Directorate of Education, GNCT of Delhi

Practice Paper -1 (2023-24) Class – XII Mathematics (Code: 041)

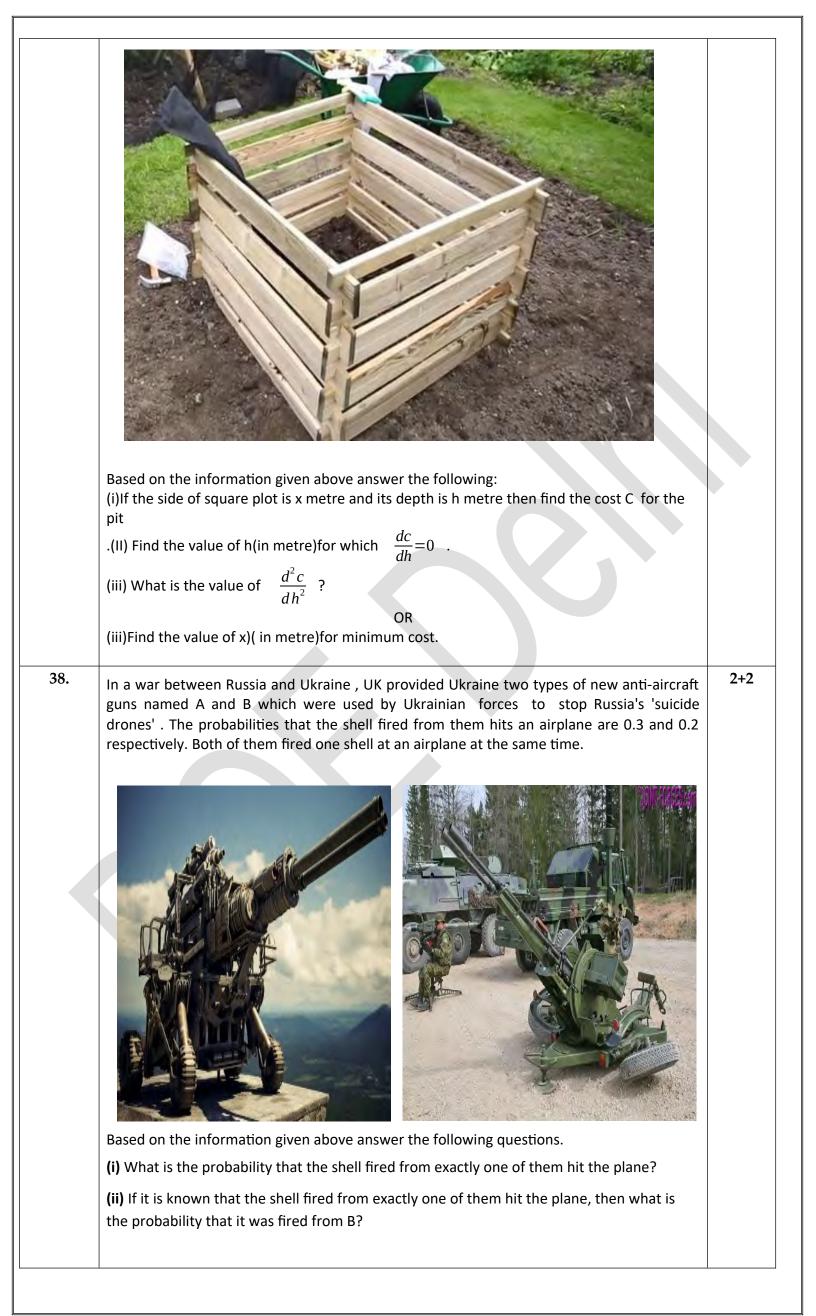
Time: 3 hours

Maximum Marks: 80

<u>General Instructions :</u>

- **1.** This Question paper contains **five sections A**,**B**,**C**,**D**,**E**. Each section is compulsory. However, there are internal choices in some questions.
- 2. Section A has 18 MCQ's and 02 Assertion-Reason based questions of 1 mark each.(20 Marks)
- 3. Section Bhas 5 Very Short Answer (VSA)-type questions of 2 marks each.(10 Marks)
- 4. Section C has 6 Short Answer (SA)-type questions of 3 marks each.(18 Marks)
- 5. Section D has 4 Long Answer (LA)-type questions of 5 marks each.(20 Marks)
- 6. Section E has 3 Source based/Case based/passage based/integrated units of assessment (4 marks each) with sub parts.(12 Marks)

