CLASS IX (2019-20)

MATHEMATICS (041)

SAMPLE PAPER-09

Time: 3 Hours Maximum Marks: 80

General Instructions:

- (i) All questions are compulsory.
- (ii) The questions paper consists of 40 questions divided into four sections A, B, C and D.
- (iii) Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 8 questions of 3 marks each. Section D comprises of 6 questions of 4 marks each.
- (iv) There is no overall choice. However, an internal choices have been provided in two questions of 1 mark each, two questions of 2 marks each, three questions of 3 marks each, and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
- (v) Use of calculators is not permitted.

SECTION A

Q.1-Q.10 are multiple choice questions. Select the most appropriate answer from the given options.

Q1. Four rational numbers between 3 and 4 are:

[1]

(a)
$$\frac{3}{5}, \frac{4}{5}, 1, \frac{6}{5}$$

(b)
$$\frac{13}{5}$$
, $\frac{14}{5}$, $\frac{16}{5}$, $\frac{17}{5}$

Q2. In the method of factorisation of an algebraic expression, which of the following statement is false?

[1]

- (a) Taking out a common factor from two or more terms.
- (b) Taking out a common factor from a group of terms.
- (c) Using remainder theorem.
- (d) Using standard identities.

Q3. If the coordinates of the point P are (3, -5) then the perpendicular distance of P from the y-axis.

[1]

(a) 4

(b) 5

(c) 3

(d) 2

Q4. The graph of y = 6 is a line

[1]

- (a) parallel to x-axis at a distance 6 units from the origin
- (b) parallel to y-axis at a distance 6 units from the origin
- (c) making an intercept 6 on the x-axis
- (d) making an intercept 6 on both the axes

Q5. For every line l and for every point P (not on l), there does not exist a unique line through P

[1]

- (a) Which is not parallel to l.
- (b) Which is perpendicular to l.
- (c) Which is coincident with l.
- (d) None of these

Q6. In figure, if $l \parallel m$, $m \parallel n$, then x =

[1]

(a) 130°

(b) 140°

(c) 120°

(d) 154°

In the given figure if BE = CF, then Q7.

- (a) $\triangle ABE \cong \triangle ACF$
- (b) $\triangle ABE \cong \triangle AFC$
- (c) $\triangle ABE \cong \triangle CAF$
- (d) $\triangle AEB \cong \triangle AFC$
- Q8. The angles of a quadrilateral are in the ratio 1:2:3:4. The largest angle is

[1]

[1]

(a) 36° (c) 108°

- (b) 72° (d) 144°
- Q9. Which of the following figures lie on the same base and between the same parallels?

- Q10. Diagonals of a cyclic quadrilateral are the diameters of that circle, then quadrilateral is a [1]
 - (a) parallelogram

(b) square

(c) rectangle

(d) trapezium

(Q.11-Q.15) Fill in the blanks:

Q11. The construction of a triangle ABC, given that BC = 6 cm, $\angle B = 45^{\circ}$ is not possible when difference of AB and ACis equal to cm [1]

ΩR

If base of a triangle is doubled then its area will be times of original area.

- Q13. Volume of a cylinder is three times the volume of a on the same base and of the same height. [1]
- Q14. Width of the class-interval is called of class interval.
- Q15. Probability is a measure of

(Q.16-Q.20) Answer the following:

- Q16. Find a rational number between -5 and -6.
- Q17. Find the zero of a polynomial 2x + 4
- Q18. Find the image of point (-4,6) under origin. [1]
- Q19. One side of an equilateral triangle is 4 cm Find its area. [1]
- Q20. Is it correct to say that in a histogram, the area of each rectangle is proportional to the class size of the corresponding class interval? If not, correct the statement.

SECTION B

Q21. Find the value of x, $2^{7x} \div 2^{2x} = \sqrt[5]{2^{15}}$. [2]

OR

If $x = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}$, then find the value of x^2 .

- Q22. Write linear equation such that each point on its graph has ordinate 3 times its abscissa. [2]
- Q23. In which quadrant does the given point lie?
 - (i) A(4,-3)
 - (ii) B(-2,5)
 - (iii) C(-3, -2)
 - (iv) D(2,4)
- Q24. In the given figure, find the value of x. [2]

Q25. In a $\triangle ABC$ if AB = 3 cm, AC = 3 cm and $\angle A = 50^{\circ}$, then find $\angle B$.

