CLASS IX (2019-20)

MATHEMATICS (041)
SAMPLE PAPER-08
Time : 3 Hours
Maximum Marks : 80

General Instructions :

(i) All questions are compulsory.
(ii) The questions paper consists of 40 questions divided into four sections $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D .
(iii) Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 8 questions of 3 marks each. Section D comprises of 6 questions of 4 marks each.
(iv) There is no overall choice. However, an internal choices have been provided in two questions of 1 mark each, two questions of 2 marks each, three questions of 3 marks each, and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
(v) Use of calculators is not permitted.

SECTION A

Q.1-Q. 10 are multiple choice questions. Select the most appropriate answer from the given options.

Q1. Which of the following statement is not true?
(a) Between two integers, there exist infinite number of rational numbers.
(b) Between two rational numbers, there exist infinite number of integers
(c) Between two rational numbers, there exist infinite number of rational numbers.
(d) Between two real numbers, there exists infinite number of real numbers.

Q2. \quad Find the value of $x+y+z$ if $x^{2}+y^{2}+z^{2}=18$ and $x y+y z+z x=9$
(a) 9
(b) 3
(c) 6
(d) 8

Q3. Abscissa of $(2,3)$ is
(a) -2
(b) 3
(c) 2
(d) none of these

Q4. $8 y=9$ when written as an equation in two variables, is
(a) $x+8 y=9$
(b) $0 \cdot x+8 y+9=0$
(c) $0 \cdot x+8 y-9=0$
(d) $0 \cdot x+8 y=0$

Q5. In the given figure, if $A B=B C$ and $B X=B Y$, then

(a) $A X=C Y$
(b) $A C=X Y$
(c) $A Y=C X$
(d) none of these

Q6. Calculate the value of x.

(a) 270°
(b) 70°
(c) 15°
(d) 45°

Q7. In $\triangle A B C$, if $\angle C>\angle B$, then
(a) $B C>A C$
(b) $A B>A C$
(c) $A B<A C$
(d) $B C<A C$

Q8. In a parallelogram $A B C D, \angle A=115^{\circ}$. The measure of $\angle D$ is equal to
(a) 115°
(b) 65°
(c) 135°
(d) 165°

Q9. Area of an isosceles triangle, the measure of one of its equal side being 5 cm and the third side 4 cm is
(a) $2 \sqrt{21} \mathrm{~cm}^{2}$
(b) $21 \sqrt{2} \mathrm{~cm}^{2}$
(c) $22 \sqrt{3} \mathrm{~cm}^{2}$
(d) $23 \sqrt{3} \mathrm{~cm}^{2}$

Q10. In the given figure, O is the centre of the circle. For what values of x and y, chord $B C$ will pass through the centre of circle where points A, B and C are on the circle?

(a) $x=90^{\circ}, y=60^{\circ}$
(b) $x=75^{\circ}, y=30^{\circ}$
(c) $x=65^{\circ}, y=90^{\circ}$
(d) $x=90^{\circ}, y=65^{\circ}$
(Q.11-Q.15) Fill in the blanks :

Q11. If the lengths of two sides of an isosceles triangle are 4 cm and 10 cm , then the length of the third side is \qquad cm. [1]

Q12. An isosceles right-angled triangle has an area $8 \mathrm{~cm}^{2}$. The value of perimeter of triangle is \qquad cm.

OR

If height of a triangle is halved then its area will become \qquad of original area.

Q13. The solid bounded by two concentric spherical surfaces is called a \qquad

Q14. The \qquad is the difference between the greatest and the least value of the variate.

Q15. An . \qquad for an experiment is the collection of some outcomes of the experiment.

(Q.16-Q.20) Answer the following :

Q16. Find the zero of a polynomial $2 x+4$.

Q17. Are there any points which do not lie in any of the quadrants? If yes, where do they lie?

Q18. If a point C lies between two points A and B such that $A C=B C$, then prove that $A C=A B / 2$, explaining by drawing the figure.

Q19. If the sides of an equilateral triangle are tripled, then find its new area.

Q20. Give an example of data that you collect from your day-to-day life.

SECTION B

Q21. \quad Simplify : $\frac{6}{3 \sqrt{2}-2 \sqrt{3}}$.

OR

If $\frac{\sqrt{3}-1}{\sqrt{3}+1}=a+b \sqrt{3}$, find the value of a and b.
Q22. If one angle is equal to four times of its complement. Find the angle.

