

Class XII Mathematics

CBSE Board, Set -1

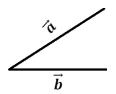
General Instructions:

- (i) All questions are compulsory.
- (ii) Please check that this Question Paper contents 26 Questions.
- (iii) Marks for each Question are indicated against it.
- (iv) Question 1 to 6 in Section-A are very short Answer Type Questions carrying one.
- (v) Question 7 to 19 in Section-B are Long Answer I Type Questions carrying 4 marks.
- (vi) Question 20 to 26 in Section-C are Long Answer II Type Questions carrying 6 marks each.
- (vii) Please write down the serial number of the Questions before attempting it.

Section - A

Q1. If $\vec{a} = 7\hat{\imath} + \hat{\jmath} - 4\hat{k}$ and $\vec{b} = 2\hat{\imath} + 6\hat{\jmath} + 3\hat{k}$, then find the projection of \vec{a} on \vec{b} .

Sol.1 Projection is $|a| \cos \theta$



$$=\frac{}{|b|}$$

$$\sqrt{36}$$

Q2 Find
$$\lambda$$
, if the vector $\vec{a} = \hat{\imath} + 3\hat{\jmath} + \hat{k}$, $\vec{b} = 2\hat{\imath} - \hat{\jmath} - \hat{k}$ and $\vec{c} = \lambda\hat{\jmath} + 3\hat{k}$ are coplanar.

Sol.2 If vector are coplanar

$$x\overrightarrow{a}$$
 $y\overrightarrow{b}$ $z\overrightarrow{c}$

$$x(\hat{\imath} \quad \hat{k}) \quad (2^{\hat{\imath}} \quad \hat{k}) \quad z(\lambda^{\hat{\imath}} \quad 3\hat{k})$$

0r

$$[abc] = 0$$

$$\begin{vmatrix} 2 & 1 \end{vmatrix} \qquad (6) \qquad (2\lambda)$$

- **Q3.** If a line makes angles 90°, 60° and θ with x, y and z-axis respectively, where θ is acute, then find θ .
- **Sol.3** Sum of squares of direction cosines is 1

 θ , α , γ are angles with x, y, z axis

$$cos^2\theta + cos^2\alpha + cos^2\gamma = 1$$

$$-\cos^2\gamma$$

$$\left[\sqrt{\frac{3}{3}}\right]$$

Acute angle is 30°

- **Q4.** Write the element a_{23} of a 3×3 matrix $A = (a_{ij})$ whose elements a_{ij} are given by $a_{ij} = \frac{|j|}{2}$.
- **Sol.4** |3×3|

$$a_{23} = \frac{|3|}{|3|}$$

$$a_{23} = -$$

Q5. Find the differential equation representing the family of curves v = -+ B, where A and B are arbitrary constants.

Sol.5
$$v = A/r + B$$
 {differentiating}

Q6. Find the integrating factor of the differential equation

$$\left(\begin{array}{cc} \frac{2\sqrt{x}}{\sqrt{x}} & \frac{1}{\sqrt{x}} \end{array}\right) - = 1.$$

Sol.6 —
$$\frac{2\sqrt{x}}{\sqrt{x}}$$

Integrating Factor
$$=e^{\int \sqrt{-}}$$

$$=e^{\int$$

Integrating Factor
$$=e^{2\sqrt{}}$$

Section - B

Q7. If
$$A = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$$
 find $A^2 - 5A + 4I$ and hence find a matrix X such that $A^2 - 5A + 4I + X = 0$

Sol.7
$$A = \begin{vmatrix} 2 & 3 \end{vmatrix}$$

$$A^2 = \begin{vmatrix} 2 & 3 \\ \times \end{vmatrix} 2$$

$$A^2 - 5A + 4J = \begin{vmatrix} 9 & & & \\ - & 10 & & 15 \end{vmatrix} + \begin{vmatrix} 0 & & 0 \end{vmatrix}$$

$$= \begin{vmatrix} 9 \\ 9 \end{vmatrix} - \begin{vmatrix} 10 \\ 15 \end{vmatrix}$$

So,
$$X = -(A^2 - 5A + 4J)$$

$$X = \begin{vmatrix} 1 & 10 \end{vmatrix}$$

OR

Q.7 If
$$A = \begin{bmatrix} 4 \end{bmatrix}$$
, find $(A')^{-1}$.

