iii) Sodium t-butoxide is treated with CH₃Cl.
- (b) How will you distinguish between butan-1-ol and butan-2-ol?
- (c) Arrange the following in increasing order of acidity:

Phenol, ethanol, water

OR

- (a) How can you obtain Phenol from (i) Cumene, (ii) Benzene sulphonic acid, (iii) Benzene diazonium chloride?
- (b) Write the structure of the major product obtained from dinitration of 3-methylphenol.
- (c) Write the reaction involved in Kolbe's reaction.

26. (a) निम्नलिखित के कारण दीजिए:

- (i) वर्ग 15 में N से Bi तक -3 ऑक्सीकरण अवस्था दर्शाने की प्रवृत्ति घटती है।
- (ii) H_2O से H_2Te तक अम्लीय लक्षण बढ़ता है ।
- m (iii) $m ClF_3$ की अपेक्षा $m F_2$ अधिक अभिक्रियाशील है, जबिक $m Cl_2$ की अपेक्षा $m ClF_3$ अधिक अभिक्रियाशील है ।
- (b) (i) XeF_2 , (ii) $H_4P_2O_7$ की संरचना खींचिए ।

5

अथवा

- (a) फ्लुओरीन की असामान्य अभिक्रिया दर्शाने के लिए एक उदाहरण दीजिए।
- (b) श्वेत फ़ॉस्फ़ोरस और लाल फ़ॉस्फ़ोरस के बीच एक संरचनात्मक अन्तर क्या है ?
- (c) क्या होता है जब XeF_6 , NaF से अभिक्रिया करता है ?
- (d) H_2O की अपेक्षा H_2S एक बेहतर अपचायक क्यों है ?
- (e) निम्नलिखित अम्लों को उनके अम्लीय लक्षण के बढ़ते हुए क्रम में व्यवस्थित कीजिए:

HF, HCl, HBr और HI

- (a) Account for the following:
 - (i) Tendency to show -3 oxidation state decreases from N to Bi in group 15.
 - (ii) Acidic character increases from H₂O to H₂Te.
 - (iii) F_2 is more reactive than ClF_3 , whereas ClF_3 is more reactive than Cl_2 .
- (b) Draw the structure of (i) XeF_2 , (ii) $H_4P_2O_7$.

OR

- (a) Give one example to show the anomalous reaction of fluorine.
- (b) What is the structural difference between white phosphorus and red phosphorus?
- (c) What happens when XeF₆ reacts with NaF?
- (d) Why is H_2S a better reducing agent than H_2O ?
- (e) Arrange the following acids in the increasing order of their acidic character:

HF, HCl, HBr and HI

- **27.** (a) $0.001~{
 m mol}~{
 m L}^{-1}$ ऐसीटिक अम्ल की चालकता $4.95 \times 10^{-5}~{
 m S~cm}^{-1}$ है । यदि ऐसीटिक अम्ल के लिए $\wedge_{
 m m}^{
 m o}$ का मान $390.5~{
 m S~cm}^2~{
 m mol}^{-1}$ है, तो इसके वियोजन स्थिरांक का परिकलन कीजिए ।
 - (b) अभिक्रिया

$$2 \text{ Al (s)} + 3 \text{ Cu}^{2+}(\text{aq}) \longrightarrow 2 \text{ Al}^{3+}(\text{aq}) + 3 \text{ Cu (s)}$$

के लिए 25°C पर नेन्स्ट समीकरण लिखिए।

(c) संचायक बैटरियाँ क्या हैं ? एक उदाहरण दीजिए ।

अथवा

(a) उस सेल को निरूपित कीजिए जिसमें निम्नलिखित अभिक्रिया होती है:

$$2~Al~(s) + 3~Ni^{2+}~(0\cdot 1~M) \longrightarrow 2~Al^{3+}~(0\cdot 01~M) + 3~Ni~(s)$$
 इसका वि.वा.बल (emf) परिकलित कीजिए यदि $E^o_{_{\stackrel{.}{Hor}}}$ = $1\cdot 41~V$ है ।

(b) प्रबल और दुर्बल विद्युत्-अपघट्य के लिए सान्द्रता बढ़ने के साथ मोलर चालकता किस प्रकार परिवर्तित होती है ? आप दुर्बल विद्युत्-अपघट्य के लिए सीमांत मोलर चालकता (\wedge_m^0) कैसे प्राप्त कर सकते हैं ?

5

- (a) The conductivity of $0.001 \text{ mol } L^{-1}$ acetic acid is $4.95 \times 10^{-5} \text{ S cm}^{-1}$. Calculate the dissociation constant if \wedge_m^0 for acetic acid is $390.5 \text{ S cm}^2 \text{ mol}^{-1}$.
- (b) Write Nernst equation for the reaction at 25°C:

$$2 \text{ Al (s)} + 3 \text{ Cu}^{2+} \text{ (aq)} \longrightarrow 2 \text{ Al}^{3+} \text{ (aq)} + 3 \text{ Cu (s)}$$

(c) What are secondary batteries? Give an example.

OR

(a) Represent the cell in which the following reaction takes place :

$$2~\mathrm{Al}~(\mathrm{s}) + 3~\mathrm{Ni}^{2+}~(0\cdot 1~\mathrm{M}) \longrightarrow 2~\mathrm{Al}^{3+}~(0\cdot 01~\mathrm{M}) + 3~\mathrm{Ni}~(\mathrm{s})$$

Calculate its emf if $E_{cell}^0 = 1.41 \text{ V}$.

(b) How does molar conductivity vary with increase in concentration for strong electrolyte and weak electrolyte? How can you obtain limiting molar conductivity (\wedge_m^0) for weak electrolyte?