CLASS IX (2019-20)
 MATHEMATICS (041)
 SAMPLE PAPER-09

Time : 3 Hours
Maximum Marks : 80

General Instructions :

(i) All questions are compulsory.
(ii) The questions paper consists of 40 questions divided into four sections $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D .
(iii) Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 8 questions of 3 marks each. Section D comprises of 6 questions of 4 marks each.
(iv) There is no overall choice. However, an internal choices have been provided in two questions of 1 mark each, two questions of 2 marks each, three questions of 3 marks each, and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
(v) Use of calculators is not permitted.

SECTION A

Q.1-Q. 10 are multiple choice questions. Select the most appropriate answer from the given options.

Q1. Four rational numbers between 3 and 4 are:
(a) $\frac{3}{5}, \frac{4}{5}, 1, \frac{6}{5}$
(b) $\frac{13}{5}, \frac{14}{5}, \frac{16}{5}, \frac{17}{5}$
(c) $3.1,3.2,4.1,4.2$
(d) 3.1, 3.2, 3.8, 3.9

Q2. In the method of factorisation of an algebraic expression, which of the following statement is false?
(a) Taking out a common factor from two or more terms.
(b) Taking out a common factor from a group of terms.
(c) Using remainder theorem.
(d) Using standard identities.

Q3. If the coordinates of the point P are $(3,-5)$ then the perpendicular distance of P from the y-axis.
(a) 4
(b) 5
(c) 3
(d) 2

Q4. The graph of $y=6$ is a line
(a) parallel to x-axis at a distance 6 units from the origin
(b) parallel to y-axis at a distance 6 units from the origin
(c) making an intercept 6 on the x-axis
(d) making an intercept 6 on both the axes

Q5. For every line l and for every point P (not on l), there does not exist a unique line through P
(a) Which is not parallel to l.
(b) Which is perpendicular to l.
(c) Which is coincident with l.
(d) None of these

Q6. In figure, if $l\|m, m\| n$, then $x=$

(a) 130°
(b) 140°
(c) 120°
(d) 154°

Q7. In the given figure if $B E=C F$, then

(a) $\triangle A B E \cong \triangle A C F$
(b) $\triangle A B E \cong \triangle A F C$
(c) $\triangle A B E \cong \triangle C A F$
(d) $\triangle A E B \cong \triangle A F C$

Q8. The angles of a quadrilateral are in the ratio $1: 2: 3: 4$. The largest angle is
(a) 36°
(b) 72°
(c) 108°
(d) 144°

Q9. Which of the following figures lie on the same base and between the same parallels?
(a)

(b)

(c)

(d)

Q10. Diagonals of a cyclic quadrilateral are the diameters of that circle, then quadrilateral is a
(a) parallelogram
(b) square
(c) rectangle
(d) trapezium

(Q.11-Q.15) Fill in the blanks :

Q11. The construction of a triangle $A B C$, given that $B C=6 \mathrm{~cm}, \angle B=45^{\circ}$ is not possible when difference of $A B$ and $A C$ is equal to \qquad cm

Q12. If the perimeter of an equilateral triangle is 90 m , then its area is \qquad m^{2}.

OR

If base of a triangle is doubled then its area will be \qquad times of original area.

Q13. Volume of a cylinder is three times the volume of a \qquad on the same base and of the same height.

Q14. Width of the class-interval is called \qquad of class interval.

Q15. Probability is a measure of \qquad .
(Q.16-Q.20) Answer the following :

Q16. Find a rational number between -5 and -6 .

Q17. Find the zero of a polynomial $2 x+4$
Q18. Find the image of point $(-4,6)$ under origin.

Q19. One side of an equilateral triangle is 4 cm Find its area.
Q20. Is it correct to say that in a histogram, the area of each rectangle is proportional to the class size of the corresponding class interval? If not, correct the statement.

SECTION B

Q21. Find the value of $x, 2^{7 x} \div 2^{2 x}=\sqrt[5]{2^{15}}$.

If $x=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$, then find the value of x^{2}.
Q22. Write linear equation such that each point on its graph has ordinate 3 times its abscissa.
Q23. In which quadrant does the given point lie ?
(i) $A(4,-3)$
(ii) $B(-2,5)$
(iii) $C(-3,-2)$
(iv) $D(2,4)$

Q24. In the given figure, find the value of x.

