Class X Mathematics

CBSE Board, Set - 2

General Instructions:
(i) All questions re compulsory.
(ii) The question paper consists of 31 questions divided into four sections - A, B, C and D.
(iii) Section A contains 4 questions of 1 mark each, Section B contains 6 questions of 2 marks each, Section C contains 10 questions of 3 marks each and Section D contains 11 questions of 4 marks each.
(iv) Use of calculators is not permitted.

Section A

Q1. A letter of English alphabet is chosen at random. Determine the probability that the chosen letter is a consonant.

Sol. 1 There are 26 English alphabets in total, and so total out comes $=26$, out of these 26,5 are vowels.
\Rightarrow Number of Consonants $=$ favorable outcomes $=26-5=21$.
Here the required probability i.e. prob (chosen is a consonant) $=$ -
Q2. In Fig. 1, PA and PB are tangents to the circle with centre 0 such that $\angle \mathrm{APB}=50^{\circ}$. Write the measure of $\angle O A B$.

Figure 1
Sol. 2 In $\triangle A O B, O A=O B$ (radius)
$\therefore \angle \mathrm{OAB}=\angle \mathrm{OBA}$
$=x$ (let)

In fig. , $O A P B$ is quadrilateral, $\angle O A P$ and $\angle O B P$ is right angle (radius is r to the tangent at point of contact)

FREE Education

Using angle sum properly of quadrilateral,
$\therefore \angle \mathrm{AOB}+\angle \mathrm{OBP}+\angle \mathrm{BPA}+\angle \mathrm{OAP}=360^{\circ}$
$\angle \mathrm{AOB}+90^{\circ}+50^{\circ}+90^{\circ}=360^{\circ}$
$\Rightarrow \angle \mathrm{AOB}+230^{\circ}=360^{\circ}$
$\Rightarrow \angle \mathrm{AOB}=360^{\circ}-230^{\circ}$
$=130^{\circ}$
In $\triangle \mathrm{OAB}$,
$\angle \mathrm{OAB}+\angle \mathrm{AOB}+\angle \mathrm{OBA}=180^{\circ}$
$\Rightarrow \mathrm{x}+130^{\circ}+\mathrm{x}=180^{\circ}$
$\Rightarrow 2 \mathrm{x}+130^{\circ}=180^{\circ}$
$\Rightarrow 2 \mathrm{x}=50^{\circ}$
$\Rightarrow \mathrm{x}=25^{\circ}$
Hence $\angle \mathrm{OAB}=25^{\circ}$
Q3. The top of the two towers of height x and y, standing on level ground, subtend angles of 30° and 60° respectively at the centre of the line joining their feet, then find $\mathrm{x}: \mathrm{y}$.

Sol. 3 Let AB and CD be the two towers of height y and x respectively subtending angles of $60^{\circ} \& 30^{\circ}$.

We are required to find the ratio $\mathrm{x}: \mathrm{y}$.
Let O be the mid-point of the line joining their feet.

$\Rightarrow O B=O C=-B C$

Now, in $\triangle \mathrm{AOB}$
$\tan 60^{\circ}=-=-$
$\Rightarrow \tan 60^{\circ}=\frac{}{(-) \mathrm{BC}} \quad\{$ from (i) $\}$
$\Rightarrow(\sqrt{3} / 2) B C=y$
And in \triangle DOC
$\tan 30^{\circ}=-=-$
$\Rightarrow \tan 30^{\circ}=\frac{}{(1 / 2)} \quad\{$ from (i) $\}$
$\Rightarrow \frac{}{2 \sqrt{3}}=\mathrm{x}$
$x: y=\frac{\sqrt{3}}{2 \sqrt{3}}(-B C$
$\Rightarrow x: y=\frac{2 B C \sqrt{3}}{2 \sqrt{3 B C}}=\overline{\sqrt{V}} \quad \overline{\sqrt{3}}$
$\Rightarrow x: y=1: 3$
Q4. If $x=--$, is a solution of the quadratic equation $3 x^{2}+2 k x-3=0$, find the value of k.
Sol. 4 Since it is given that $\mathrm{x}=$ - is a solution of the given quadratic equation so it must satisfy the given equation.