Sol.7
$$A^1 = -2$$

$$|A^1| = 1 (-1 - 8) - 2 (-8 + 3)$$

$$= -9 + 10 = 1$$

Cofactor matrix =
$$\begin{vmatrix} -9 \\ - \end{vmatrix}$$

$$(Cofactor)^T = \begin{vmatrix} -9 \\ 1 \end{vmatrix}$$

$$\therefore (A^{1})^{T} = \frac{Adj(A^{1})}{|A^{1}|} = \begin{vmatrix} -9 \\ \end{vmatrix}$$

Q8. If
$$t(x) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
, using properties of determinants find the value of $f(2x) - f(x)$.

Sol.8
$$f(2x) - f(x) = \begin{vmatrix} 1 & 1 \\ - & 1 \end{vmatrix}$$

Also,

$$\sin x = ---$$

$$\cos x = ---$$

$$dx = ---$$

 $u = tan u_2$

$$\frac{1}{2} \int \frac{1}{\frac{2u}{1+u^2} + 2 \cdot \frac{2u}{1+u^2} \cdot \frac{1-u^2}{1-u^2}} \cdot \frac{2}{1+u^2} du$$

$$1 \int u^2 + 1 \int u^2 du$$

$$\frac{1}{2} \int \frac{u^2 + 1}{2u} du$$

Integration = $\frac{\ln(u)+}{}$

But u = tan-

$$\therefore \frac{n(-)+ -}{}$$

$$= (a$$

(Ans.)

OR

Q.9 Integrate the following w.r.t.x

$$\sqrt{1}$$

Sol. 9 $\frac{1}{\sqrt{1}}$ can be written as...(1)

$$\sqrt{1}$$

$$\frac{-(1 \quad ^2)}{\sqrt{1}} \quad \frac{}{\sqrt{1}} \quad \frac{}{\sqrt{1}}$$

$$-\sqrt{1}$$
 $\sqrt{1-}$ $\sqrt{1}$

Now: Integration:

$$-\int \sqrt{1-x^2} \cdot dx + \int \frac{1}{\sqrt{1-x^2}} \cdot dx + \int \frac{1}{\sqrt{1-x^2}} dx +$$

Lets divide this into 3 different integrals.

$$A = \int -\sqrt{1}$$

$$B = \int \frac{1}{\sqrt{1 - \frac{1}{2}}}$$

$$C = \int \frac{1}{\sqrt{1 - 1}}$$

$$A = -\int \sqrt{1 - }$$

Let $x = \sin \theta \, dx = \cos \theta \cdot d\theta$.

$$=-\int \sqrt{1 \sin} =-\int$$

$$=(----)+c$$

Putting value of

$$A = - \begin{bmatrix} \frac{(x)}{(x)} + c \end{bmatrix}$$

$$B = \int \frac{1}{\sqrt{1 - 1}}$$

Let
$$1-x^2 = z$$

$$-2x \cdot dx = dz$$

$$-x \cdot dx = -$$

$$B = \int \frac{1}{2\sqrt{z}}$$

$$= -(\sqrt{z}) \cdot 2 + 1 = 3\sqrt{z} + 1$$

Putting value of z

$$B = 3\sqrt{1}$$

$$C = \int \frac{1}{\sqrt{1 - 1}}$$

This is a direct result:

$$C = 2 \sin^{-1} x + m$$

So,
$$A + B + C \Rightarrow$$

$$-\frac{\sin(2)}{\cos(2)} + 3\sqrt{1} + 2\sin^{-1}x + C$$

$$=3\sqrt{1} + -\sin^{-1}x - \sin\left(-----\right) + C$$

Q10. Evaluate:
$$\int_{-\pi}^{\pi} (\cos ax - \sin bx)^2 dx$$

Sol.10
$$\int_{-\pi}^{\pi} (\cos a x - \sin b x)^2 \cdot dx = \int_{-\pi}^{\pi} (\cos^2 a x + \sin^2 b y - 2 \sin b x \cos a x) dx$$

$$\int_{-\pi}^{\pi} (\cos^2 ax \cdot dv + \int_{-\pi}^{\pi} \sin^2 bx - 2 \int_{-\pi}^{\pi} \sin bx \cos ax$$

