Directorate of Education, GNCT of Delhi

Practice Paper -II (2023-24)

Class – XII

Mathematics (Code: 041)

Time: 3 hours Maximum Marks: 80

General Instructions:

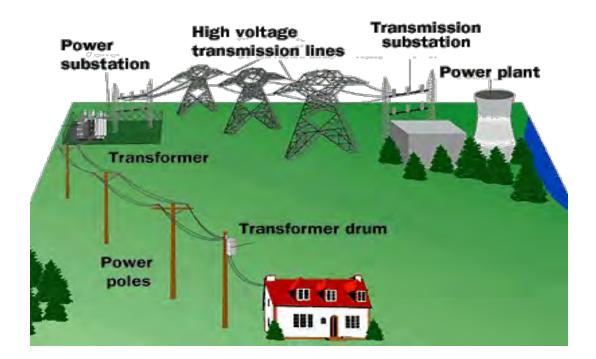
- **1.** This Question paper contains **five sections A,B,C,D,E**. Each section is compulsory. However, there are internal choices in some questions.
- **2. Section A** has 18 **MCQ's and 02** Assertion-Reason based questions of 1 mark each.(20 Marks)
- **3. Section B**has 5 **Very Short Answer (VSA)-type** questions of 2 marks each.(10 Marks)
- **4. Section C** has 6 **Short Answer (SA)-type** questions of 3 marks each.(18 Marks)
- **5. Section D** has 4 **Long Answer (LA)-type** questions of 5 marks each.(20 Marks)
- 6. Section E has 3 Source based/Case based/passage based/integrated units of assessment (4 marks each) with sub parts.(12 Marks)

	Question Number 1-18 are of MCQ type	ction – A e question one mark each.	
1.	The domain of the function $\cos^{-1}(2x-3)$ is		1
	(a) [-1,1]	(b)(1,2)	
	(c) (-1,1)	(d) [1,2]	
2.	If a matrix $A = \begin{bmatrix} 10 & 2k+5 \\ 3k-3 & k+5 \end{bmatrix}$ is symmetric then , the value of k is :		
	(a) 8	(b) 5	
	(c) -0.4	(d) $\frac{1+\sqrt{1561}}{12}$	
3.	For two matrices $P = \begin{bmatrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{bmatrix}$ and $Q^T = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 2 & 1 \\ 2 & 3 \end{bmatrix}$, P-Q is:	
	(a) $\begin{bmatrix} 2 & 3 \\ -3 & 0 \\ 0 & -3 \end{bmatrix}$	(b) $\begin{bmatrix} 4 & 3 \\ -3 & 0 \\ -1 & -2 \end{bmatrix}$	
	(c) $ \begin{bmatrix} 4 & 3 \\ -0 & -3 \\ -1 & -2 \end{bmatrix} $	(d) $\begin{bmatrix} 2 & 3 \\ 0 & -3 \\ 0 & -3 \end{bmatrix}$	

	If A is a matrix of order 3x3 and A =5, then adj A is:			
	(a) 250	(b) 125		
	(c) 625	(d) 25		
5.	Suppose P and Q are two different matrices of order 3 × n and n × p , then the order of the matrix P × Q is?			
	(a) 3 x p	(b) p x 3		
	(c) n x n	(d) 3 x 3		
6.	Which of the following point	t lies in the half plane x+y-6 = 0 ?		
	(a) (5,2)	(b) (2,5)		
	(c) (8,1)	(d) (1,3)		
7.	Which of the following differ	rential equations have same order and degree?		
	(a) $y' + y'' = 0$	(b) $(y'')+(y')^2=0$		
	(c) $(y'')^2 + (y')^2 + x = 0$	y''=2y		
8.	If x=log 5t and y=log 7t , then $\frac{dy}{dx}$ is :			
	(a) 1 (b) 2			
	(c) $\frac{7}{5}$			
		(d) $\frac{5}{7}$		
9.	The value of $\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} (x \cos x + x^3 + 1 - \tan^5 x) dx$ is equal to :			
	(a) π	(b) 2 π		
	(c) 3 π	(d) 4 π		
10.	The integrating factor of the differential Equation $(1-y^2)\frac{dy}{dx} + yx = ay(-1 < y < 1)$ is :			
	(a) $\frac{1}{y^2 - 1}$ (c) $\frac{-1}{\sqrt{1 - y^2}}$	(b) $\frac{1}{\sqrt{y^2-1}}$		
	$(c) \frac{-1}{\sqrt{1-y^2}}$	(d) $\frac{1}{\sqrt{1-y^2}}$		

