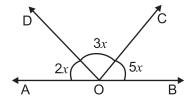
Question PRACTICE PAPER-1

MATHEMATICS CLASS-IX


Time Allowed: 3 Hours General Instructions:

Maximum Marks: 80

- 1. All questions are compulsory.
- 2. The question paper consists of 30 questions divided into four section A, B, C, and D. Section-A comproses of 6 questions of 1 mark each; Section-B comprises of 6 questions of 2 marks each; Section-C comprises of 10 questions of 3 marks each and section-D comprises of 8 questions of 4 marks each.
- 3. There is no overall choice in this question paper.
- 4. Use of calculator is not permitted.

Section-A

- 1. Find the value of $(64)^{1/2}$ x $(125)^{1/3}$.
- 2. If $p(x) = x^3 3x^2 + 2x$, then find the value of p(1).
- 3. Points A (8, 4) & B (-2,4) lie on a line. AB is parallel to which axis.
- 4. If the graph of equation 2x + ky = 10k, intersect *x*-axis at point (5,0). Find value of *k*.
- 5. Find the value of *x* from the adjacent figure.

6. Find the ratio of total surface area of a sphere and a solid hemisphere of same radius.

Section-B

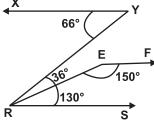
- 7. Factorise: $8a^3 + \sqrt{27}b^3$
- 8. Find the coordinates of the point where the graph of the equation 5x + 2y = 10 intersect both axes.
- 9. The sides of a triangle are 22cm, 20cm and 18 cm. Find its area.
- 10. The two consecutive class marks of a distribution are 52 & 57. Find the class limits.

11. A die is rolled 200 times & its outcomes are released as below:

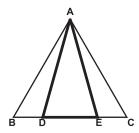
Outcomes	1	2	3	4	5	6
Frequency	25	35	40	28	42	30

Find the probability of getting:

- i) A multiple of 3.
- ii) not a prime number.
- 12. Consider the following frequency distribution which gives the weights of 38 students of a class:

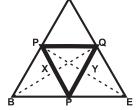

Weights (kg)	31-35	36-40	41-45	46-50	51-55	56-60	61-65	66-70	Total
No. of Std.	9	5	14	3	1	2	2	2	38

- i) Find the probability that the weight of a student in the class lies between 36-45 kg.
- ii) Give one event in this context having probability zero.

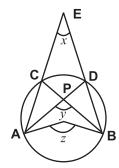

Section-C

- 13. If $x=5-2\sqrt{6}$, find $x^2 + \frac{1}{x^2}$
- 14. Simplify:

- 15. Plot the points A (1,1), B (-1,5), C (7,9) and D (9,5). Name the type of figure ABCD. In which quadrant the point of intersection of diagonals lie?
- 16. In the given figure, Show that XY||EF.



17. In the given figure, if AB=AC, ∠BAD=∠CAE then prove that △ADE is an isosceles triangle.



P,Q & R are respectively, the mid points of sides BC, CA & AB of a triangle ABC. PR & BQ meet at X. CR & PQ meet at Y. Prove that

 $XY = \frac{1}{4}BC$.

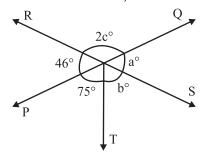
19. In the given figure, O is the centre of a circle. Prove that $\angle x + \angle y = \angle z$.

- 20. Construct \triangle ABC such that BC= 8cm, \angle B=45°, AB-AC =3.5cm
- 21. If h, c and v respectively, are the height, the curved surface area and volume of a cone, prove that

$$3\pi vh^3 - c^2h^2 + 9v^2 = 0$$

22. The radius of a sphere is 10 cm. If the radius is increased by 1 cm. Then prove that volume of the sphere is increased by 33.1%.

Section-D

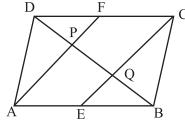

Express 0.6 + 0.4 $\overline{7}$ + 0. $\overline{7}$ in the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$.