So putting $\mathrm{x}=-\mathrm{is}$ equation.
$3(--)+2 k(--)-3=0$.
$3-+2 k(--)-3=0$.

- $\quad 3=0$.
$\Rightarrow k=-\quad 3=$
$=-$

Hence the value of k is -.

Section B

Q5. If $\mathrm{A}(5,2), \mathrm{B}(2,-2)$ and $\mathrm{C}(-2, \mathrm{t})$ are the vertices of a right angled triangle with $\angle \mathrm{B}=90^{\circ}$. Then find the value of t .

Sol. 5 A (5,2), B (2,-2), C(-2, t) are verticals of right angles triangle $\angle B=90^{\circ}$

Using distance formula

$$
\begin{aligned}
& \mathrm{AB}=\sqrt{(5-2)^{2}+(2+2)} \\
& \mathrm{BC}=\sqrt{(2+2)^{2}+(-2 \quad t)} \\
& \mathrm{AC}=\sqrt{(5+2)^{2}+(2+t)}
\end{aligned}
$$

Now, using Pythagoras theorem in $\triangle \mathrm{ABC}$, we have

$$
\begin{aligned}
& \mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}{ }^{2} . \\
& \left(3^{2}+4^{2}\right)+\left(4^{2}+(2+\mathrm{t})^{2}\right)=\mathrm{T}^{2}+(2-\mathrm{t})^{2} \\
& \Rightarrow 9+16+16+4+\mathrm{t}^{2}+4 \mathrm{t}=49+4+\mathrm{t}^{2}-4 \mathrm{t} \\
& \Rightarrow 41+4+4 \mathrm{t}=53-4 \mathrm{t} \\
& \Rightarrow 8 \mathrm{t}=53-4 \mathrm{t} \\
& \Rightarrow 8 \mathrm{t}=8 \\
& \Rightarrow \mathrm{t}=1
\end{aligned}
$$

Hence the value \& t is 1 .
Q6. From a point T outside a circle of centre 0 , tangents TP and TQ are drawn to the circle. Prove that OT is the right bisector of line segment PQ.

Sol. 6 Suppose OT intersects PQ at C.
Then, in Δ QTC, Δ PTC
$\mathrm{TP}=\mathrm{TQ}$ (Tangents from an external point are equal)

$\angle \mathrm{PTC}=\angle \mathrm{QTC}(\mathrm{TP} \& \mathrm{TQ}$ are equally inclined to OT)
$\& \mathrm{TC}=\mathrm{TC}$ (common)
By SAS criterion of similarity, are have
$\Delta \mathrm{PTC} \cong \Delta \mathrm{QTC}$.
$\Rightarrow \mathrm{PC}=\mathrm{CQ}$ and $\angle \mathrm{PCT}=\angle \mathrm{QCT}$
But $\angle \mathrm{PCT}+\angle \mathrm{QCT}=180^{\circ}$
$\Rightarrow \mathrm{PCT}=\angle \mathrm{QCT}=90^{\circ}$
$\Rightarrow \mathrm{OT} \perp \mathrm{PQ} . \quad \Rightarrow \quad$ Hence OT is the right bisector of line segment PQ.

Q7. In Fig.2, AB is the diameter of a circle with centre 0 and at is a tangent. If $\angle A O Q=58^{\circ}$, find $\angle A T Q$.

