Applied Mathematics

Term - II

Code-241

Section – A 1 Given, $MR = 9 + 2x - 6x^2$ $TR = \int (9 + 2x - 6x^2) dx$ $TR = 9x + x^2 - 2x^3 + k$ When $x = 0$, $TR = 0$, so $k = 0$ $TR = 9x + x^2 - 2x^3$ $\Rightarrow px = 9x + x^2 - 2x^3$ $\Rightarrow p = 9 + x - 2x^2$ which is the demand function OR $TC = \int (50 + \frac{300}{x+1}) dx$ $TC = 50x + 300 \log x + 1 + k$ If $x = 0$, $TC = ₹2000$ So $2000 = 300(\log 1) + k \Rightarrow k = 2000$ So $2000 = 300(\log 1) + k \Rightarrow k = 2000$ So $2000 = 300(\log 1) + k \Rightarrow k = 2000$ So $2000 = 300 \log (x + 1) + 2000$ 2 $R = ₹600$ $i = \frac{0.08}{4} = 0.02$ Present value of perpetuity = $P = \frac{R}{i}$ $\Rightarrow P = \frac{600}{0.02} = ₹30,000$ 3 $r_{eff} = (1 + \frac{r}{m})^m - 1$ $= (1 + \frac{0.08}{4})^4 - 1$ $= (1.02)^4 - 1 = 0.0824$ or 8.24% So effective rate is 8.24% compounded annually. OR Present value of ordinary annuity $= R \left(\frac{1 - (1 + r)^{-n}}{r}\right)$ $= 1000 \left(\frac{1 - (1 + r)^{-n}}{0.06}\right)$								
1 Given, $MR = 9 + 2x - 6x^2$ $TR = \int (9 + 2x - 6x^2) dx$ $TR = 9x + x^2 - 2x^3 + k$ When $x = 0$, $TR = 0$, so $k = 0$ $TR = 9x + x^2 - 2x^3$ $\Rightarrow px = 9x + x^2 - 2x^3$ $\Rightarrow p = 9 + x - 2x^2$ which is the demand function OR $TC = \int (50 + \frac{300}{x+1}) dx$ $TC = 50x + 300 \log x + 1 + k$ If $x = 0, TC = ₹2000$ So $2000 = 300(\log 1) + k \Rightarrow k = 2000$ So $TC = 50x + 300 \log (x + 1) + 2000$ 2 $R = ₹600$ $i = \frac{0.08}{4} = 0.02$ Present value of perpetuity $= P = \frac{R}{i}$ $\Rightarrow P = \frac{600}{0.02} = ₹30,000$ 3 $r_{eff} = \left(1 + \frac{r}{m}\right)^m - 1$ $= \left(1 + \frac{0.08}{4}\right)^4 - 1$ $= (1.02)^4 - 1 = 0.0824$ or 8.24% So effective rate is 8.24% compounded annually. OR Present value of ordinary annuity $= R\left(\frac{1 - (1 + r)^{-n}}{r}\right)$ $= 1000\left(\frac{1 - (0.06^{-5})}{0.06}\right)$	larks	Hints/Solutions	Q.N.					