24. Verify:

$$a^{3}+b^{3}+c^{3}-3abc=\frac{1}{2}(a+b+c)[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}]$$

25. A pharmacist needs to strengthen a 15% alcohol solution to one of 32% alcohol. How much pure alcohol should be added to 800 ml of 15% solution?

26. In the figure two straight lines PQ & RS intersect each other at O. If \angle POT=75°, find the values of a, b & c.



27. In the given figure, if AD=BD=CD. Prove that \angle BAC is right angle.

28. In a parallelogram ABCD, E&F are the mid Points sides AB & CD respectively. Show that the line segment AF & EC trisect the diagonal BD.

D
F
C

- 29. The residential colony has population of 5400 and 60 litres of water is required per person per day. For the effective utilization of rain water, a group of people decided for WATER HARVESTING. They constructed a water reservoir measuring 49m X27m x 25m to collect the rain water. If this water reservoirs is full of water then for how many days it will last for the colony
- 30. The Following table shows the life of LED bulbs.

Life Time (in hours)	300-400	400-500	500-600	600-700	700-800	800-900	900-1000
No. of Bulbs	14	56	60	86	74	62	48

- i) Represent the above information with the helper a histogram & frequency ploygon.
- ii) How many bulbs have a life time of 700 hours & more?

PRACTICE PAPER-1

SOLUTIONS

1. 40

2. 0

3. x-axis

4. K=1

5. x=18

6. 4:3

7.
$$8a^{3} + \sqrt{27}b^{3} = (2a)^{3} + (\sqrt{3}b)^{3}$$
$$= (2a + \sqrt{3}b)((2a)^{2} - (2a)(\sqrt{3}b) + (\sqrt{3}b)^{2})$$
$$[\therefore x^{3} + y^{3} = (x+y)(x^{2} - xy + y^{2})$$
$$= (2a + \sqrt{3}b)(4a^{2} - 2\sqrt{3}ab + 3b^{2})$$

8. Let 5x+2y=10 intersect x-axis and y-axis at points

A(x,0) and B(o,y) respectively.

 \therefore for point A (x,0)

$$5x+2(0)=10$$
 $x=2$

For point B (0,y)

$$5(0) + 2y = 10$$
 $y = 5$

9. Let a=22 cm, b=20 cm, c=18 cm

Semi perimeter (s) =
$$\frac{a+b+c}{2} = \frac{22+20+18}{2} = 30 \text{ cm}$$

By Heron's Formula

Area of triangle =
$$\sqrt{s(s-a) (s-b) (s-c)}$$

= $\sqrt{30(30-22) (30-20) (30-18)} \text{ cm}^2$
= $\sqrt{30 \times 8 \times 10 \times 12} \text{ cm}^2$
= $120 \sqrt{2} \text{ cm}^2$

10. Class size = 57-52=5

Class limits =
$$52 - \frac{5}{2}$$
, $52 + \frac{5}{2}$, $57 - \frac{5}{2}$, $57 + \frac{5}{2}$

Class limits for class mark 52 = 49.5 - 54.5

Class limits for class mark 57 = 54.5 - 59.5

11. i)
$$P(\text{multiple of 3}) = \frac{40 + 30}{200} = \frac{7}{20}$$

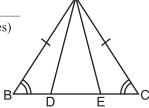
ii)
$$P(\text{not a prime number}) = \frac{25 + 28 + 30}{200} = \frac{83}{200}$$