Clearly cos² ax is even

sin²bx is even

but sin bxcos ax is odd

so, its integral from $-\pi$ to 0 will cancel the 0 to π part.

i.e. our eqn reduces to:

$$= 2\int_{0}^{\pi} \cos^{2} ax \cdot dx + 2\int_{0}^{\pi} \sin^{2} bx \cdot dx$$

$$= 2\int_{0}^{\pi} \frac{1 + \cos 2ax}{2} \cdot dx + 2\int_{0}^{\pi} \frac{1 - \cos 2bx}{2} \cdot dx$$

$$= \left[x + \frac{\sin 2ax}{2a}\right]_{0}^{\pi} + \left[x - \frac{\sin 2bx}{2b}\right]_{0}^{\pi}$$

$$=\pi+\pi=2\pi$$

Q11. A bag A contains 4 black and 6 red balls and bag B contains 7 black and 3 red balls. A die is thrown. If 1 or 2 appears on it, then bag A is chosen, otherwise bag B. if two balls are drawn at random (without replacement) from the selected bag, find the probability of one of them being red and another black.

Sol.11

We need to draw one red & one black. This on be done via both the bags.

So, when die is thrown:

-probability of bag A to be chosen

bag B to be chosen

for bag A
$$\rightarrow$$
 - \longrightarrow = - \times \longrightarrow \times 2

From bag B
$$\rightarrow$$
 - \longrightarrow = -- \longrightarrow 2

= -

Total probability = -

OR

- **Q.11** An unbiased coin is tossed 4 times. Find the mean and variance of the number of heads obtained.
- **Sol.11** n = number of times

p = probability of success

Mean = np

_

Mean = 2

Variance = np(1-p)

_ _

Variance = 1

Q12. If
$$\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$$
, find $(\vec{r} \quad \hat{i}) \cdot (\vec{r} \times \hat{j}) + xy$

Sol.12
$$\vec{r} = x\hat{\imath} + y\hat{\jmath} \quad z\hat{k}$$

$$\hat{i} = (x^{\hat{i}} \hat{j} z\hat{k})$$

$$= x (\hat{\imath} \times \hat{\jmath}) + y (\hat{\jmath} \times \hat{\imath}) + Z (\hat{k} \times \hat{\imath})$$

$$= -y \hat{k} + z\hat{j} \qquad \dots (1)$$

Also,
$$\vec{r} \times \hat{j} = x (\hat{i} \times \hat{j}) + y (\hat{j} \times \hat{j}) + z (\hat{k} \times \hat{j})$$

$$= x\hat{k} + 0 + z(-\hat{i}) \qquad \dots (2)$$

So required =
$$(\vec{r} \times \hat{\imath}) \cdot (\vec{r} \times \hat{\jmath}) + xy$$

$$= (-y \hat{k} + z\hat{j}) \cdot (x\hat{k} - z\hat{i}) + xy$$

$$= -xy + xy$$

= 0

Q13. Find the distance between the point (-1, -5, -10) and the point of intersection of the line — and the plane x - y + z = 5.

So,
$$(3\lambda + 2) - (4\lambda - 1) + (12\lambda + 2)$$

$$11\lambda +$$

$$\Lambda = 0$$

 \therefore Point of intersection is (2, -1, 2)

So using distance formula,

Distance =
$$\sqrt{(2 \ 1)} \ (-5) \ (2 \ 10)$$

= $\sqrt{9}$
= 13

So, Distance between then is 13.

Q14. If
$$\sin [\cot^{-1} (x + 1)] = \cos (\tan^{-1} x)$$
, then find x.

