CLASS IX (2019-20)

MATHEMATICS (041)
SAMPLE PAPER-02

Time : 3 Hours

Maximum Marks : 80

General Instructions :

(i) All questions are compulsory.
(ii) The questions paper consists of 40 questions divided into four sections $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D .
(iii) Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 8 questions of 3 marks each. Section D comprises of 6 questions of 4 marks each.
(iv) There is no overall choice. However, an internal choices have been provided in two questions of 1 mark each, two questions of 2 marks each, three questions of 3 marks each, and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
(v) Use of calculators is not permitted.

SECTION A

Q.1-Q. 10 are multiple choice questions. Select the most appropriate answer from the given options.

Q1. Set of natural numbers is a subset of
(a) Set of even numbers
(b) Set of odd numbers
(c) Set of composite numbers
(d) Set of real numbers

Q2. Degree of the polynomial $p(x)=(x+2)(x-2)$ is
(a) 2
(b) 1
(c) 0
(d) 3

Q3. A point lies on negative side of x-axis. Its distance from origin is 10 units. The coordinates of the point are
(a) $(10,0)$
(b) $(-10,0)$
(c) $(0,10)$
(d) $(0,-10)$

Q4. If $(a, 1)$ lies on the graph of $3 x-2 y+4=0$, then $a=$
(a) $\frac{-2}{3}$
(b) $\frac{2}{3}$
(c) $\frac{3}{2}$
(d) $\frac{-3}{2}$

Q5. If a point C lies between two point A and B such that $A C=B C$, then

(a) $A C=A B$
(b) $A C=\frac{1}{2} A B$
(c) $A B=\frac{1}{2} A C$
(d) $A C=\frac{1}{3} A B$

Q6. If $l \| m$, then value of x is
(a) 60°
(b) 120°
(c) 40°
(d) Cannot be determined

Q7. Which of the following is not a criterion for congruence of triangles?
(a) SSA
(b) SAS
(c) ASA
(d) SSS

Q8. The angles of a quadrilateral are $x^{\circ},(x-10)^{\circ},(x+30)^{\circ}$ and $(2 x)^{\circ}$, the smallest angle is equal to
(a) 68°
(b) 52°
(c) 58°
(d) 47°

Q9. In the adjoining figure, $A B C D$ is a parallelogram. Then its area is equal to

(a) $9 \mathrm{~cm}^{2}$
(b) $12 \mathrm{~cm}^{2}$
(c) $15 \mathrm{~cm}^{2}$
(d) $36 \mathrm{~cm}^{2}$

Q10. In the given figure, E is any point in the interior of the circle with centre O. Chord $A B=A C$. If $\angle O B E=20^{\circ}$, the value of x is

(a) 40°
(b) 45°
(c) 50°
(d) 70°
(Q.11-Q.15) Fill in the blanks :

Q11. The construction of a $\triangle D E F$ in which $D E=7 \mathrm{~cm}, \angle D=75^{\circ}$ is possible when $(D E-E F)$ is equal to \qquad cm. [1]

Q12. The sides of a triangular field are $33 \mathrm{~m}, 44 \mathrm{~m}$ and 55 m . the cost of levelling the field at the rate of $₹ 1.20$ per m^{2} is ₹
\qquad

OR

If height of a triangle is doubled and base in tripled then its area become \qquad times.

Q13. The volume of a rectangular solid measuring 1 m by 50 cm by 0.5 m is \qquad cm^{3}.

Q14. The \qquad is the most frequently occurring observation.

Q15. Total number of results are called
(Q.16-Q.20) Answer the following :

Q16. Simplify : $\sqrt[5]{243 a^{10} b^{5} c^{10}}$

Q17. If $p(x)=x^{2}-2 \sqrt{2} x+1$, then find $p(2 \sqrt{2})$.

Find the remainder when $x^{3}-p x^{2}+6 x-p$ is divided by $x-p$.
Q18. 'Two intersecting lines cannot be parallel to the same lines' is stated in which form.

Q19. An isosceles right triangle has area $8 \mathrm{~cm}^{2}$. Find the length of its hypotenuse.

OR

The base of a right triangle is 8 cm and hypotenuse is 10 cm . What is its area?

Q20. Two coins are tossed simultaneously. List all possible outcomes.

SECTION B

Q21. If $x=\frac{\sqrt{7}+\sqrt{6}}{\sqrt{7}-\sqrt{6}}$, then find the value of $\left(x+\frac{1}{x}\right)^{2}$.
Q22. Find the value of k, for which the polynomial $x^{3}-3 x^{2}+3 x+k$ has 3 as its zero.