- 12. i) Required probability = $\frac{5}{38}$
 - ii) eg. student selected at random have weight more than 70 kg. (other favourable outcomes are also possible.
- 13. $x=5-2\sqrt{6}$ $\frac{1}{x} = \frac{1}{5-2\sqrt{6}} \times \frac{5+2\sqrt{6}}{5+2\sqrt{6}} = 5+2\sqrt{6}$ $x + \frac{1}{x} = 10 \implies x^2 + \frac{1}{x^2} + 2 = 100 \quad [\because (a+b)^2 = a^2 + 2ab + b^2]$ $x^2 + \frac{1}{x^2} = 98$
- 14. $\left(\frac{\mathbf{X}^{a}}{\mathbf{X}^{-b}}\right)^{\mathbf{a}-\mathbf{b}} \left(\frac{\mathbf{X}^{b}}{\mathbf{X}^{-c}}\right)^{\mathbf{b}-\mathbf{c}} \left(\frac{\mathbf{X}^{c}}{\mathbf{X}^{-a}}\right)^{\mathbf{c}-\mathbf{a}}$ $= (x^{a+b})^{a-b} (x^{b+c})^{b-c} (x^{c+a})^{c-a}$ $= x^{a^{2}-b^{2}} \cdot x^{b^{2}-c^{2}} \cdot x^{c^{2}-a^{2}}$ $= x^{a^{2}-b^{2}+b^{2}-c^{2}+c^{2}-a^{2}}$ $= x^{a^{2}-b^{2}+b^{2}-c^{2}-a^{2}-a^{2}}$ $= x^{a^{2}-b^{2}-b^{2}-c^{2}-a^$
- 15. Plot the points on graph.

ABCD is a rectangle.

Intersecting point of diagonals is in I-quadrant

16.
$$\therefore \angle XYR = \angle YRS = 66^{\circ} \Rightarrow XY \parallel RS$$
____I
$$\angle FER + \angle SRE = 180^{\circ} \Rightarrow EF \parallel RS$$
____II
From I and II
$$XY \parallel EF$$


17. $\ln \Delta ABC$

AB=AC (Given)
$$\therefore \angle B = \angle C \dots (1) \text{ (Angles opposite to equal sides)}$$

In \triangle BAD and \triangle CAE

$$\angle BAD = \angle CAE$$
 (given)

$$\angle B = \angle C$$
 (from (1))

$$\therefore AD = AE$$
 (CPCT)

- ∴ ADE is an Isosceles Triangle.
- 18. Given: A \triangle ABC with P, Q, R, as the mid-points of BC, CA and AB respectively. PR and BQ meet at X and CR and PQ meet at Y.

Construction:-The Join X & Y

Proof: Since the line Segment joining the mid-point of two sides of a triangle is parallel to the third side and half of it. Therefore Q & R are mid-points of AC and AB respectively.

By Mid Point theorem

$$\Rightarrow$$
 RQ || BC and RQ = $\underline{1}$ BC

⇒ RQ || BP and RQ =
$$\frac{1}{8P}$$
 [∴ P is the mid point of BC, $\frac{1}{2}$ BC = BP]
BPQR is a parallelogram

- : the diagram of a parallelogram bisect each other.
- .. X is the mid point of PR

Similarly, Y is the midpoint of PQ.

Consider, ΔPQR , XY is the line segment joining the mid points of sides PR and PQ.

$$XY = \frac{1}{2} RQ$$

$$RQ = \frac{1}{2}BC$$

$$XY = \frac{1}{4} BC$$

 $RQ = \frac{1}{2} BC$ $XY = \frac{1}{4} BC$ $\angle CPD = \angle Y \text{ (V.O.A.)}$

$$\angle BCE = \angle PCE = 180^{\circ} - \frac{\angle z}{2}$$
 (By Linear Pair

$$\angle ADE = \angle PDE = 180^{\circ} - \frac{\angle z}{2}$$

In quadrilateral ACPD

$$\angle DEC + \angle PCE + \angle CPD + \angle PDE = 360^{\circ}$$
 (By Angle sum property of quadrilaters)

$$\angle x + 180^{-\frac{\angle z}{2}} + \angle y + 180^{-\frac{\angle z}{2}} = 360^{\circ}$$