Sol.14
$$\cot^{-1}(x+1) = \tan^{-1}(---) \operatorname{If} x + 1 > 0.$$

$$= \pi + \tan^{-1}\left(---\right) \text{If } x + 1 < 0$$

⇒ since sin and cos are equal both angles are complementary

$$Cot^{-1}(x+1) + tan^{-1}x = -$$

Case I:-
$$x + 1 > 0$$

$$\tan^{-1}\left(---\right) + \tan^{-1}x = -$$

$$\tan^{-1}\left(\frac{}{}\right) = -$$

⇒ No solution

Case II:- $x + 1 < 0 \Rightarrow x < -1$

$$\pi + tan^{-1} \left(--- \right) + tan^{-1} x = -$$

$$tan^{-1}(x^2 + x + 1) = --\pi$$

$$tan^{-1}(x^2 + x + 1) = -$$

⇒ No solution

OR

Q.14 If
$$(tan^{-1}x) + (cot^{-1}x)^2 = --$$
, then find x.

Sol.14 Let
$$tan^{-1} x = t$$

So,
$$\cot^{-1} x = --t$$

$$\therefore t^2 + \begin{pmatrix} - & t \end{pmatrix} = -$$

$$\therefore t^2 + \left(- \pi t \right) = - -$$

$$\Rightarrow$$
 t² - π t $-$ - $-$ = 0

$$\Rightarrow 2t^2 - \pi t - = 0$$

Solving this quadratic equation we get

$$t = --$$
 or $-t = --$

$$\therefore$$
 tan⁻¹ x = —or tan⁻¹ x = —

$$x = tan(--)$$
or No solution exist

x = -1

Sol.15 Put $x^2 = \cos$

$$\therefore y = \tan^{-1} \left(\frac{\sqrt{1 + \sqrt{1}}}{\sqrt{1} - \sqrt{1}} \right)$$

$$\therefore y = \tan^{-1} \left(\frac{\sqrt{1 + \sqrt{2}}}{\sqrt{2} - \sqrt{2}} \right)$$

$$\therefore y = tan^{-1} \left(---- \right)$$

Dividing Nr and Dr by cos

$$y = \tan^{-1}\left(\frac{45^{\circ} + 45^{\circ} + 45^{\circ$$

$$y = -$$

Now,
$$-=1$$

Also,

$$x^2 = \cos 2\theta$$

$$2x dx = -2\sin 2 d\theta$$

$$\therefore \overline{\sqrt{}$$

$$: - - \frac{1}{\sqrt{1}} \qquad \text{(from eqn (1) & (2))}$$

Q16. If $x = a \cos \theta + b \sin \theta$, $y = a \sin \theta - b \cos \theta$, show that y = - - - x = 0.

Sol.16 $x = a \cos b \sin b$

$$X^{2} = a^{2} \cos^{2}\theta + b^{2} \sin^{2}\theta + 2ab \sin\theta \cos\theta \qquad \dots (1)$$

Y
$$a \sin \theta - b \cos \theta$$

$$Y^2 = a^2 \sin^2 + b^2 \cos^2\theta - 2ab \sin\theta \cos\theta \qquad \dots (2)$$

Adding equation (1) and (2)

$$X^{2} + y^{2} = a^{2} (\sin^{2}\theta + \cos^{2}\theta) + b^{2} (\sin^{2}\theta + \cos^{2}\theta)$$

as we know $\sin^2\theta + \cos^2\theta = 1$

$$x^2 + y^2 = a^2 + b^2$$
 (3)

Now: differentiating (3) w.r. to x

$$2x + 2y = 0$$
 (4)

$$-=-....(5)$$

Differentiating equation (4) we get:

$$2y \cdot - + 2 \left(- \right) = 0$$

1 + y - + (-) = 0 Multiplying whole equation by Y

$$y + y^2 - + y \cdot (--) (--) = 0$$

 $y + y^2 - + y \cdot (-) = 0$ multiplying value from equation (5)

$$y^2 - - - + y = 0$$

- **Q17.** The side of an equilateral triangle is increasing at the rate of 2 cm/s. At what rate is its area increasing when the side of the triangle is 20 cm?
- **Sol.17** we know that area of equilateral triangle whose side length is "a" is given by:

Differentiating w.r. to a we get:

$$-\frac{\sqrt{3}}{}(2a)$$

dA (rate of change of area) = $\left(\frac{\sqrt{3a}}{}\right)$ · da (rate change in side length)

putting values:

$$dA = \frac{\sqrt{3}}{2} (20a) \cdot \text{cm/sec} = 20\sqrt{3} \text{ cm}^2/\text{sec}.$$

Q18. Find :
$$\int (x + 3)\sqrt{3 + 4x - x^2} dx$$
.