Q25. In a $\triangle A B C$ if $A B=3 \mathrm{~cm}, A C=3 \mathrm{~cm}$ and $\angle A=50^{\circ}$, then find $\angle B$.

OR
In a triangle $A B C, \angle B=45^{\circ}, \angle C=55^{\circ}$ and bisector of $\angle A$ meets $B C$ at a point D. Find $\angle A D B$ and $\angle A D C$.

Q26. A cuboidal water tank is 8 m long, 6 m wide and 3 m deep. How many litres of water can it hold ?

OR

The circumference of the base of a cylindrical vessel is 132 cm and its height is 25 cm . How many litres of water can it hold ? $\left(1000 \mathrm{~cm}^{3}=1 l\right)$

SECTION C

Q27. If $x-y=5$ and $x y=84$, find the value of $x^{3}-y^{3}$.

OR

If $2 x+3 y=12$ and $x y=6$, find the value of $8 x^{3}+27 y^{3}$.
Q28. If a line is drawn parallel to base of isosceles triangle to intersect its equal sides, then prove that quadrilateral so formed is cyclic.

Q29. The perimeter of an isosceles triangle is 32 cm and its base is 12 cm . One of its equal sides forms the diagonal of a parallelogram. Find the area of a parallelogram.

OR

D and E are the mid-points of $B C$ and $A D$ respectively of $\triangle A B C$. If area of $\triangle A B C=20 \mathrm{~cm}^{2}$, find area of $\triangle E B D$.

Q30. In the given figure, $D E \| B C$ and $M F \| A B$. Find :
(i) $\angle A D E+\angle M E N$
(ii) $\angle B D E$
(iii) $\angle B L E$

Q31. In figure, $A B=C D$. Prove that $B E=D E$ and $A E=C E$, where E is the point of intersection of $A D$ and $B C$.

Q32. Construct a triangle $A B C$ in which $B C=7 \mathrm{~cm}, \angle B=75^{\circ}$ and $A B+A C=13 \mathrm{~cm}$.

Q33. The volume of a cylinder is $448 \pi \mathrm{~cm}^{3}$ and height is 7 cm . Find its lateral surface area and total surface area.

OR

The largest sphere is carved out of a cube of side 7 cm . Find the volume of the sphere.
Q34. Probability of getting a blue ball is $\frac{2}{3}$, from a bag containing 6 blue and 3 red balls. 12 red balls are being added in the bag, then find the probability of getting a blue ball.

SECTION D

Q35. If $\frac{\sqrt{7}-1}{\sqrt{7}+1}-\frac{\sqrt{7}+1}{\sqrt{7}-1}=a+b \sqrt{7}$, find the values of a and b.
Q36. Factorise :
$(a+b)^{3}-(b+c)^{3}+(c+a)^{3}+3(a+b)(b+c)(c+a)$

OR

If $a+b+c=0$, then prove that $\frac{(b+c)^{2}}{3 b c}+\frac{(c+a)^{2}}{3 a c}+\frac{(a+b)^{2}}{3 a b}=1$
Q37. The cost of a shirt of a particular brand is ₹ 1000 . Write a linear equation, when the cost of x shirts is $₹ y$. Draw the graph of this equation and find the cost of 12 such shirts from the graph.

Q38. Construct a triangle $A B C$ in which $B C=5.8 \mathrm{~cm}, \angle B=45^{\circ}$ and $\angle C=60^{\circ}$. Construct angle bisectors of $\angle B$ and $\angle C$ and intersect them at point O. Measure $\angle B O C$.

Q39. The outer diameter of a spherical shell is 10 cm and the inner diameter is 9 cm . Find the volume of the metal contained in the shell. (Use $\pi=\frac{22}{7}$)

Q40. The runs scored by two teams A and B on the first 60 balls in a cricket match are given below :

Number of balls	Team A	Team B
$1-6$	2	5
$7-12$	1	6
$13-18$	8	2
$19-24$	9	10
$25-30$	4	5
$31-36$	5	6
$37-42$	6	3
$43-48$	10	4
$49-54$	6	8
$55-60$	2	10

Represent the data of both the teams on the same graph by frequency polygons.

OR

Draw a histogram and frequency polygon on the same graph for the following data.

Class interval	Frequency
$150-200$	5
$200-250$	3
$250-300$	5
$300-350$	6
$350-400$	8
$400-450$	7
$450-500$	1