Figure 2

Sol. 7 Since A B is the diameter of the circle

$$
\begin{aligned}
& \text { So, } \angle \mathrm{AOQ}+\angle \mathrm{QOB}=180^{\circ} \quad \text { (linear pair) } \\
& \Rightarrow \quad 58^{\circ}+\angle \mathrm{QOB}=180^{\circ} \\
& \Rightarrow \quad \angle \mathrm{QOB}=180^{\circ}-58^{\circ} \\
& \quad=122^{\circ}
\end{aligned}
$$

$\operatorname{In} \triangle$ OBQ,
$O B=O Q \quad$ (radius)
$\angle \mathrm{OBQ}=\angle \mathrm{OQB}=\mathrm{x}$
$\angle \mathrm{BOQ}+\angle \mathrm{OBQ}+\angle \mathrm{OQB}=180^{\circ}$
$122^{\circ}+\mathrm{x}+\mathrm{x}=180^{\circ}$
$\Rightarrow 2 \mathrm{x}=58^{\circ}$
$\Rightarrow \mathrm{x}=29^{\circ}$
$\angle O Q T=180^{\circ}-\angle O Q B$
$=180^{\circ}-29^{\circ}$
$\angle O Q T=151^{\circ}$
AOQT is quadrilateral
$\angle \mathrm{D}=58^{\circ}, \quad \angle \mathrm{BAT}=90^{\circ} \quad \angle \mathrm{OQT}=151^{\circ}$

So, $\angle \mathrm{ATQ}=260^{\circ}-\left(58^{\circ}+90^{\circ}+151^{\circ}\right)$

$$
=360^{\circ}-299^{\circ}
$$

$\angle \mathrm{ATQ}=61^{\circ}$
$\Rightarrow \angle \mathrm{ATQ}=61^{\circ}$
Q8. Solve the following quadratic equation for x :
$4 x^{2}-4 a^{2} x+\left(a^{4}-b^{4}\right)=0$.
Sol. 8 The given quadratic equation is $4 x^{2}-4 a^{2} x+\left(a^{4}-b^{4}\right)$
Hence, the constant term is $\mathrm{a}^{4}-\mathrm{b}^{4}=\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)$
Coefficient of middle term is $=-4 \mathrm{a}^{2}$
$=-\left\{2\left(a^{2}+b^{2}\right)+2\left(a^{2}-b^{2}\right)\right\}$
Now equation is

$$
\begin{aligned}
& 4 \mathrm{x}^{2}-4 \mathrm{a}^{2} \mathrm{x}+\left(\mathrm{a}^{4}-\mathrm{b}^{4}\right)=0 . \\
& 4 \mathrm{x}^{2}-\left\{2\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)+2\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right) \mathrm{x}+\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)=0\right. \\
& 4 \mathrm{x}^{2}-2\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right) \mathrm{x}-2\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right) \mathrm{x}-\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)=0 \\
& \Rightarrow\left\{4 \mathrm{x}^{2}-2\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right) \mathrm{x}\right\}-\left\{2\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right) \mathrm{x}-\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)\right\}=0 \\
& \Rightarrow 2 \mathrm{x}\left\{2 \mathrm{x}-\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)\right\}-\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)\left\{2 \mathrm{x}-\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)\right\}=0 \\
& \Rightarrow\left\{2 \mathrm{x}-\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)\right\}\left\{2 \mathrm{x}-\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)\right\}=0 \\
& \Rightarrow 2 \mathrm{x}-\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)=0 \text { or } 2 \mathrm{x}-\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)=0 . \\
& \Rightarrow \mathrm{x}=- \text { or } \mathrm{x}=-
\end{aligned}
$$

Q9. Find the ratio in which the point $\mathrm{P}(-,-)$ and $\mathrm{B}(2,-5)$.
Sol. 9

Let us assume that the point P divides AB in the ratio $\mathrm{k}: 1$.

Then using section formula, we have

$$
\begin{aligned}
& \mathrm{P}=(\square,-\overline{-}) \\
& \Rightarrow(-,-)=(-\quad-\quad-) \\
& \Rightarrow-=- \\
& \text { and }-= \\
& =- \\
& \Rightarrow-=- \\
& \Rightarrow 3(\mathrm{k}+1)=(2 k+-) 4 \text {. } \\
& \Rightarrow 3 \mathrm{k}+3=8 \mathrm{k}+2 \text {. } \\
& \Rightarrow 5 \mathrm{k}=1 . \Rightarrow \mathrm{k}=-
\end{aligned}
$$