11.	Product of order and degree of differential equation $\sqrt{1 + \frac{d^2 y}{dx^2}} = x \frac{dy}{dx}$			
	(a) 3	(b)2		
	(c) 4	(d) 1		
12.	If the diagonal of parallelogra	am are $\vec{d}_1 = 3\hat{i}$ and $\vec{d}_2 = 4\hat{j}$ then its area is given by :		
	(a) 2 sq unit	(b)3 sq unit		
	(c) 6 sq unit	(d) 12 sq unit		
13.	If \hat{a} and \hat{b} be two unit vecto	ors and $'\theta^{\prime}$ is the angle between them , then $ \hat{a}-\hat{b} $:	1	
	(a) $\sin \frac{\theta}{2}$	(b) $2\sin\frac{\theta}{2}$		
	(c) $\cos \frac{\theta}{2}$	(d) $2\cos\frac{\theta}{2}$		
15.	The maximum value of the object function Z=5x+10y subject to the constraints $x+2y \le 120, x+y \ge 60, x-2y \ge 0, x \ge 0, y \ge 0$ is :			
	(a) 300	(b) 600		
	(c) 400	(d) 800		
16.	If A and B are two independent events with $P(A) = \frac{3}{5}$ and $P(B) = \frac{4}{9}$,then $P(A' \cap B')$ equals:			
	(a) $\frac{4}{15}$	(b) $\frac{8}{15}$		
	(c) $\frac{1}{3}$	(d) $\frac{2}{9}$		
17.	Corner points of the feasible region determined by the system of linear constraints are $(0, 10)$, $(5, 5)$, $(15, 15)$, $(0, 20)$ let $Z=px+qy$ where p , $q>0$. Conditions on p and q so that maximum of Z occurs at both the points $(15, 15)$ and $(0, 20)$ is :			
	(a) q=3p	(b) p=2q		
	(c) q=2p	(d) p=q		
18.	If $x+y \le 2$, $x,y \ge 0$, the point at which maximum value of $3x+2y$ attained, will be:			
	(a) (0, 2)	(b) (0, 0)		
	(c) (2, 0)	(d) $\left(\frac{1}{2}, \frac{1}{2}\right)$		

	_(ASSERTION-REASON BASED QUESTIONS)	
	In the following questions, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices.	
	(a) Both A and R are true and R is the correct explanation of A.	
	(b) Both A and R are true but R is not the correct explanation of A.	
	(c) A is true but R is false.	
	(d) A is false but R is true.	
19.	Assertion(A): Principal value of $\cos^{-1}(\frac{-1}{2})$ is $\frac{2\pi}{3}$	1
	Reason (R) : Domain of $\cos^{-1} x$ is R	
20.	Assertion(A) : Vector equation of a line passing through the points A(1, 2, 3) ,and B(4, 5, 6) is $\vec{r} = (4\hat{i} + 5\hat{j} + 6\hat{k}) + \lambda(\hat{i} + \hat{j} + \hat{k})$	
	Reason (R): Equation of a line passing through a point with position vector \vec{a} and parallel to a vector \vec{b} is, $\vec{r} = \vec{a} + \lambda \vec{b}$	
	(Section B) This section contains 5 Very Short Answer (VSA)-type questions of 2 marks each.	
21.	The graph of an inverse trigonometric function f(x) is given below, observe the graph and answer the following questions	2
	$-\frac{\pi}{2}$ -1.5 -1 0.5 0 0.5 1 1.5	
	(i) If $f(x) = \frac{\pi}{6}$, then find the value of x	
	(ii) What is the value of $f(\frac{-1}{\sqrt{2}})$?	
22.	Find the value of k , If the function $f(x) = \begin{cases} \frac{\sin 3x}{x}, & \text{if } x \neq 0 \\ k, & \text{if } x = 0 \end{cases}$	2
23.	is continuous at x=0 If $y\sqrt{1-x^2}+x\sqrt{1-y^2}=1$ then prove that $\frac{dy}{dx}=-\sqrt{\frac{1-y^2}{1-x^2}}$ OR	2
24.	Find the differential of $\sin^2 x$ w.r.t $e^{\cos x}$ A point moves along the curve $y=x^2$, if its abscissa increases at the rate 2 units/sec. At what rate is distance from origin is increasing when point is at (2,4).	2
25.	Find $\int_{-1}^{2} \frac{ x }{x} dx$ OR	2
	Find $\int \frac{x+1}{x(1-2x)} dx$	


