Sample Paper 2 Unsolved

CLASS IX (2019-20) MATHEMATICS (041) SAMPLE PAPER-02

Maximum Marks: 80

Time: 3 Hours

General Instructions :

- (i) All questions are compulsory.
- (ii) The questions paper consists of 40 questions divided into four sections A, B, C and D.
- (iii) Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 8 questions of 3 marks each. Section D comprises of 6 questions of 4 marks each.
- There is no overall choice. However, an internal choices have been provided in two questions of 1 mark each, two (iv) questions of 2 marks each, three questions of 3 marks each, and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
- (v) Use of calculators is not permitted.

SECTION A

Q.1-Q.10 are multiple choice questions. Select the most appropriate answer from the given options.

Q1.	Set of natural numbers is a subset of		[1]
	(a) Set of even numbers	(b) Set of odd numbers	
	(c) Set of composite numbers	(d) Set of real numbers	
Q2.	Degree of the polynomial $p(x) = (x+2)$	(x-2) is	[1]
	(a) 2	(b) 1	
	(c) 0	(d) 3	
Q3.	A point lies on negative side of x -axis. Its distance from origin is 10 units. The coordinates of the point are		[1]
	(a) $(10,0)$	(b) $(-10, 0)$	
	(c) $(0,10)$	(d) $(0, -10)$	
Q4.	If $(a, 1)$ lies on the graph of $3x - 2y + 4$	= 0, then $a =$	[1]
	(a) $\frac{-2}{3}$	(b) $\frac{2}{3}$	
	(c) $\frac{3}{2}$	(d) $\frac{-3}{2}$	
05.	If a point C lies between two point A an	d B such that $AC = BC$, then	[1]
C			[-]
	A C B		
	(a) $AC = AB$	(b) $AC = \frac{1}{2}AB$	
	(c) $AB = \frac{1}{2}AC$	(d) $AC = \frac{1}{3}AB$	
Q6.	If $l \parallel m$, then value of x is		[1]
	(a) 60°	(b) 120°	
	(c) 40°	(d) Cannot be determined	
Q7.	Which of the following is not a criterion for congruence of triangles?		[1]
	(a) SSA	(b) SAS	
	(c) ASA	(d) SSS	

https://www.evidyarthi.

Q8.	The angles of a quadrilateral are x° , $(x-10)^{\circ}$, $(x+30)^{\circ}$ and $(2x)^{\circ}$, the smallest angle is equal to		D [1]
	(a) 68°	(b) 52°	
	(c) 58°	(d) 47°	

Q9. In the adjoining figure, *ABCD* is a parallelogram. Then its area is equal to

Q10. In the given figure, E is any point in the interior of the circle with centre O. Chord AB = AC. If $\angle OBE = 20^{\circ}$, the value of x is [1]

(Q.11-Q.15) Fill in the blanks :

- Q11. The construction of a $\triangle DEF$ in which $DE = 7 \text{ cm}, \angle D = 75^{\circ}$ is possible when (DE EF) is equal to [1]

OR

If height of a triangle is doubled and base in tripled then its area become times.

- Q13. The volume of a rectangular solid measuring 1 m by 50 cm by 0.5 m is cm³. [1]
- Q14. The is the most frequently occurring observation.

Q15. Total number of results are called

(Q.16-Q.20) Answer the following :

Q16. Simplify :
$$\sqrt[5]{243a^{10}b^5c^{10}}$$

Q17. If $p(x) = x^2 - 2\sqrt{2}x + 1$, then find $p(2\sqrt{2})$. [1]

OR

Find the remainder when $x^3 - px^2 + 6x - p$ is divided by x - p.

Q18.	'Two intersecting lines cannot be parallel to the same lines' is stated in which form.	[1]
Q19.	An isosceles right triangle has area 8 cm^2 . Find the length of its hypotenuse.	[1]

OR

The base of a right triangle is 8 cm and hypotenuse is 10 cm. What is its area?

https://www.evidyarthi.in/

[1]

[1]

[1]

[1]

Q20. Two coins are tossed simultaneously. List all possible outcomes.

SECTION B

Q21. If
$$x = \frac{\sqrt{7} + \sqrt{6}}{\sqrt{7} - \sqrt{6}}$$
, then find the value of $\left(x + \frac{1}{x}\right)^2$. [2]

Q22. Find the value of k, for which the polynomial $x^3 - 3x^2 + 3x + k$ has 3 as its zero.