)

Sol.18
$$\int (x + 3)\sqrt{3}$$

$$= -2(x+2)$$

$$\int (x+2)\sqrt{3-4x-x^2}dx + \int \sqrt{3-x^2}dx + \int \sqrt{x^2}dx + \int \sqrt$$

Let this be integral of two functions A & B

$$\int (x - 2)\sqrt{3}$$

$$\int \sqrt{3}$$

For A:
$$\int (x + 2)\sqrt{3}$$

Let
$$3 - 4x - x^2 = t$$

Differentiating $(-4 - 2x) \cdot dx = dt$

$$-(x 2) \cdot dx = dt$$

$$(x + 2)dx = -$$

Substituting thing in integral A

$$\int \sqrt{t} - \int t dt$$

= ----

Putting value of t, we get

$$=$$
 $(3$ $^{2})$

Now
$$B = \int \sqrt{3}$$
 dx
 $= \int \sqrt{7}$ dx
 $= \int \sqrt{7} (x + 2)^2 \cdot dx$

$$= \int \sqrt{\left(\sqrt{7}\right)^2 - (x + 2)^2} \cdot dx$$

Putting $x + 2 = \sqrt{7} \sin \theta$

upon differentiation $dx = \sqrt{7} \cos \theta \cdot d\theta$

putting values:

$$B = \int \sqrt{(\sqrt{7})^2 - (\sqrt{7}\sin\theta)} \quad \sqrt{\quad} \text{os}$$

$$= \int \sqrt{7}\sqrt{1 \quad \sin \quad} \quad \sqrt{\quad} \text{os}$$

$$B = \int 7\cos\theta \quad \cos\theta \quad = \int 7\cos\theta$$

$$= \int 7\left\{ \frac{1}{1 \quad \cos\theta} \right\} \quad \text{as } 2\cos^2\theta - 1 = \cos^2\theta$$

$$= -\left\{ \frac{1}{1 \quad \cos\theta} \right\}$$

Putting value of

$$B = \frac{1}{2} \left\{ \sin^{-1} \left(\frac{1}{\sqrt{7}} \right) - \frac{2 \left\{ \sin \left(\frac{1}{\sqrt{7}} \right) \right\}}{1} \right\}$$

$$A + B = \frac{3}{2} \left\{ \sin^{-2} \left(\frac{1}{\sqrt{7}} \right) + - \left[\sin \left(\frac{(x-2)}{\sqrt{7}} \right) - \frac{2 \left\{ \sin \left(\frac{(x-2)}{\sqrt{7}} \right) \right\}}{\sqrt{7}} \right] + m.$$

Q19. Three schools A, B and C organized a mela for collecting funds for helping the rehabilitation of flood victims. They sold handmade fans, mats and plates from recycled material at a cost of Rs. 25, Rs. 100 and Rs. 50 each. The number of articles sold are given below:

Article/School	A	В	C
Hand-fans	40	25	35
Mats	50	40	50
Plates	20	30	40

Find the funds collected by each school separately by selling the above articles. Also find the total funds collected for the purpose.

Write one value generated by the above situation.