26. If sinys $\frac{dy}{dx} =$ 27. Conside throw given to the solve $\frac{dy}{dx} =$ 28. Solve $\frac{dy}{dx} =$ 29. Solve to $\frac{dy}{dx} =$ 30. Maxim Subject $\frac{dy}{dx} =$ 31. If $y =$	=x cos (a+y), =cos a, when er experimer a die. Find the hat ' there is om variable X X P(x) $\frac{\pi}{3} \frac{dx}{1+\sqrt{cos}}$ $\frac{\int_{-5}^{5} x+2 dx}{1+\sqrt{cos}}$ the differential	Then show that $x=0$ Int of tossing a coin he conditional probability of the street of the probability of the street of the str	$\frac{dy}{dx} = \frac{\cos^2(a+y)}{\cos a}$ 1. If the coin shows bability of the event of the event of the event of the mean of the distribution of the distri	head toss again , but it the die shows a num below: 2 2k² ibution.	f it shows tail , then	3
26. If sinys $\frac{dy}{dx}$ = 27. Considitation with row given to A random Find the Solve Solve to Solve	=x cos (a+y), $x \cos a$, when er experiment a die. Find the signature of the composition of the contract of	$x=0$ Int of tossing a coin he conditional probability of the sthe probability of the determine to \overline{tx}	OR y distribution as giver 1 k^2 the mean of the distribution of the distributi	head toss again , but it the die shows a num below: 2 2k² ibution.	nber greater than 4'	3
27. Conside throw given to the solve the solve to the solve the s	er experimenta die. Find that 'there is som variable x x $y \cot x = 2x$	at of tossing a coin he conditional probatleast one tail'. (has the probability 0	OR y distribution as given 1 k^{2} the mean of the distribution OR $(\frac{y}{x})\frac{dy}{dx} = y\cos(\frac{y}{x})$ OR	the die shows a num below: 2 2k² ibution.	nber greater than 4'	3
Find the solve Solve Solve 19. Solv	P(x) The value of k of the value of k of the value of the val	$\frac{1}{tx}$ All equation $x \cos(\frac{t}{t})$ Solution of the difference of the differen	or variable of the distribution as given to the distribution as given to the distribution as given to the distribution of the distribution as given to the distribution as given	$\frac{2}{2k^2}$ ibution.		
Solve Solve Solve to the sol	P(x) ne value of k , $\int_{\frac{\pi}{3}}^{\frac{\pi}{3}} \frac{dx}{1+\sqrt{cot}}$ $\int_{-5}^{5} x+2 dx$ he differentiance particular so $y \cot x = 2x$	$\frac{k}{tx}$ All equation $x \cos \left(\frac{x}{t}\right)$	$\frac{k^2}{\text{the mean of the distribution}}$ $\frac{\sqrt{y}}{\sqrt{x}} \frac{dy}{dx} = y \cos\left(\frac{y}{x}\right)$ OR	$2k^2$ ibution.		
Solve Solve Solve Find the $\frac{dy}{dx}$ + 30. Maxim Subject $x+2$ Solve te 31. If $y=$	the value of k $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{dx}{1+\sqrt{cos}}$ $\int_{-5}^{5} x+2 dx$ the differentiant $\int_{-5}^{5} x+2 dx$ $\int_{-5}^{5} x+2 dx$ $\int_{-5}^{5} x+2 dx$	hence determine to $\frac{1}{tx}$ all equation $x \cos(x)$ solution of the difference $x \cos(x)$	the mean of the distribution of the distribut	ibution.	k	
Solve Solve Solve Find the $\frac{dy}{dx}$ + 30. Maxim Subject $x+2$ Solve te 31. If $y=$	$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{dx}{1 + \sqrt{cot}}$ $\int_{-5}^{5} x + 2 dx$ he differentiant the particular solution $y \cot x = 2x$	$\frac{1}{tx}$ All equation $x \cos(x)$ Solution of the differmal x	OR $ \left(\frac{y}{x}\right)\frac{dy}{dx} = y\cos\left(\frac{y}{x}\right) $ OR			
Solve Solve Solve to Solve	$\int_{-5}^{5} x+2 dx$ he differentiant $\int_{-5}^{5} x+2 dx$ he particular so	x al equation $x \cos \left(\frac{1}{x} \right)$ solution of the diffe	$\left(\frac{y}{x}\right)\frac{dy}{dx} = y\cos\left(\frac{y}{x}\right).$ OR	+ <i>x</i>		
Solve to So	he differentiante particular $y \cot x = 2x$	al equation $x \cos \left(\frac{1}{2} \right)$	$\left(\frac{y}{x}\right)\frac{dy}{dx} = y\cos\left(\frac{y}{x}\right).$ OR	+ x		3
Find the $\frac{dy}{dx}$ + 30. Maxim Subject $x+2$ Solve to 31.	ne particular s $y \cot x = 2x$	solution of the diffe	OR	+ <i>x</i>		3
$\frac{dy}{dx} + 30.$ Maxim Subject $x+2$ Solve to 31. If $y=$	$y \cot x = 2x$		erential equation			
Subject $x+2$ Solve to $x+3$. If $y=$	ize : 7=x+2v	=	nat y=0 when $x = \frac{\pi}{2}$			
If y=	Maximize : Z=x+2y Subject to constraints : $x+2\ y\ge 100, 2\ x-y\le 0, 2\ x+y\le 0, x\ge 0, y\ge 0$ Solve the LPP graphically.					3
This	$=x^{\sin x}+(\sin x)$) ^x , then find $\frac{dy}{dx}$				3
each.	section o		(SECTION D) Long Answer	(LA)-type quest	ions of 5marks	
		he region bounde	ed by the lines y=3x	x+2, the x axis , and t	he ordinates x=-1	5
$ \left\{ (x, y) \right\} $	Let R be a relation defined on the set of natural numbers N as follows: $\{ (x,y) : x \in N, y \in N, 2x + y = 41 \} $ Find the domain and range of the relation R . Also verify whether R is reflexive , symmetric and transitive .				5	
34. Find th	e image of th	ne point (1, 2, 3) in t $\lambda(3\hat{i}+2\hat{j}-2\hat{k})$				5
Find th	e shortest dis	stance between the	e lines given by $\vec{r}=0$	$(1-t)\hat{i}+(t-2)\hat{j}+(3-t)\hat{j}$	$(2t)\hat{k}$ and	
$\vec{r}=(s)$	$(s+1)\hat{i} + (2s-1)\hat{i}$	$-1)\hat{j}-(2s+1)\hat{k}$				
35.	, \					