[1]

OR

In a triangle ABC, $\angle B = 45^{\circ}$, $\angle C = 55^{\circ}$ and bisector of $\angle A$ meets BC at a point D. Find $\angle ADB$ and $\angle ADC$.

Q26. A cuboidal water tank is 8 m long, 6 m wide and 3 m deep. How many litres of water can it hold?

[2]

ΩR

The circumference of the base of a cylindrical vessel is 132 cm and its height is 25 cm. How many litres of water can it hold ? $(1000 \text{ cm}^3 = 1 l)$

SECTION C

Q27. If x - y = 5 and xy = 84, find the value of $x^3 - y^3$.

[3]

OR

If 2x + 3y = 12 and xy = 6, find the value of $8x^3 + 27y^3$.

- Q28. If a line is drawn parallel to base of isosceles triangle to intersect its equal sides, then prove that quadrilateral so formed is cyclic.
- Q29. The perimeter of an isosceles triangle is 32 cm and its base is 12 cm. One of its equal sides forms the diagonal of a parallelogram. [3]

OR

D and E are the mid-points of BC and AD respectively of $\triangle ABC$. If area of $\triangle ABC = 20 \text{ cm}^2$, find area of $\triangle EBD$.

Q30. In the given figure, $DE \mid\mid BC$ and $MF \mid\mid AB$. Find:

[3]

- (i) $\angle ADE + \angle MEN$
- (ii) ∠*BDE*
- (iii) $\angle BLE$

Q31. In figure, AB = CD. Prove that BE = DE and AE = CE, where E is the point of intersection of AD and BC. [3]

- Q32. Construct a triangle ABC in which BC = 7 cm, $\angle B = 75^{\circ}$ and AB + AC = 13 cm.
- Q33. The volume of a cylinder is 448π cm³ and height is 7 cm. Find its lateral surface area and total surface area. [3]

OR

The largest sphere is carved out of a cube of side 7 cm. Find the volume of the sphere.

Q34. Probability of getting a blue ball is $\frac{2}{3}$, from a bag containing 6 blue and 3 red balls. 12 red balls are being added in the bag, then find the probability of getting a blue ball. [3]

SECTION D

Q35. If
$$\frac{\sqrt{7}-1}{\sqrt{7}+1} - \frac{\sqrt{7}+1}{\sqrt{7}-1} = a + b\sqrt{7}$$
, find the values of a and b . [4]

$$(a+b)^3 - (b+c)^3 + (c+a)^3 + 3(a+b)(b+c)(c+a)$$

OR

If
$$a+b+c=0$$
, then prove that $\frac{(b+c)^2}{3bc}+\frac{(c+a)^2}{3ac}+\frac{(a+b)^2}{3ab}=1$

- Q37. The cost of a shirt of a particular brand is $\mathbf{\xi}$ 1000. Write a linear equation, when the cost of x shirts is $\mathbf{\xi}$ y. Draw the graph of this equation and find the cost of 12 such shirts from the graph.
- Q38. Construct a triangle ABC in which BC = 5.8 cm, $\angle B = 45^{\circ}$ and $\angle C = 60^{\circ}$. Construct angle bisectors of $\angle B$ and $\angle C$ and intersect them at point O. Measure $\angle BOC$.
- Q39. The outer diameter of a spherical shell is 10 cm and the inner diameter is 9 cm. Find the volume of the metal contained in the shell. (Use $\pi = \frac{22}{7}$)
- Q40. The runs scored by two teams A and B on the first 60 balls in a cricket match are given below: [4]

Number of balls	Team A	Team B
1 - 6	2	5
7 - 12	1	6
13 - 18	8	2
19 - 24	9	10
25 - 30	4	5
31 - 36	5	6
37 - 42	6	3
43 - 48	10	4
49 - 54	6	8
55 - 60	2	10

Represent the data of both the teams on the same graph by frequency polygons.

OR

Draw a histogram and frequency polygon on the same graph for the following data.

Class interval	Frequency
150 - 200	5
200 - 250	3
250 - 300	5
300 - 350	6
350 - 400	8
400 - 450	7
450 - 500	1

[3]