

MODEL PRACTICE TEST PAPER - II MATHEMATICS CLASS 12 - CBSE 2011

Max. Marks: 100

Time: 3 hrs

General Instructions:

- 1. All questions are compulsory
- The question paper consists of 29 questions divided into three sections A,B and C. Section A contains 10 2. questions of 1 mark each, Section B contains 12 questions of 4 marks each and section C contains 07 questions of 6 marks each.
- 3.

Section – A

(Questions 1 - 10 carry one mark each)

- 1. $\int \frac{\log(sinx)}{tanx} dx$
- 2. Write the principal value of $\cos^{-1} \cos(\frac{7\pi}{6})$
- 3. If $|\vec{a}| = \sqrt{3}$, $|\vec{b}| = 2$ and $\vec{a} \cdot \vec{b} = 3$, find the angle between \vec{a} and \vec{b}
- 4. Write down the equation of a line parallel to the line $\frac{x-2}{-3} = \frac{y+3}{2} = \frac{z+5}{6}$ and passing through the point (1,2,3).
- 5. If matrix A = (1 2 3), write AA', where A' is the transpose of A
- Evaluate $\int Sin4xcos3x \, dx$ 6.
- 7. Write the order and degree of differential equation $\left(\frac{d^2y}{dx^2}\right)^2 + \left(\frac{dy}{dx}\right)^3 + 2y = 0$
- Find the value of p if $(2\hat{\imath}+6\hat{\jmath}+27\hat{k}) \times (\hat{\imath}+3\hat{\jmath}+p\hat{k}) = \vec{0}$ 8.

9. Evaluate :
$$\begin{bmatrix} 2\cos\theta & -2\sin\theta \\ \cos\theta & \sin\theta \end{bmatrix}$$

- cosθ] ^L sinθ
- **10.** Form the differential equation of the family of curves $y = a \cos(x+b)$, where a and b are arbitrary constants.

Section – B (Questions 11 – 22 carry four marks each)

- 1 1+p 1+p+q11. Using the properties of determinants, prove the following : $\begin{bmatrix} 2 & 3+2p & 1+3p+2q \end{bmatrix} = 1$ 3 & 6+3p & 1+6p+3q
- 12. If $y = (sinx)^x + sin^{-1}\sqrt{x}$, find $\frac{dy}{dx}$
- 13. Form a differential equation of the family of circles touching the x-axis at origin.
- 14. Solve the following for $x : \tan^{-1} x + 2\cot^{-1} x = \frac{2\pi}{3}$ or, Prove that $2\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{7} = \tan^{-1}\frac{31}{17}$ 15. Find the value of α so that the lines $\frac{1-x}{3} = \frac{7y-14}{2\alpha} = \frac{5z-10}{11}$ and $\frac{7-7x}{3\alpha} = \frac{y-5}{1} = \frac{6-z}{5}$ are perpendicular to each other
- 16. Find the equation of the tangent to the curve $x^2+3y = 3$, which is parallel to the line y-4x+5=0

Or

Find the intervals in which the function f given by $f(x) = \sin x + \cos x$, $0 \le x \le 2\pi$, is strictly increasing or strictly decreasing.

17. Using properties of definite integral, evaluate $\int_0^{\pi} \frac{x \sin x}{1 + \cos^2 x} dx$, or, Evaluate $\int \frac{dx}{\sqrt{(5 - 4x - 2x^2)}}$

18. Solve the differential equation : $\frac{dy}{dx} + y = \cos x - \sin x$ 19. If f: N \rightarrow N be defined by f(n) = $\frac{n+1}{2}$, if n is odd = $\frac{n}{2}$, if n is even

Find whether the function f is bijective.

- 20. The scalar product of the vector $\vec{i} + \vec{j} + \vec{k}$ with unit vector along sum of vectors $2\vec{i} + 4\vec{j} 5\vec{k}$ and $\mu \vec{i} + 2\vec{j} + 3\vec{k}$ is equal to one. Find the value of μ
- 21. Let * be the Binary operation on N given by a*b = LCM of a and b. Find the value of 20*16. Is * (i) Commutative (ii) Associative.
- 22. Prove that the relation R in the set A = $\{1,2,3,4,5\}$ given by R = $\{(a,b) : |a-b| \text{ is even}\}$, is an equivalence relation.

Section - C (Questions 23 - 29 carry Six marks each)

- 23. Find the point on the curve $y^2=2x$ which is at a minimum distance from the point (1,4)
- $3 \quad 0 \quad -1$ Obtain inverse of the following matrix using elementary operations [2 3 0] 24. 0 4 1
- **25.** Evaluate $\int_{0}^{\pi} \frac{x \, dx}{a^2 \cos^2 x + b^2 \sin^2 x}$ 26. Find the area of the region enclosed between the two circles $x^2 + y^2 = 9$ and $(x-3)^2 + y^2 = 9$
- 27. Evaluate $\int \frac{x^2}{x^4 + x^2 + 1} dx$ or, Evaluate $\int_0^{\frac{\pi}{2}} (2 \log \sin x \log \sin 2x) dx$ 28. Find the equation of the plane through the point (-1,3,2) and perpendicular to each of the planes x + 2y + 3z = 5 and 3x + 3y + 3z = 0
- 29. A diet is to contain atleast 80 units of vitamin A and 100 units of minerals. Two foods X and Y are available. Food X costs Rs.4 per unit and Food Y costs Rs.6 per unit. One unit of Food X contains 3 units of vitamin A and 4 units of minerals. One unit of Food Y contains 6 units of vitamin A and 3 units of minerals. Formulate this as a Linear Programming Problem and find graphically the minimum cost for diet that consists of mixture of these two foods and also meets the minimal nutritional requirements.