$$\angle x + \angle y = \frac{\angle z}{2} + \frac{\angle z}{2} + 360^{\circ} - 360^{\circ}$$

$$\angle x + \angle y = \frac{\angle z}{2} + \frac{\angle z}{2} + 360^{\circ} - 360^{\circ}$$

$$\angle x + \angle y = \angle z$$

21. Height of cone = h

slant height of cone = $l = \sqrt{h^2 + r^2}$

curved surface area of cone

$$C = \pi r l = \pi r$$
 $\sqrt{h^2 + r^2}$

$$C^2 = \pi^2 r^2 (h^2 + r^2) = \pi^2 r^2 h^2 + \pi^2 r^2$$

Volume of cone = $V = \frac{1}{3}\pi r^2 h$

$$3 \pi V h^3 - C^2 h^2 + 9V^2$$

$$\begin{split} &=3\pi\;(\frac{1}{3}\,\pi r^2h)\;x\;h^3-(\pi^3r^2h^2+\pi^2r^4)h^2+9\;(\frac{1}{3}\,\pi r^2h)^2\\ &=\frac{\cancel{8}\pi^2r^2h^4}{\cancel{3}}-\pi r^2h^4-\pi^2r^4h^2\;+\frac{\cancel{9}\times\pi^2r^4h^2}{\cancel{9}} \end{split}$$

$$= \pi^2 h^{4-} \pi^2 r^2 h^4 - \pi^2 r^4 h^2 + \pi^2 r^4 h^2 = 0$$

$$\therefore = 3\pi vh^3 - c^2h^2 + 9v^2 = 0$$

22. $r_1 = \text{radius of sphere} = 10 \text{ cm}.$

Volume of sphere = $v_1 = \frac{4}{3} \pi r_1^3 = \frac{4}{3} \pi \times (10)^3 = \frac{4}{3} \pi \times 1000$

$$V_1 = \frac{4000}{3} \pi \text{cm}^3$$
 (1)

If the radius of sphere increases by 1cm

$$r_2 = 10 \text{ cm} + 1 \text{ cm} = 11 \text{cm}$$

New Volume of sphere

$$V_2 = \frac{4}{2} \pi r_2^3 = \frac{4}{2} \pi \times (11)^3$$

$$V_{2} = \frac{4}{3} \pi r_{2}^{3} = \frac{4}{3} \pi \times (11)^{3}$$

$$V_{2} = \frac{4}{3} \pi \times 1331 = \frac{5324}{3} \pi cm^{3}$$

$$V_2 = \frac{5324}{3} \pi c m^3 \tag{2}$$

Increased in volume of sphere

$$V = V_2 - V_1 = \frac{5324\pi}{3} - \frac{4000\pi}{3}$$

$$V = \frac{1324\pi}{3} \text{ cm}^3$$
 (3)

% increase in the volume of sphere = $\frac{V}{V1} \times 100\%$

$$=\frac{V}{V1} \times 100\%$$

$$= \frac{1324\pi}{\frac{3}{4000\pi}} \times 100\%$$

$$= \frac{1324\pi}{4000} \times 100\%$$

$$= \frac{1324\pi}{4000} = 33.1\%$$

% Increase in the volume of sphere

$$= 33.1\%$$

23.
$$0.6 = \frac{6}{10}$$

Let $x = 0.47 = 0.4777...$
 $10x = 4.77$ ____ I
 $100x = 47.77$ ___ II
II-I $\Rightarrow 100x - 10x = (47.7...) - (4.77....)$

$$\Rightarrow 90x = 43$$

$$\Rightarrow x = \frac{43}{90}$$
Let $y = 0.\overline{7} = 0.77...$ III
$$10y = 7.77...$$
 IV

$$IV-III \Rightarrow$$

$$ay = 7 \implies y =$$

∴ $0.6 + 0.4\overline{7} + 0.\overline{7} = \frac{6}{10} + \frac{43}{90} + \frac{7}{9}$
= $\frac{167}{90}$