OR

Give the equations of two lines passing through $(2,14)$. How many more such lines are there, and why ?
Q23. In the figure, O is the origin and $O A B C$ is a square of side 2 units. Find the co-ordinates of A, B and C.

Q24. One of the three angles of a triangle is twice the smallest and another is three times the smallest. Find the angles.

Q25. In the given figure, if $l\|m, n\| p$ and $\angle 1=75^{\circ}$, then find $\angle 3$.

OR
The medians $B E$ and $C F$ of a $\triangle A B C$ intersect at G. Prove that $\operatorname{ar}(\triangle G B C)=\operatorname{ar}($ quad $A F G E)$.
Q26. A solid right circular cone of radius 4 cm and height 7 cm is melted to form a sphere. Find the radius of sphere.

OR

The sides of a triangle are in the ratio $3: 5: 7$ and its perimeter is 300 m . Find its area.

SECTION C

Q27. The points $A(a, b)$ and $B(b, 0)$ lie on the linear equation $y=8 x+3$.
(i) Find the value of a and b
(ii) Is $(2,0)$ a solution of $y=8 x+3$?
(iii) Find two solutions of $y=8 x+3$

OR

Draw graphs of $3 x+2 y=0$ and $2 x-3 y=0$ and what is the point of intersection of the two lines representing the above equation.

Q28. The sides of a triangular park are $8 \mathrm{~m}, 10 \mathrm{~m}$ and 6 m respectively. A small circular area of diameter 2 m is to be left out and the remaining area is to be used for growing roses. How much area is used for growing roses ? [Take $\pi=3.14$]

OR

The area of an isosceles triangle is $8 \sqrt{15} \mathrm{~cm}^{2}$. If the base is 8 cm , find the length of each of its equal sides.
Q29. Draw a $\triangle A B C$, in which $B C=4 \mathrm{~cm}, A B=5 \mathrm{~cm}$ and the median $B E=3.5 \mathrm{~cm}$.

Q30. Consider the marks, out of 100 , obtained by 51 students of a class in a test, given below.

Marks	Number of students
$0-10$	5
$10-20$	10
$20-30$	4
$30-40$	6
$40-50$	7
$50-60$	3
$60-70$	2
$70-80$	2
$80-90$	3
$90-100$	9
Total	51

Draw a histogram and frequency polygon for the above data on a same scale.
OR
For a particular year, following is the frequency distribution table of ages (in years) of primary school teachers in a district :

Age (in years)	Number of teachers
$15-20$	10
$20-25$	30
$25-30$	50
$30-35$	50
$35-40$	30
$40-45$	6
$45-50$	4

(i) Write the lower limit of the first class interval.
(ii) Determine the class limits of the fourth class interval.
(iii) Find the class mark of the class 45-50.

Q31. In the given figure, $\angle A D C=130^{\circ}$ and chord $B C=$ chord $B E$. Find $\angle C B E$.

Q32. In the given figure, parallelogram $A B C D$ and $P B C Q$ are given. If R is a point on $P B$, then show that $\operatorname{ar}(\Delta Q R C)$ $=\frac{1}{2} \operatorname{ar}(| | g m A B C D)$.

Q33. Prove that the mid point of the hypotenuse of a right angled triangle is equidistant from its vertices.

Q34. Prove that the sum of any two sides of a triangle is greater than the third side.

SECTION D

Q35. Simplify :
$\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\ldots+\frac{1}{\sqrt{8}+\sqrt{9}}$
Q36. Find the value of $x^{3}-8 y^{3}-36 x y-220$, when $x=2 y+6$.

OR

Which of the following points $A\left(0, \frac{17}{3}\right), B(2,6), C(1,5)$ and $D(5,1)$ lie on the linear equation $2(x+1)+3(y-2)=13$.
Q37. Factorise : $4 x^{4}+7 x^{2}-2$.

Q38. The sum of the height and radius of the base of a solid cylinder is 37 cm . If the total surface area of the cylinder is 1628 cm^{2}, then find its volume.

OR

Three cubes of metal whose edges are in the ratio 3:4:5 are melted down into a single cube whose diagonal is $12 \sqrt{3} \mathrm{~cm}$. Find the edges of the three cubes.

Q39. In the given figure, if $T U \| S R$ and $T R \| S V$, then find $\angle a$ and $\angle b$.

Q40. The percentage of salary donated by twelve different households to an orphanage every month are : 2, 5, 3, 5, 6, 1, 2, 4, 3, 5, 2, 2.
Find the mean, median and mode of the data.