$TR = \int (9 + 2x - 6x^{2}) dx$ $TR = 9x + x^{2} - 2x^{3} + k$ When $x = 0, TR = 0, \text{ so } k = 0$ $TR = 9x + x^{2} - 2x^{3}$ $\Rightarrow px = 9x + x^{2} - 2x^{3}$ $\Rightarrow p = 9 + x - 2x^{2} \text{ which is the demand function}$ OR $TC = \int (50 + \frac{300}{x + 1}) dx$ $TC = 50x + 300 \log x + 1 + k$ If $x = 0, TC = \overline{3}2000$ So $2000 = 300(\log 1) + k \Rightarrow k = 2000$ So $TC = 50x + 300 \log x + 1 + 2000$ 2 $R = \overline{3}600$ $i = \frac{0.08}{4} = 0.02$ Present value of perpetuity = $P = \frac{R}{i}$ $\Rightarrow P = \frac{600}{0.02} = \overline{3}30,000$ 3 $r_{eff} = \left(1 + \frac{r}{m}\right)^{m} - 1$ $= \left(1 + \frac{0.08}{4}\right)^{4} - 1$ $= (1.02)^{4} - 1 = 0.0824 or 8.24\%$ So effective rate is 8.24% compounded annually. OR Present value of ordinary annuity $= R\left(\frac{1-(1+r)^{-n}}{r}\right)$ $= 1000\left(\frac{1-(1.06)^{-5}}{0.06}\right)$	Section – A							
$TC = \int (50 + \frac{300}{x+1}) dx$ $TC = 50x + 300 \log x + 1 + k$ If $x = 0, TC = ₹2000$ So $2000 = 300(\log 1) + k \Rightarrow k = 2000$ So $TC = 50x + 300 \log(x + 1) + 2000$ $R = ₹600$ $i = \frac{0.08}{4} = 0.02$ Present value of perpetuity = $P = \frac{R}{i}$ $\Rightarrow P = \frac{600}{0.02} = ₹30,000$ $r_{eff} = \left(1 + \frac{r}{m}\right)^m - 1$ $= \left(1 + \frac{0.08}{4}\right)^4 - 1$ $= (1.02)^4 - 1 = 0.0824$ or 8.24% So effective rate is 8.24% compounded annually. OR Present value of ordinary annuity $= R\left(\frac{1 - (1+r)^{-n}}{r}\right)$ $= 1000\left(\frac{1 - (1.06)^{-5}}{0.06}\right)$	1	$TR = \int (9 + 2x - 6x^2) dx$ $TR = 9x + x^2 - 2x^3 + k$ When $x = 0$, $TR = 0$, so $k = 0$ $TR = 9x + x^2 - 2x^3$ $\Rightarrow \qquad px = 9x + x^2 - 2x^3$	1					
$TC = \int (50 + \frac{300}{x+1}) dx$ $TC = 50x + 300 \log x + 1 + k$ If $x = 0, TC = ₹2000$ So $2000 = 300(\log 1) + k \Rightarrow k = 2000$ So $TC = 50x + 300 \log(x + 1) + 2000$ $R = ₹600$ $i = \frac{0.08}{4} = 0.02$ Present value of perpetuity = $P = \frac{R}{i}$ $\Rightarrow P = \frac{600}{0.02} = ₹30,000$ $r_{eff} = \left(1 + \frac{r}{m}\right)^m - 1$ $= \left(1 + \frac{0.08}{4}\right)^4 - 1$ $= (1.02)^4 - 1 = 0.0824$ or 8.24% So effective rate is 8.24% compounded annually. OR Present value of ordinary annuity $= R\left(\frac{1 - (1+r)^{-n}}{r}\right)$ $= 1000\left(\frac{1 - (1.06)^{-5}}{0.06}\right)$		OP						
So $TC = 50x + 300 \log(x + 1) + 2000$ $2 R = ₹600$ $i = \frac{0.08}{4} = 0.02$ Present value of perpetuity = $P = \frac{R}{i}$ $\Rightarrow P = \frac{600}{0.02} = ₹30,000$ $3 r_{eff} = \left(1 + \frac{r}{m}\right)^m - 1$ $= \left(1 + \frac{0.08}{4}\right)^4 - 1$ $= (1.02)^4 - 1 = 0.0824$ or 8.24% So effective rate is 8.24% compounded annually. OR Present value of ordinary annuity $= R\left(\frac{1 - (1+r)^{-n}}{r}\right)$ $= 1000\left(\frac{1 - (1.06)^{-5}}{0.06}\right)$	1	$TC = \int (50 + \frac{300}{x+1}) dx$ $TC = 50x + 300 \log x+1 + k$ If x = 0, TC = ₹2000						