Hence the required ratio is $\mathrm{k}=1$ i.e. $-=1$ or $1: 5$.
Q10. Find the middle term of the A.P. 213, 205, 197, ---, 37.
Sol. $10 \mathrm{a}=213$
$\mathrm{l}=37$
$\mathrm{d}=-8$
$\mathrm{l}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$37=213+(n-1)(-8)$

$$
-=n-1
$$

$\mathrm{n}=23$
Middle term $\mathrm{a}_{12}=213-11 \times 8$

$$
=125
$$

Section C

Q11. In Fig. 3, APB and AQO are semicircles, and $A O=O B$. If the perimeter of the figure is 40 cm , find the area of the shaded region. [User $\pi=-]$.

Figure 3

Sol. 11 AO = OB
Perimeter of figure
$=\pi r+\pi R+R$
$r=-$

Perimeter $=-+\pi \mathrm{R}+\mathrm{R}=R(-+1)$
$40=R(-+1)$
$\mathrm{R}=\overline{-}=\square=\overline{=}=7$
$R=7 \mathrm{~cm} . \mathrm{r}=-=3.5 \mathrm{~cm}$

Area of shaded region $=-+\square$
$=-+-$
$=-+-$
$=-\quad+\square$
$=-\quad 77=1.25 \times 77=96.25 \mathrm{~cm}^{2}$

FREE Education

Q12. A solid wooden toy is in the form of a hemisphere surmounted by a cone of same radius. The radius of hemisphere is 3.5 cm and the total wood used in the making of toy is 166 cm^{3}. Find the height of the toy. Also, find the cost of painting the hemispherical part of the toy at the rate of Rs. 10 per cm^{2}. [Use $\pi=-$]

Sol. $12 \mathrm{R}=3.5 \mathrm{~cm}$
$\mathrm{V}=-\mathrm{cm}$
Height of cone $=H$
Volume $=-\quad+-$

$-=-[2 R+H]$
$\overline{3.53 .5}=2 \times 3.5+$
$6=H$
$\mathrm{H}=6 \mathrm{~cm}$
Surface area of hemispherical part to painted $=2 \pi R^{2}=2 \times 22 / 7 \times 3.5 \times 3.5$

$$
=22 \times 3.5=77 \mathrm{~cm}^{2}
$$

Total Cost $=10 \times 77=$ Rs. 770
Q13. Find the area of the triangle ABC with $\mathrm{A}(1,-4)$ and mid-points of sides through A being (2, $-1)$ and ($0,-1$).

Sol. 13 Given:
$\triangle \mathrm{ABC}$ in which
A $(1,-4) \&$ mid - Pts of sides through
A being $(2,-1) \&(0,-1)$.
Let the co-ordinates of $B\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \& C\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$.

Co-ordinates of points $B=(\square, \square)$
$(2,-1)=(-,-)$
\Rightarrow — $=2 \&-=-1$

$$
\begin{aligned}
& \Rightarrow x_{1}=3 \& y_{1}=2 \\
& \text { So, Point } B=(3,2) . \\
& \text { Similarly co-ordinates of point } C=(-,-) \\
& (0,-1)=(-\quad-) \\
& \Rightarrow-=0 \&-=-1 . \\
& \Rightarrow x_{2}=-1 \& y_{2}=2 \\
& \text { Point } C=(-1,2) \\
& \text { Area of } \Delta A B C=\text { where } A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right) \& C\left(x_{3}, y_{3}\right) \text { is } \\
& -\left|x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right| \\
& =-|1(2-2)+3(2-(-4))+(-1)(-4-2)| \\
& =-|0+3.6+(-1)(-6)| \\
& =-|18+6| \\
& =-\times 24 \\
& =12 \text { sq units. }
\end{aligned}
$$

Q14. In Fig. 4, from the top of a solid cone of height 12 cm and base radius 6 cm , a cone of height 4 cm is removed by a plane parallel to the base.
Find the total surface area of the remaining solid. (User $\pi=$

$$
- \text { and } \sqrt{5}=2.236)
$$

Figure 4

Sol. 14 Using similarity
$\mathrm{R}=6 \mathrm{~cm}$
$\mathrm{l}=\sqrt{r^{2}+h^{2}}=\sqrt{4+16}=2 \sqrt{5}$