OR

Give the equations of two lines passing through (2, 14). How many more such lines are there, and why ?

Q23. In the figure, O is the origin and OABC is a square of side 2 units. Find the co-ordinates of A, B and C.

Q24. One of the three angles of a triangle is twice the smallest and another is three times the smallest. Find the angles. [2]

Q25. In the given figure, if $l \mid m, n \mid p$ and $\angle 1 = 75^{\circ}$, then find $\angle 3$.

OR

The medians BE and CF of a $\triangle ABC$ intersect at G. Prove that $ar(\triangle GBC) = ar(\text{quad } AFGE)$.

Q26. A solid right circular cone of radius 4 cm and height 7 cm is melted to form a sphere. Find the radius of sphere. [2]

OR

The sides of a triangle are in the ratio 3 : 5 : 7 and its perimeter is 300 m. Find its area.

SECTION C

Q27. The points A(a, b) and B(b, 0) lie on the linear equation y = 8x + 3.

- (i) Find the value of a and b
- (ii) Is (2, 0) a solution of y = 8x + 3?

(iii) Find two solutions of y = 8x + 3

OR

[3]

Draw graphs of 3x + 2y = 0 and 2x - 3y = 0 and what is the point of intersection of the two lines representing the above equation.

[2]

[2]

[2]

[1]

https://www.evidyarthi.in/

Q28. The sides of a triangular park are 8 m, 10 m and 6 m respectively. A small circular area of diameter 2 m is to be left out and the remaining area is to be used for growing roses. How much area is used for growing roses ? [Take $\pi = 3.14$] [3]

OR

The area of an isosceles triangle is $8\sqrt{15}$ cm². If the base is 8 cm, find the length of each of its equal sides.

- Q29. Draw a $\triangle ABC$, in which BC = 4 cm, AB = 5 cm and the median BE = 3.5 cm.
- Q30. Consider the marks, out of 100, obtained by 51 students of a class in a test, given below.

Marks	Number of students
0-10	5
10-20	10
20-30	4
30-40	6
40-50	7
50-60	3
60-70	2
70-80	2
80-90	3
90-100	9
Total	51

Draw a histogram and frequency polygon for the above data on a same scale.

OR

For a particular year, following is the frequency distribution table of ages (in years) of primary school teachers in a district :

Age (in years)	Number of teachers
15-20	10
20-25	30
25-30	50
30-35	50
35-40	30
40-45	6
45-50	4

(i) Write the lower limit of the first class interval.

(ii) Determine the class limits of the fourth class interval.

(iii) Find the class mark of the class 45-50.

Q31. In the given figure, $\angle ADC = 130^{\circ}$ and chord BC = chord BE. Find $\angle CBE$.

[3]

[3]

[3]

Q32. In the given figure, parallelogram *ABCD* and *PBCQ* are given. If *R* is a point on *PB*, then show that $ar(\Delta QRC) = \frac{1}{2}ar(||gm ABCD|)$. [3]

https://www.evidyarthi.in/

Q34. Prove that the sum of any two sides of a triangle is greater than the third side.

SECTION D

Q35. Simplify :

$$\frac{1}{1+\sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{4}} + \ldots + \frac{1}{\sqrt{8}+\sqrt{9}}$$

Q36. Find the value of $x^3 - 8y^3 - 36xy - 220$, when x = 2y + 6.

OR

Which of the following points $A(0,\frac{17}{3})$, B(2,6), C(1,5) and D(5,1) lie on the linear equation 2(x+1)+3(y-2)=13.

- Q37. Factorise : $4x^4 + 7x^2 2$.
- Q38. The sum of the height and radius of the base of a solid cylinder is 37 cm. If the total surface area of the cylinder is 1628 cm^2 , then find its volume. [4]

OR

Three cubes of metal whose edges are in the ratio 3 : 4 : 5 are melted down into a single cube whose diagonal is $12\sqrt{3}$ cm. Find the edges of the three cubes.

Q39. In the given figure, if TU || SR and TR || SV, then find $\angle a$ and $\angle b$.

Q40. The percentage of salary donated by twelve different households to an orphanage every month are : 2, 5, 3, 5, 6, 1, 2, 4, 3, 5, 2, 2.

Find the mean, median and mode of the data.

[4]

[3]

[4]

[4]

[4]

[4]

https://www.evidyarthi.in/