Sol.19 Rate of Hand fan = 25

Rate of Mats = 100

Rate of Plates = 50

School A add 40 fans, 50 mats & 20 plates. Amount collected by

School A will be:

$$A_m = (40 \times 25) + (50 \times 100) + (50 \times 20)$$

$$= 1000 + 5000 + 1000$$

= Rs. 7000

Similarly:
$$B_m = (25 \times 25) + (40 \times 100) + (30 \times 20)$$

$$= 625 + 4000 + 600$$

$$= Rs. 10625$$

$$C_m = (35 \times 25) + (56 \times 100) + (40 \times 20)$$

$$= 875 + 5000 + 8000$$

$$= Rs. 6675$$

Total funds collected: $A_m + B_m + C_m$

$$= Rs. (7000 + 10625 + 6675)$$

$$= Rs. 24300$$

Section - C

Q20. Let N denote the set of all natural numbers and R be the relation on $N \times N$ defined by (a, b) R (c, d) if ad(b + c) = bc(a + d). Show that R is an equivalence relation.

Sol.20 ad
$$(b + c) = bc (a + d)$$

$$adb + adc = abc + bcd$$

Dividing by 'abcd'

- - - -

(i) Reflexivity: Let (a, b) be an arbitrary element of $N \times N$

Then,
$$(a, b) \in N \times N \implies a, b \in N$$

$$a b (b + a) = b a (a + b)$$
$$\Rightarrow (a, b) R (a + b)$$

Thus (a, b) R (a, b) for all (a, b) e N \times N. So, R is Reflexive on N \times N.

- (ii) symmetry: Let (a, b) (c, d) \in N \times N be such that
- $(a, b) \in (c, d)$. Then
- (a, b) R (c, d) ad (b + c) = bc(a + d) (by comm. Of add and multi on N) \Rightarrow (c, d) R (a, b)

Thus (a, b) R (c, d) \Rightarrow (c, d) R (a, b)

Hence it is symmetric

(iii) Transitivity: Let (a, b), (c, d), $(e, f) \in N \times n$.

Such that (a, b) R (c, d) and (c, d) R (e, f). Then

$$(a, b) R (c, d) = ad (b + c) = bc (a + d).$$

adding (1) and (2),

_ _ _ _

and Hence

Hence it is transitive also.

Q21. Using integration find the area of the triangle formed by positive x-axis and tangent and normal to the circle $x^2 + y^2 = 4$ at $(1, \sqrt{3})$.

Sol.21 Eqn of circle:

$$x^2 + y^2 = 4$$

Eqn of tangent BA is given by

$$T = 0$$
 from point $(1, \sqrt{3})$

i.e.
$$xx_1 + yy_1 = 4$$
 where x_1, y_1 is $(1, \sqrt{3})$

soeqn is
$$x + \sqrt{3}y = 4$$

Eqn of normal OB is given by

$$y = kx$$
 {as it passes through centre}

it also passes through 1, $\sqrt{3}$

i.e.
$$k = \sqrt{3}$$

so normal is $\sqrt{3}x = y$

So Area of triangle OBA is

= Area OBM + Area MBA

$$= \int_{0}^{1} \sqrt{3}x \cdot dx + \int_{1}^{4} \left(\frac{4-x}{3}\right) \cdot dx \qquad \{\text{see figure}\}\$$

Integrating:

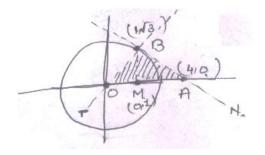
$$=\sqrt{3}\left(--\right) \qquad \frac{1}{\sqrt{3}}\left(4 \qquad --\right)$$

$$=\frac{\sqrt{3}}{3}(0) \quad \frac{1}{\sqrt{3}}\left[(16 \quad 8) - \begin{pmatrix} 4 & - \end{pmatrix}\right]$$

$$=\frac{\sqrt{}}{\sqrt{3}}\left[8\qquad \quad -\right]$$

$$=\frac{\sqrt{}}{\sqrt{3}}\left\{-\right\}$$

$$=-\left(\sqrt{3} \quad \frac{}{\sqrt{3}}\right) \quad -\left(4\sqrt{3}\right) \quad \sqrt{} \text{ sq units}$$



OR

Q21. Evaluate
$$\int_{1}^{3} (e^{2-3x} + x^2 + 1) dx$$
 as a limit of a sum.