- = -
$\mathrm{L}=-=\frac{2 \sqrt{5}}{}=6 \sqrt{5}$
TSA $=\pi r^{2}+\pi R^{2}+\pi(L-l)(r+R)$
$=\pi[4+36+4 \sqrt{5} \times 8]$
$=8 \pi[5+4 \sqrt{5}]=350.592 \mathrm{~cm}^{2}$
Q15. In Fig. 5, from a cuboidal solid metallic block, of dimensions 15 cm $\times 10 \mathrm{~cm} \times 5 \mathrm{~cm}$, a cylindrical hole of diameter 7 cm is drilled out. Find the surface area of the remaining block. [Use $\pi=-$]

Sol. 15 Surface area of remaining block $=$ Surface area of block - 2 area of circle $+\mathrm{C} \cdot \mathrm{SA} \cdot$ of cylinder formed

$=2(15 \times 10+10 \times 5+5 \times 15)-2 \quad-\times-+2 \quad-\times 5$
$=2[275]-77+110$
$=583 \mathrm{~cm}^{2}$
Q16. In Fig. 6, find the area of the shaded region [Use $\pi=3.14$]

Figure 6
Sol. 16 ABCD will be square with side $=$ diameter of semicircle

Radius + side + radius $=14-3-3$
$r+2 r+r=8$

$\mathrm{r}=2 \mathrm{~cm}$

Area of unshaded figure $=4^{2}+4-$
$=16+25 \cdot 12$
$=41 \cdot 12 \mathrm{~cm}^{2}$
Area of shaded figure $=14^{2}-41 \cdot 12$
$=154.88 \mathrm{~cm}^{2}$
Q17. The angle of elevation of the top of a building from the foot of the tower is 30° and the angle of elevation of the top of the tower from the foot of the building is 45°. If the tower is 30 m high, find the height of the building.

Sol. $17 \mathrm{AB} \rightarrow$ Tower
$\mathrm{CD} \rightarrow$ Building
In $\Delta \mathrm{ABC}$
$\tan 45=-$
$B C=A B$
$B C=30$

In \triangle BDC
$\tan 30=-$
$C D=\frac{\sqrt{3}}{\sqrt{3}}=10 \sqrt{3} \mathrm{~m}$.
Q18. If the sum of the first n terms of an A.P. is $\frac{1}{-}\left(3 n^{2}+7 n\right)$, then find its $\mathrm{n}^{\text {th }}$ term.
Hence write its $20^{\text {th }}$ term.
Sol. $18 \mathrm{Sn}=-\left(3 \mathrm{n}^{2}+7 \mathrm{n}\right)$

$$
\begin{aligned}
& \mathrm{n}^{\text {th }} \text { term }=\mathrm{Sn}=\mathrm{Sn}-1 \\
& =-\frac{1}{-}\left(3 n^{2}+7 n\right)-\frac{1}{-}\left(3\left(\begin{array}{ll}
n & 1
\end{array}\right)+7(\quad 1)\right) \\
& =-\frac{1}{-}\left(3 n^{2}+7 n\right)-\frac{1}{-}\left(3 n^{2}+\quad 4\right)
\end{aligned}
$$

$$
\left.\begin{array}{l}
=\frac{1}{3 n^{2}+7 n} 3 n \quad+4
\end{array}\right]
$$

Q19. Three distinct coins are tossed together. Find the probability of getting
(i) at least 2 heads
(ii) at most 2 heads

Sol. 19 Sample space $=(H H H$, HHT, HTH, THH, TTH, THT, HTT, TTT $)$
at least 2 Heads $=($ HHT, HTH, HH, HHH $)$
probability $=-=-$

Probability $=-$
Q20. Find that value of p for which the quadratic equation $(p+1) x^{2}-6(p+1) x+3(p+9)=0$, $p \neq-1$ has equal roots. Hence find the roots of the equation.