	OR	
	If $A = \begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{bmatrix}$, then find the value of A^{-1} . using A^{-1} , solve the system of linear equations x-2y=10, 2x-y-z=8 and -2y+z=7	
	(Section E)	
	Source based/Case based/passage based/integrated units of assessment	
	Questions Dased/Case Dased/passage Dased/Integrated units of assessment	
36.	In a group activity class there are 10 students whose ages are 16,17, 15,14, 19,17, 16,18, 16 and 15 years. One student is selected at random such that each has equal chance of being choosen and age of student is recorded. On the basis on information given above answer the following questions.	
	 (i) Find the probability that age of a selected student is a composite number . (ii) Let x be the age of selected student . What can be the value of x? (iii) Find the probability distribution of random variable x and hence find the mean age. OR (iii) If a student of age 14 years is replaced by another student of age 18 years , then find the probability distribution of random variable x and hence find the mean age. 	
37.	A particle is moving along the curve represented by the polynomial $f(x)=(x-1)(x-2)^2$ as shown in the figure given below. $f(x)=(x-1)(x-2)^2$ as shown in the figure given below. $f(x)=(x-1)(x-2)^2$ Based on the above information answer the following questions. (i)Find Critical points of polynomial $f(x)=(x-1)(x-2)^2$. (ii)Find the interval where $f(x)$ is strictly increasing (iii)Find the interval where $f(x)$ is strictly decreasing. OR	1+1+
	What is the point of local maxima of $f(x)=(x-1)(x-2)^2$?	

Maintenance is done primarily twice a year, once before monsoon and the next is done after monsoon to see if any breakdown has occurred in the line. Electrical transmission wires which are laid down in winters are stretched tightly to accommodate expnsion in summers . Two such wires lie along the following lines :

$$l_1: \frac{x+1}{3} = \frac{y-3}{2} = \frac{z+2}{-1}$$

$$l_2: \frac{x}{-1} = \frac{y-7}{3} = \frac{z+7}{-2}$$

Based on the information given above answer the following questions :

(i) Are the lines $\ l_1$ and $\ l_2$ coplanar (distance is zero)? Justify your answer.

(ii) Find the point of intersection of the lines $\ l_1$ and $\ l_2$.