Sol.21
$$\int_{1}^{3} (e^{2-3x} + x^{2} + 1) dx \qquad x = at - b$$

$$1 = -b$$

$$3 = a - b$$

$$a = 3 + b$$

$$a = 2$$

$$\therefore x \quad 2t + dx = 2dt$$

$$\int_{0}^{3} (e^{(2-(2t+1)3)} + (2t+1)^{2} + 1)$$

$$= \int_{0}^{1} (e^{2-6t-3} + 4t^{2} + 4t + 3) 2dt$$

$$= 2\int_{0}^{1} \frac{1}{e} e^{-6t} dt + \int_{0}^{1} 4t^{2} dt + \int_{0}^{1} 4t dt + \int_{0}^{1} 3dt$$

$$\lim_{x \to \infty} \frac{2}{e} \sum_{r=1}^{n} e^{-6\frac{r}{n}} \cdot \frac{1}{n} + \sum_{r=1}^{n} 4\left(\frac{r}{n}\right)^{2} \cdot \frac{1}{n} + \sum_{r=1}^{n} 4\left(\frac{r}{n}\right) \frac{1}{n} + 3\sum_{r=1}^{n} \frac{3}{n}$$

$$= \frac{2}{e} \cdot \frac{1}{n} \left[\cdot e^{-6} + e^{-12} \right]_{n} \dots \right] + \frac{4}{n^{3}} \frac{n(n+1)(2n+1)}{6} + \frac{4}{n^{2}} \frac{n(n+1)}{2} + \frac{3}{n} \cdot n$$

$$\lim_{x \to \infty} \frac{2}{e} \cdot \frac{1}{n} \cdot \frac{e^{-6}}{n} + 2 + \left\{ \frac{1}{6} \cdot \frac{4}{n^{2}} \left\{ 2n^{2} + 3n + 1 \right\} + \frac{4}{n} \frac{(n+1)}{2} + \frac{3}{n} \cdot n \right\}$$

Q22. Solve the differential equation:

$$(\tan^{-1}y - x)dy = (1 + y^2)dx.$$

Sol.22
$$(\tan^{-1} y - x)dy = (1 + y^2)dx$$

_ __ __

_ _ _

_

This is a linear differential of 1st order

The solution is

$$\mathbf{x} \cdot (\mathbf{If}) = \int Q \cdot (\mathbf{If}) \cdot d\mathbf{y}$$

where Q = ----

= e

Putting values in soln we get

Let $tan^{-1}y = t$

Differentiating: —

$$x \cdot e^{\tan y} = \int t \cdot e^{-t}$$

solving by parts 1

letting t as first function e^t as second:

$$= \begin{bmatrix} t \cdot \int e & \int \left(\frac{d}{dt} (t) \cdot \int e & dt \right) \end{bmatrix}$$
$$= \int 1$$

$$xe^{\tan^{-1}y}e^t(t-1)$$

putting value of t:

хe

{tan

1}

OR

- Find the particular solution of the differential equation given that y = 1, when x =Q22. 0.
- Sol.22 —

 $(x^2 + y^2) \cdot dy = xy \, dx \quad \dots \quad (1)$

Homogeneous differential eqn.

Put y = vx (where v is a variable)

Substituting in eqn (1)

$$(x^2+v^2x^2)\left\{v+x\right. - \left\} = x \cdot vx$$

$$x^2(1+v^2)\left(v\right)$$

$$\frac{xdv}{dx}$$
 $\frac{-v3}{v}$

$$\frac{(1-v^2)}{v3}dv \quad \frac{-dx}{x}$$

Integrating both sides:

in v x = --

	Putting value of v	in $y =$				
Q23.	If lines — $=$ — $=$ — and — — – intersect, then find, the value of k and hence fine the equation of the plane containing these lines.					
Sol.23	The Lines					
	The intersect, so the	ey must have a con	nmon point:			
	Let — —	_				
	1, <i>y</i>	1, <i>z</i>	(1)			
	Let — —	- (assume)				
	+ 3, y	k,z	(2)			
	Solving Eq. (1) and	(2)				
	From x we get $2k$					
	From z we get $l =$					
	Solving 2k					
	Equating y, we get					
	Putting values of <i>l</i> 8	k	_			
			_	ń		
		-				
	So the lines are:					
		O	-	1 2		