OR

In the given figure, if $\angle A O C=50^{\circ}$, then find $(\angle A O D+\angle C O B)$.

Q23. Express y in terms of x, given that $2 x-5 y=7$. Check whether the point $(-3,-2)$ is one the given line.

Q24. Find the coordinates of the point:
(i) Which lies on x and y axes both.
(ii) Whose abscissa is 2 and which lies on the x-axis.

Q25. $A B$ and $A C$ are two equal chords of a circle. Prove that the bisector of the $\angle B A C$ passes through the centre of the circle.

Q26. The areas of three adjacent faces of a cuboid are x, y and z. If its volume is V, then find its volume.

OR

The curved surface area of a right circular cylinder of height 14 cm is $88 \mathrm{~cm}^{2}$. Find the diameter of the base of the cylinder.

SECTION C

Q27. From the choices given below, choose the equation whose graph is shown in the figure.
(i) $x+y=2$
(ii) $x-y=2$
(iii) $2 x+2 y=6$

Draw the graph of $3 x-2 y=0$.
Q28. In the given figure, $A B \| C D$ and $E F$ is a transversal, which intersects them at G and H, respectively. If $\angle E G B=35^{\circ}$ and $Q P \perp E F$, then find $\angle P Q H$.

OR

OR

What value of x would make $A O B$ a line in figure, if $\angle A O C=4 x$ and $\angle B O C=6 x+30^{\circ}$?

Q29. In the given figure, $\triangle A B C$ is an isosceles triangle in which $A B=A C$ and $L M$ is parallel to $B C$. If $\angle A=50^{\circ}$, find $\angle L M C$.

Q30. Show that if two sides of a triangle are of lengths 5 cm and 1.5 cm , then the length of third side of the triangle cannot be 3.4 cm.

Q31. The sides $B A$ and $D C$ of a quadrilateral $A B C D$ are produced as shown in figure.

Prove that $a+b=x+y$.
Q32. Show that a median of a triangle divides it into two triangles of equal areas.

Q33. The sides of a triangle are $x, x+1,2 x-1$ and its area is $x \sqrt{10}$. Find the value of x.
OR
The diameters of two cones are equal. If their slant heights are in the ratio $5: 4$, then find the ratio of their curved surface areas.

Q34. Here is an extract from a mortality table.

Age (in years)	Number of persons surviving out of a sample of one million
60	16090
61	11490
62	8012
63	5448
64	3607
65	2320

(i) Based on this information, what is the probability of a person 'aged 60' of dying within a year ?
(ii) What is the probability that a person 'aged 61 ' will live for 4 years ?

SECTION D

Q35. Rationalise : $\frac{1}{\sqrt{7}+\sqrt{3}-\sqrt{2}}$.
Q36. Factorise : $x^{2}+\frac{1}{x^{2}}+2-2 x-\frac{2}{x}$.
Q37. A part of monthly expenses of a family on milk is fixed which is ₹ 500 and the remaining varies with the quantity of milk taken extra at the rate of ₹ 20 per litre. Taking the quantity of milk required extra x litre and the total expenditure on milk is ₹ y, write a linear equation for this information and draw its graph.

Q38. Construct $\triangle A B C$ in which $B C=6.8 \mathrm{~cm}, \angle B=45^{\circ}$ and $\angle C=45^{\circ}$. Construct angle bisector of $\angle B$ and $\angle C$ and let them intersect at point O. Measure $\angle B O C$.

Q39. The diameter of the Moon is approximately one-fourth of the diameter of the Earth. Find the ratio of their surface areas. [

OR

The total cost of making a spherical ball is ₹ 33,957 at the rate of $₹ 7$ per cubic metre. What will be the radius of this ball ?

Q40. A study on cost of living index for a particular year in a city, the following weekly observations were made.

Cost of living index (₹)	Number of weeks
$140-150$	5
$150-160$	10
$160-170$	20
$170-180$	9

$180-190$	6
$190-200$	2

Draw a histogram and a frequency polygon on the same scale.
OR
Following are the runs scored by two teams A and B in a 10 over match. Represent the data graphically on the same graph.

Over	Team A	Team B
1	2	5
2	1	6
3	8	2
4	9	10
5	4	5
6	5	6
7	6	3
8	10	4
9	6	8
10	2	10