	Question Number 1-18 are of MCQ ty	ection – A ype guestion one mark each.	
1.	The domain of the function $\cos^{-1}(2x-1)$ is :		1
	(a) [0,1]	(b)[-1,1]	
	(c) (-1,1)	(d) $[0, \pi]$	
2.			1
	If $A = \begin{bmatrix} 0 & a & b \\ 2 & 1 & c \\ 3 & 4 & 5 \end{bmatrix}$ is a symmetric matrix ,	, then the value of (a+b+c) is ;	
	(a) 9	(b)8	
	(c) 7	(d) 6	
3.	If a matrix $A = \begin{bmatrix} 0 & 1 & 2 \end{bmatrix}_{1 \times 3}$ then the matrix $A A^{T}$ (where A^{T} is transpose of A) is:		1
	(a) [0]	(b) [3]	
	(c) [5]	$ (d) \begin{bmatrix} 0 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix} $	


4.	If $A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ then the value of adj A is :		1
	(a) 6	(b) 1/6	
	(c) 31	(d) 216	
5.	If matrices A ,B and C are such that $A_{p\times 4}$. $B_{q\times 5} = C_{2\times 5}$, then the value of $p^2 - q^2$ is :		1
	(a) -12	(b) 12	
	(c) 16	(d) -16	
6.	The graph of $x \leq 3$ and $y \geq 3$ lie	in :	1
	(a) I st and 2 nd quadrant	(b) 2 nd and 3 rd quadrant	
	(c) 3 rd and 4 th quadrant	(d) I st and 4 th quadrant	
7.	Sum of order and degree of differential equation $\left(\frac{d^3 y}{dx^3}\right)^{\frac{1}{3}} \cdot \left(\frac{dy}{dx}\right)^{\frac{1}{3}} = 0$ is :		1
	(a) 6	(b) 5	
	(c) 3	(d) 2	
8.	Derivative of $\sec^{-1} \frac{\sqrt{x}+1}{\sqrt{x}-1} + \sin^{-1} \frac{\sqrt{x}+1}{\sqrt{x}-1}$ w.r.t x is:		1
	(a) 0	(b) 1	
	(c) x	(d) x^2	
9.	$\int \frac{x^3}{x+1} dx$ is equal to :		1
	(a) $x + \frac{x^2}{2} + \frac{x^3}{3} - \log 1 - x + C$	(b) $x + \frac{x^2}{2} - \frac{x^3}{3} - \log 1 - x + C$	
	(c) $x - \frac{x^2}{2} - \frac{x^3}{3} - \log 1 + x + C$	(d) $x - \frac{x^2}{2} + \frac{x^3}{3} - \log 1 + x + C$	
10.	Integrating factor of $x \frac{dy}{dx} + 2y = x^2$ is :		1
	(a) x^3	(b) x^2	
	(c) x^4		

11.	The degree of the differential equation	$\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}} = \frac{d^2 y}{dx^2}$ is:	1
	(a) 4	(b) $\frac{3}{2}$	
	(c) Not defined	(d) 2	
12.	The projection of $2\hat{i}+3\hat{j}-6\hat{k}$ on the vec	tor $\hat{i} - 2\hat{i} + 3\hat{k}$ is:	1
	(a) $\frac{2}{\sqrt{14}}$	(b) $\frac{1}{\sqrt{14}}$	
	(c) $\frac{3}{\sqrt{14}}$	$ \begin{array}{c} \text{(d)} \\ \frac{-2}{\sqrt{14}} \end{array} $	
13.	Area of the parallelogram whose $\vec{b} = \hat{i} - 3\hat{j} + 4\hat{j}$ is given by :	diagonals are $\vec{a}=3\hat{i}+\hat{j}-2\hat{k}$ and	1
	(a) $10\sqrt{3}$	(b) $5\sqrt{3}$	
	(c) 8	(d) 4	
14.	If $ \vec{a}+\vec{b} = \vec{a}-\vec{b} $ then the angle between		1
14.	If $ a+b = a-b $ then the angle between	a and b is:	T
	(a) $\frac{\pi}{2}$	(b) 0	
	(c) $\frac{\pi}{4}$	$ \begin{array}{c} \text{(d)} \\ \frac{\pi}{6} \end{array} $	
15.	The direction ratios of line are 1 ,3 ,5 then its direction cosines are :		1
	(a) $\frac{1}{\sqrt{35}}, \frac{3}{\sqrt{35}}, \frac{5}{\sqrt{35}}$	(b) $\frac{1}{9}, \frac{1}{3}, \frac{5}{9}$	
	(c) $\frac{5}{\sqrt{35}}, \frac{3}{\sqrt{35}}, \frac{1}{\sqrt{35}}$	(d) None of these	
16.	: For two independent events A & B $P(A \cup B) = \frac{2}{3}$, $P(A) = \frac{2}{5}$, then P(B) is equal to:		1
	(a) $\frac{5}{9}$	(b) $\frac{4}{9}$	
	(c) $\frac{2}{9}$	(d) $\frac{3}{9}$	