24.
$$a^{3} + b^{3} + c^{3} - 3abc = (a+b+c) (a^{2}+b^{2}+c^{2}-ab-bc-ca)$$

$$= \frac{1}{2} (a+b+c) (2a^{2}+2b^{2}+2c^{2}-2ab-2bc-2ca)$$

$$= \frac{1}{2} (a+b+c) (a^{2}+b^{2}-2ab+b^{2}+c^{2}-2bc+c^{2}+a^{2}-2ca)$$

$$= \frac{1}{2} (a+b+c) [(a-b)^{2}+(b-c)^{2}+(c-a)^{2}]$$

25. Let *x ml* of pure alcohol be added

Quantity of pure alcohol in (800+x) ml of 32% solution

= Quantity of pure alcohol in 800 ml of 15%

Solution x ml of pure alcohol

$$32\%$$
 of $(800+x) = 15\%$ of $800 + x$

$$\Rightarrow \frac{32}{100} \times (800+x) = 15 \times \frac{1}{100} \times 800 + x$$

$$\Rightarrow 25600 + 32x = 12000 + 100x$$

$$\Rightarrow 100x - 32x = 25600 - 12000$$

$$\Rightarrow$$
 x = 200ml

:. 200ml of pure alcohol should be added

26.
$$4b+75+b=180$$

$$5b = 105$$

$$\Rightarrow$$
 b = 21

$$4b = a$$
 (V.O.A)

$$\Rightarrow a = 84$$

$$\therefore 2c = 180 - a = 96$$

$$\Rightarrow$$
 c= 48

27. In ΔABD

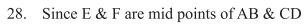
AD=BD (given)

 \therefore \angle BAD = \angle ABD (Equal \angle s opp to equal sides)

Let
$$\angle BAD = \angle ABD = x$$

In \triangle ACD

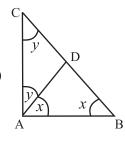
AD=CD (given)


$$\therefore$$
 \angle CAD = \angle ACD = γ

In
$$\triangle$$
 ABC \angle A + \angle B + \angle C = 180°

$$\Rightarrow$$
 $(x + y) + x + y = 180^{\circ}$

$$\Rightarrow x + y = 90^{\circ}$$


$$\therefore$$
 \angle BAC = 90 \Rightarrow \angle BAC is right angle.

:. AE =
$$\frac{1}{2}$$
 AB & CF $\frac{1}{2}$ CD(1)

But ABCD is a parallelogram

$$\Rightarrow$$
 AB = CD & AB \parallel DC

$$\Rightarrow \frac{1}{2}AB = \frac{1}{2}CD \& AB \parallel DC$$

$$\Rightarrow$$
 AE= FC & AE || DL

$$\Rightarrow$$
 FA||CF FP||CQ....(2)

In $\triangle PCD$ F is the mid point of CD & FP || CQ

∴ P is the mid point of DQ

$$\Rightarrow$$
 PQ = DP(3)

Similarly in $\triangle ABP$, E is the mid point of AB & AP||EQ

 \Rightarrow Q is the mid point of BP

$$\Rightarrow$$
 BQ= PQ.....(4)

From (3) & (4)
$$DP = PQ = QB$$

⇒ BD Trisects AP & CE

29. Vol. of tank =
$$48m \times 27m \times 5m$$

$$= 6480 \text{ m}^3$$

$$= 6480 \times 1000l$$

$$= 6480000l$$

Vol. of water required in 1 day = $60 \times 5400l$

$$= 324000l$$

No. of Days =
$$\frac{\text{Vol. of water in tank}}{\text{Vol. of water required in 1 day}}$$

$$= \frac{6480000}{324000} = 20 \text{ days}$$

(ii) values (i) Environmental Values

(ii) Cooperation

30 (b) No. of LED Bulbs working for

700 hours of more =
$$74 + 62 + 48$$

= 184
= 184 Bulbs