If these two lines lies in a plane, than normal of plane will be perpendicular to both the direction ratios:

So,
$$\hat{n} = \begin{vmatrix} i & j \\ 2 & 4 \end{vmatrix}$$

$$\hat{n} = \begin{bmatrix} \vdots & -5i & j & k \end{bmatrix}$$

Now eqn of plane is

$$-5 \times 2y + z = p \qquad \dots (3)$$

To find p we need any point on the plane

From (1) we know

$$x = 2k + 1$$
 $y = 3k - 1$ $z = 4k + 1$

put k = 0

$$x = 1$$
 $y = -1$ $z = 0$

put this in eqn (3) we get

$$-5(1) + 2(-1) + 1 = p$$

$$P = -5 - 2 + 1 = -6$$

Eqn of plane will be

$$-5x + 2y + z + 6 = 0$$

- **Q24.** If A and B are two independent events such that $P(\overline{A} \cap B)$ —and $P(A \setminus \overline{B})$ —, then find P(A) and P(B).
- **Sol.24** Since A and B are independent

$$P(A \cap B) P(A) P(B)$$

$$P(\bar{A} \cap B) = P(\bar{A}) P(B)$$

$$P(A \cap \overline{B}) = P(A) P(\overline{B}) \dots (1)$$

Let
$$P(A) = P \text{ so } P(A) = 1-p$$

and
$$P(b) = q$$
 so $P(B) = 1-q$

Given,
$$P(\bar{A} \cap B) = \frac{2}{\bar{A}}$$
 and $P(A \cap \bar{B}) = -$

$$(1-p) a = - \dots (2)$$

$$p(1-q) = -$$
(3)

Solving these equation (2) and (3),

 $q + - = p \rightarrow \text{substitute this in one of above (2) or (3)}$

$$p(1-q) = -$$

$$p(-) (1 - q) = -$$

$$\frac{(30 \quad 1)(1 \quad q)}{} = -$$

$$\Rightarrow -30q^2 + 2aq - 4 = 0$$

$$\Rightarrow$$
 q²⁺ - 2aq + 4 = 0

$$\Rightarrow$$
 q - or q = -

If
$$q = - \Rightarrow p = - + - = - = -$$

If
$$q = - \Rightarrow p = - + - = - = -$$

So,
$$q = = -$$
, $p = -$ Or $p -$ and $q = -$

Q25. Find the local maxima and local minima, of the function $f(x) = \sin x - \cos x$, $0 < x < 2\pi$. Also find the local maximum and local minimum values.

Sol.25
$$f(x) = \sin x - \cos x$$
 $0 < x < 2\pi$

$$f'(x) = \cos x + \sin x$$

$$\cos x + \sin x = 0$$

Or
$$\tan x = -1$$

$$X = -$$
 and $-$

Also
$$f''(x) = -\sin x + \cos x$$

$$f''(-) = -\sin - +\cos - = negative$$

$$f''(--) = -\sin(--) + \cos w(--) = positive$$

∴ x — is local maxima

And x = - is local minima

Also,
$$f(-) = \sin(-) - \cos(-) = 1.414$$

$$f\left(--\right) = \sin\left(--\right) - \cos\left(--\right) = -1.414$$

Q26. Find graphically, the maximum value of z = 2x + 5y, subject to constraints given below:

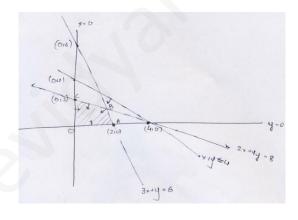
$$2x + 4y \le 8$$

$$3x + y \le 6$$

$$x + y \le 4$$

$$x \ge 0, y \ge 0$$

Sol.26



Here, we have plotted all the conditional. The common area is OABC.

How value z = 2x + 5y

Check 2 at C, B, A, & O

$$Z_c(0,2) = 10$$

$$Z_A(2,0) = 4$$

$$Z_B(-,-) = -$$

Clearly Z_c is maximum so max of z is 10 which occurs at 0, 2