Sol. $20(p+1) x^{2}-(p+1) x+3(p+9)$
For equal roots
$\mathrm{D}=0$
$6^{2}(p+1)^{2}-4 \times 3(p+q)(p+1)=0$
$3\left(p^{2}+1+2 p\right)-\left(p^{2}+10 p+q\right)=0$
$2 \mathrm{p}^{2}-6-4 \mathrm{p}=0$
$\mathrm{p}^{2}-2 \mathrm{p}-3=0$
$\mathrm{p}^{2}-3 \mathrm{p}+\mathrm{p}-3=0$
$\mathrm{p}(\mathrm{p}-3)+(-3)=0$
$\mathrm{p}=-1$ (rejected) $\mathrm{p}=3$

Section D

Q21. In Fig.7, tangents $P Q$ and $P R$ are drawn from an external point P to a circle with centre 0 , such that $\angle R P Q=30^{\circ}$. A chord $R S$ is drawn parallel to the tangent $P Q$. Find $\angle R Q S$.

Sol. 21 Since, $P Q=P R$

Figure 7
$\angle \mathrm{PQR}=\angle \mathrm{QPR}=\square=75^{\circ}$
Now, $\angle \mathrm{RSQ}=\angle \mathrm{RQP}=75^{\circ}$ (because angle in equal segment)

Also, $\angle \mathrm{SQP}=180-\angle \mathrm{RSQ}$ (internal angles)
$\mathrm{m} \angle \mathrm{SQP}=105$
$\therefore \angle \mathrm{RQS}=30^{\circ}$

Q22. From a point P on the ground the angle of elevation of the top of a tower is 30° and that of the top of a flag staff fixed on the top of the tower, is 60°. If the length of the flag staff is 5 m , find the height of the tower.

Sol. 22 In Δ CBP BC is tower $\rightarrow \mathrm{H}$
$\tan 30=-\mathrm{AC}$ is flag $\rightarrow \mathrm{h}$
$\overline{\sqrt{3}}=-$
$B P=H \sqrt{3}$
$\tan 60=-=-$
$B P=\frac{}{\sqrt{3}}$
From (1) and (2)
$\frac{}{\sqrt{3}}=\sqrt{3} \mathrm{H} \quad \Rightarrow \mathrm{H}+\mathrm{h}=3 \mathrm{H}$
$\mathrm{h}=2 \mathrm{H}$
Length of flag staff $\mathrm{h}=5 \mathrm{~m}=2 \mathrm{H}$
Length of tower $=2.5 \mathrm{~m}$

FREE Education

Q23. Ramkali required Rs. 2500 after 12 weeks to send her daughter to school. She saved Rs. 100 in the first week and increased her weekly saving by Rs. 20 every week. Find whether she will be able to send her daughter to school after 12 weeks.

What value is generated in the above situation?
Sol. 23 First weak $=100$
Second weak $=120$
Third weak $=140$
So it will form A.P. with 12 terms
$\mathrm{a}=100, \mathrm{~d}=20$
$=\frac{12}{-}[2 \times 100+(12-1) 20]$
$=6[200+220]$
$=6 \times 440$
$=$ Rs. 2640 >Rs. 2500
Yes she will be able to send money.
Q24. A box contains 20 cards numbered from 1 to 20 . A card is drawn at random from the box. Find the probability that the number on the drawn card is
(i) divisible by 2 or 3
(ii) a prime number

Sol. 24 (i) Divisible by 2 will be 10 numbers
Divisible by 3 will be 6 numbers
Divisible by both i.e. divisible by 6 will be counted twice which will be $6,12,18$
So, numbers divisible by 2 or $3=10+6-3$
$=13$
Probability $=-$
(ii) Prime numbers $=2,3,5,7,11,17,17,19 \Rightarrow$ Probability $=-=-$

Q25. Water is flowing at the rate of $2.52 \mathrm{~km} / \mathrm{h}$ through a cylindrical pipe into a cylindrical tank, the radius of whose base is 40 cm , If the increase in the level of water in the tank, in half an hour is 3.15 m , find the internal diameter of the pipe.