		(b) 10	
	(a) 0	(b) 10	
	(c) 20	(d) 30	
18.	-	the LPP is Z=11x+7y and the corner points of the	
	bounded feasible regions are (3,2), (0, 5), (0,3)then the minimum value of Z occurs		1
	at : (a) (3, 2)	(b) (0, 5)	
	(c) (0, 3)	(d) does not exist	
	(ASSEF	RTION-REASON BASED QUESTIONS)	
		tatement of assertion (A) is followed by a statement of	
		t answer out of the following choices.	
	(a) Both A and R are true and	R is the correct explanation of A.	
	(b) Both A and R are true but 1	R is not the correct explanation of A.	
	(c) A is true but R is false.		
	(d) A is false but R is true.		
19.	Assertion(A) : $c \cos^{-1} (\cos(\frac{7\pi}{6}))$	$(-)) = \frac{5\pi}{6}$	1
	Reason (R) : $\cos^{-1}(\cos x) = x$ for all $x \in (10, \pi)$		
20.	Assertion(A) : If a line makes angles α, β, γ with the positive direction of coordinate axes then $\cos 2\alpha + \cos 2\beta + \cos 2\gamma = -1$		1
	Reason (R):): Sum of squares of direction cosines of a line is 1		
		<u>(Section B)</u>	
	This section contains 5 Very		
21.		Short Answer (VSA)-type questions of 2 marks each. metric function f(x) is given below, observe the graph and	2
	π		
	<u>π</u> 2		
	2		
	-1.5 -1 -0.5 0	0.5 1 1.5	
	(i)) (b) that is the value of $c_{1}(-1)$	2	
	(i)What is the value of $f(\frac{-1}{2})$ (ii)If $f(x) = \frac{\pi}{4}$, then find the v		
	4		