Sol. 25 Rate of flowing $=2.52 \mathrm{~km} / \mathrm{hr}$

$$
\begin{aligned}
& =2.52 \times-- \\
& =0.7 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Let r be radius of pipe
Volume flowing through pipe $=\pi r^{2} 0.7-$

$$
\begin{aligned}
& =0.7 \times-r^{2} \\
& =2.2 \mathrm{r}^{2}-
\end{aligned}
$$

Time $=30 \mathrm{~min}=1800 \mathrm{~s}$
Volume flown $=2.2 \times \mathrm{r}^{2} \times 1800 \mathrm{~m}^{3}$
In tank
Height $=3.15 \mathrm{~m}$
Radius $=0.4 \mathrm{~m}$
Volume flown from pipe $=$ volume rised in tank
$2.2 \times r^{2} \times 1800=\pi \quad 0.4 \times 0.4 \times 3.15$
$\mathrm{r}^{2}=\frac{0.40 .40 .45}{2.2}$

$\mathrm{r}^{2}=$| 0.4 | 0.4 | 0.45 |
| :--- | :--- | :--- |

$r=\frac{0.4}{=}=\frac{0.2}{}=2 \mathrm{~cm}$.

Diameter $=2 \mathrm{r}=4 \mathrm{~cm}$.
Q26. A well of diameter 4 m is dug 14 m deep. The earth taken out is spread event all around the well to form a 40 cm high embankment. Find the width of the embankment.

Sol. 26 Diameter $=4$
Radius $=2$
Height (h) $=14 \mathrm{~m}$
Let w be width of embankment
Height $(H)=40 \mathrm{~m}$

Volume of earth taken out $\quad=\pi r^{2} h$

$$
\begin{aligned}
& =\pi \times 2 \quad 2 \times 14 \\
& =176 \mathrm{~m}^{2}
\end{aligned}
$$

Radius of embankment $=2+\mathrm{w}$
Volume of earth spread out = Volume of embankment
$176=\pi(r+w)^{2} H-\pi r^{2} H$ (No earth being filled here)
$\pi H\left((r+w)^{2}-r^{2}\right)=176$
$-\quad 0.4[(r+w+r)(r+\quad r)]=176$
$(2 r+w)(w)=\square=140$
$(4+w)(w)=140$

$$
=(10 \times 14)
$$

$$
\mathrm{w}=10 \mathrm{~m}
$$

Q27. Solve for x :

$$
-+\frac{}{2\left(\begin{array}{ll}
x & 2)
\end{array}=-, x \neq 0,-1,2\right.}
$$

Sol. $27-+\frac{}{2\left(\begin{array}{ll} & 2)\end{array}=-~\right.}$

$$
\begin{aligned}
& \Rightarrow \quad \frac{4(\mathrm{x} 2)+3(\mathrm{x} 1)}{2(\mathrm{x} \mathrm{1)(x} \mathrm{2)}=-} \\
& \Rightarrow \quad \frac{}{2(\mathrm{x}+1)(\mathrm{x}-2)}=- \\
& \Rightarrow \quad 5 \mathrm{x}(7 \mathrm{x}-5)=46(\mathrm{x}+1)(\mathrm{x}-2) \\
& \Rightarrow \quad 35 \mathrm{x}^{2}-25 \mathrm{x}=46 \mathrm{x}^{2}-46 \mathrm{x}-92
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \\
& \Rightarrow \\
& \Rightarrow \quad 11 \mathrm{x} \quad 21 \mathrm{x}-92=10 \\
& \Rightarrow \quad 11 \mathrm{x}(\mathrm{x}-4)+23(\mathrm{x}-4)=0 \\
& x=4 / \mathrm{x}=-23 \mathrm{x}-92=0
\end{aligned}
$$

Q28. To fill a swimming pool two pipes are to be used. If the pipe of large diameter is used for 4 hours and the pipe of smaller diameter for 9 hours, only half the pool can be filled. Find, how long it would take for each pipe to fill the pool separately, if the pipe of smaller diameter takes 10 hours more than the pipe of large diameter to fill the poo.

Sol. 28 Let V be volume of swimming pool.
t_{1} be time taken by smaller pipe to fill
t_{2} be time taken by layer pipe
$-9+-4=-$
$-+-=-$

Given $\mathrm{t}_{1}=\mathrm{t}_{2}=10$
$-+-=-$
$2\left(9 t_{2}+4 t_{2}+40\right)=t_{2}^{2}+10$
$26 \mathrm{t}_{2}+80=t_{2}^{2}+10 t$
$16 t \quad 80=0$
$\mathrm{t}_{2}=20 \mathrm{hrs}$.
$\mathrm{t}_{2}=-4 \rightarrow$ rejected
$\mathrm{t}_{1}=\mathrm{t}_{2}+10=30 \mathrm{hrs}$
Q29. Prove that the lengths of tangents drawn from an external point to a circle are equal.
Sol. 29 Let AB and AC be tangents drawn from external point A
To prove $-\mathrm{AB}=\mathrm{AC}$.
Proof:- In \triangle AOB and $\triangle A O C$

$\mathrm{AO}=\mathrm{AO} \quad($ common $)$
$O B=O B \quad$ (radi of same circle)
$\angle \mathrm{ABO}=\angle \mathrm{ACO}\left(90^{\circ}\right.$ each tangent $\perp \mathrm{r}$ to radius)
Using RHS \cong

$$
\begin{aligned}
\Delta \mathrm{AOB} & \cong \triangle \mathrm{AOC} \\
\mathrm{AB} & =\mathrm{AC} \text { Hence Proved. }
\end{aligned}
$$

Q30. Construct an isosceles triangle whose base is 6 cm and altitude 4 cm . Then construct another triangle whose sides are - times the corresponding sides of the isosceles triangle.

Sol. 30 Steps

1. Draw $A B$ of 6 cm
2. Draw perpendicular bisector of $A B$.
3. from ' D ' cut on arc of 4 cm Radius ray this point is C
4. Join $\overline{\mathrm{AC}}$ and $\overline{\mathrm{BC}}$.

Proof II
S.1) Draw any on ray
$\overrightarrow{\mathrm{AX}}$ at any angle
S.2) Cut on arc of same radius at equal intervals on $\overrightarrow{\mathrm{AX}}$ starting from A.
S.3) Let the point of interaction of $4^{\text {th }}$ arc the D.

Draw parallel to $B D$ from X_{3} and ray point of intersection be B^{\prime}.
S.4) Now from B^{\prime} draw a line parallel to $\overline{\mathrm{BC}}$ and ray the point where it intersects AC as C^{\prime}. Now A C' B' is new triangle.

Q31. If $\mathrm{P}(-5,-3), \mathrm{Q}(-4,-6), \mathrm{R}(2,-3)$ and $\mathrm{S}(1,2)$ are the vertices of a quadrilateral PQRS , find it area.

Sol. 31 P ($-5,-3$)
$Q(-4,-6)$

$$
\begin{aligned}
& \mathrm{R}(2,-3) \\
& \mathrm{S}(1,2) \\
& \text { Area of PQRS }=\operatorname{Ar} \operatorname{PQS}+\operatorname{Ar} \text { SRQ } \\
& \text { Ar PQS }=\frac{1}{-}|-5(-6-2)+(-4)(2+3)+1(-3+6)| \\
& =\frac{1}{-}[40-20+3] \\
& =- \text { sq units }
\end{aligned}
$$

$$
\operatorname{ArSRQ}=\frac{1}{-}[1(-3+6)+2(-6-2)+(-4)(2+3)]
$$

$\operatorname{ArSRQ}=\frac{1}{-}[1(-3+6)+2(-6-2)+(-4)(2+3)]$

$$
=|-[-3-16-20]|
$$

$$
=- \text { sq units } \Rightarrow \quad \text { Area of PQRS }=-+-=-=28 \text { sq units }
$$