23.	dv	2
	If $y = x^y$, then find $\frac{dy}{dx}$	
	OR	
	lf	
	$(1, -1)$ $(1, -1)$ $(\sqrt{1+x^2}-1)$ $(1, -1)$ dy	
	$y = \sin^{-1}(\frac{1}{\sqrt{1+x^2}}) + \tan^{-1}(\frac{\sqrt{1+x^2}-1}{x})$ find $\frac{dy}{dx}$	
24.	A particle moves along the curve $x^2=2y$. At what point , ordinate increases at the same	2
	rate as abscissa increases ?	
25.		2
	Find $\int \frac{\log x}{(1+\log x)^2} dx$	
	OR	
	Find the value of	
	$\int_{1}^{1} tan^{-1} (1-2x) dx$	
	$\int_{0}^{1} \tan^{-1}(\frac{1-2x}{1+x-x^{2}}) dx$	
	Section C	
	This section contains 6 Short Answer (SA)-type questions of 3marks each.	
26.	If $x = a \sin^2 \theta$, $y = a \cos^2 \theta$, then find $\frac{d^2 y}{dy^2}$	3
	$x = a \sin \theta$, $y = a \cos \theta$, then find $\frac{1}{dx^2}$	
27.		3
	A bag A contains 4 black balls and 6 red balls and bag B contains 7 black and 3 red balls. A	
	die is thrown . If 1 or 2 appear on it , then bag A is chosen , otherwise bag B . If two balls	-
	are drawn at random (Without replacement) from the selected bag, find the probability	
	of one of them being red and another black.	
	From a lot of 15 bulbs which include 5 defectives , a sample of two bulbs is drawn at	
	random (without replacement). Find the probability distribution of the number of defective bulbs.	
	buibs.	
28.	$\frac{\pi}{4}$	3
	Evaluate $\int \log(1 + \tan x) dx$	
	0	
	OR	
	Find $\int e^x \cdot \sin x dx$	
29.		3
	Find the general solution of $(1+x^2)dy+2xydx = \cot x dx$	
	OR	
	Solve following differential equation $(x^2 - y^2) dy + 2yy dy = 0$	
	Solve following differential equation $(x^2 - y^2) dx + 2xy dy = 0$	
30.	Solve the following Linear programming problem graphically :	3
50.	Maximize : Z=4x+y	
	subject to the constraints $x+y \le 50, 3x+y \le 90, x \ge 0, y \ge 0$	
	Subject to the constraints $x + y \ge 30, 3x + y \ge 30, x \ge 0$	
01	Find the interval in which for the $f(x) = 2^3 + 2^2 + 2^2 + 4^2$	-
31.	Find the interval in which function $f(x)=2x^3-9x^2+12x+15$ is strictly increasing and	3
	strictly decreasing खंड डी /(SECTION D)	
		i i
32	This section contains four Long Answer (LA)-type questions of 5marks each.	5
32.	This section contains four Long Answer (LA)-type questions of 5marks each.Find the area of the region included between the curves $4y=3x^2$ and the line	5
32.	This section contains four Long Answer (LA)-type questions of 5marks each.	5
32.	This section contains four Long Answer (LA)-type questions of 5marks each.Find the area of the region included between the curves $4y=3x^2$ and the line	5
	This section contains four Long Answer (LA)-type questions of 5marks each. Find the area of the region included between the curves $4y=3x^2$ and the line $2y=3x+12$	
	This section contains four Long Answer (LA)-type questions of 5marks each.Find the area of the region included between the curves $4y=3x^2$ and the line $2y=3x+12$ Let N denote the set of all natural numbers and R be the relation on $N \times N$ defined by	
	This section contains four Long Answer (LA)-type questions of 5marks each.Find the area of the region included between the curves $4y=3x^2$ and the line $2y=3x+12$ Let N denote the set of all natural numbers and R be the relation on $N \times N$ defined by $(a,b) \in R(c,d)$ If $ad(b+c)=bc(a+d)$. Prove that R is an equivalence relation.Find the shortest distance between the lines given by	
33.	This section contains four Long Answer (LA)-type questions of 5marks each.Find the area of the region included between the curves $4y=3x^2$ and the line $2y=3x+12$ Let N denote the set of all natural numbers and R be the relation on $N \times N$ defined by $(a,b) \in R(c,d)$ If $ad(b+c)=bc(a+d)$. Prove that R is an equivalence relation.	5
33.	This section contains four Long Answer (LA)-type questions of 5marks each.Find the area of the region included between the curves $4y=3x^2$ and the line $2y=3x+12$ Let N denote the set of all natural numbers and R be the relation on $N \times N$ defined by $(a,b) \in R(c,d)$ If $ad(b+c)=bc(a+d)$. Prove that R is an equivalence relation.Find the shortest distance between the lines given by	5
33.	This section contains four Long Answer (LA)-type questions of 5marks each.Find the area of the region included between the curves $4y=3x^2$ and the line $2y=3x+12$ Let N denote the set of all natural numbers and R be the relation on $N \times N$ defined by $(a,b) \in R(c,d)$ If $ad(b+c)=bc(a+d)$. Prove that R is an equivalence relation.Find the shortest distance between the lines given by	5
33.	This section contains four Long Answer (LA)-type questions of 5marks each.Find the area of the region included between the curves $4y=3x^2$ and the line $2y=3x+12$ Let N denote the set of all natural numbers and R be the relation on $N \times N$ defined by $(a,b) \in R(c,d)$ If $ad(b+c)=bc(a+d)$. Prove that R is an equivalence relation.Find the shortest distance between the lines given by $\vec{r}=(8+3\lambda)\hat{i}-(9+16\lambda)\hat{j}+(10+7\lambda)\hat{k}$ and $\vec{r}=15\hat{i}+29\hat{j}+5\hat{k}+\mu(3\hat{i}+8\hat{j}-5\hat{k})$	5

	lines.	
35.	Evaluate the product AB, where : $A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{bmatrix}$ Hence solve the system of linear equations	5
	x-y=3 2x+3y+4z=17	
	y+2z=7 OR	
	If $A = \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix}$, find $A^2 - 5A + 4I$ and hence find a matrix X such that $A^2 - 5A + 4I + X = 0$	
	<u>(Section E)</u> Source based/Case based/passage based/integrated units of assessment Questions	
36.	A bike is running on the road along the line $\frac{x-6}{1} = \frac{2-y}{2} = \frac{z-2}{2}$ while an aeroplane is flying in the space along the line $\frac{x+4}{3} = \frac{y}{-2} = \frac{z+1}{-2}$	1+1+2
	 Based on the information given above answer the following questions . 1(i) Write the equations of both the lines in vector form. (II) Find a vector perpendicular to both the given lines . (iii) Find shortest distance between both skew lines. OR 	
	(IIi) For which value of λ the lines $\frac{x-6}{1} = \frac{2-y}{2} = \frac{z-2}{2}$ and $\frac{x+4}{3} = \frac{y}{-2} = \frac{z+1}{-2}$ Intersect each other	
37.	In a smart city Indore a residential society comprising of 100 houses, there were 60 childrens between the ages 10-15 yearsThey were inspired by their teacher to start composting to ensure that biodegradable waste is recyled. For this purpose instead of each child doing it for only his/her house childrens convinced the Residents welfare association to do it as a society initiative. For this they identified a square area ina local park. Local authorities charged amount of ₹50 per sq metre for space so that there is no misuse of the space and Resident welfare association takes it seriously. Association hired a labourer for digging out 250 m^3 and he charged ₹400 x or $X(depth)^2$. Association will like to have minimum cost.	1+1+2