$i = \frac{0.08}{4} = 0.02$ Present value of perpetuity = $P = \frac{R}{i}$ $\Rightarrow P = \frac{600}{0.02} = ₹30,000$ 3 $r_{eff} = \left(1 + \frac{r}{m}\right)^m - 1$ $= \left(1 + \frac{0.08}{4}\right)^4 - 1$ $= (1.02)^4 - 1 = 0.0824 or 8.24\%$ So effective rate is 8.24% compounded annually. OR Present value of ordinary annuity $= R\left(\frac{1-(1+r)^{-n}}{r}\right)$ $= 1000\left(\frac{1-(1.06)^{-5}}{0.06}\right)$	1	So $TC = 50x + 300 \log(x + 1) + 2000$						
$\Rightarrow P = \frac{600}{0.02} = ₹30,000$ $3 r_{eff} = \left(1 + \frac{r}{m}\right)^m - 1$ $= \left(1 + \frac{0.08}{4}\right)^4 - 1$ $= (1.02)^4 - 1 = 0.0824 or 8.24\%$ So effective rate is 8.24% compounded annually. OR Present value of ordinary annuity $= R \left(\frac{1 - (1 + r)^{-n}}{r}\right)$ $= 1000 \left(\frac{1 - (1.06)^{-5}}{0.06}\right)$	1		2					
$\begin{array}{c c} 3 \\ \hline 3 \\ r_{eff} = \left(1 + \frac{r}{m}\right)^{m} - 1 \\ = \left(1 + \frac{0.08}{4}\right)^{4} - 1 \\ = (1.02)^{4} - 1 = 0.0824 or 8.24\% \\ \text{So effective rate is } 8.24\% \text{ compounded annually.} \\ \hline \mathbf{OR} \\ \text{Present value of ordinary annuity} \\ = R\left(\frac{1 - (1 + r)^{-n}}{r}\right) \\ = 1000\left(\frac{1 - (1.06)^{-5}}{0.06}\right) \end{array}$		Present value of perpetuity = $P = \frac{R}{i}$						
$= \left(1 + \frac{0.08}{4}\right)^4 - 1$ = $(1.02)^4 - 1 = 0.0824$ or 8.24% So effective rate is 8.24% compounded annually. OR Present value of ordinary annuity = $R\left(\frac{1-(1+r)^{-n}}{r}\right)$ = $1000\left(\frac{1-(1.06)^{-5}}{0.06}\right)$	1	0.02						
So effective rate is 8.24% compounded annually. OR Present value of ordinary annuity $= R \left(\frac{1 - (1 + r)^{-n}}{r} \right)$ $= 1000 \left(\frac{1 - (1.06)^{-5}}{0.06} \right)$	1	$r_{eff} = \left(1 + \frac{r}{m}\right)^m - 1$ $= \left(1 + \frac{0.08}{4}\right)^4 - 1$	3					
Present value of ordinary annuity $= R \left(\frac{1 - (1 + r)^{-n}}{r} \right)$ $= 1000 \left(\frac{1 - (1.06)^{-5}}{0.06} \right)$	1	So effective rate is 8.24% compounded annually.						
	1	Present value of ordinary annuity						
	1	$= 1000 \left(\frac{1 - (1.06)^{-5}}{0.06}\right)$ = 1000 $\left(\frac{1 - 0.7473}{0.06}\right) = $ ₹4211.67						
$4 \qquad \mathbf{E}\left(\bar{X}\right) = 60kg$	1	$\boldsymbol{E}\left(\bar{X}\right) = 60kg$	4					

	Standa		ation of $\overline{X} = SE($	$\int \int \frac{1}{\sqrt{n}} = \int \frac{1}{6} = 1.5 \text{ kg}$	1
5	Year	Y	3 yearly	3 yearly moving average(Trend)	1M for
		~ -	moving total	(in ₹ lakh)	3-yearly
	2016	25			moving
	2017	30	87	29	totals
	2018	32	102	34	1M for
	2019	40	117	39	3-yearly
	2020	45	135	45	moving
	2021	50			average
6	Y (0,6) R				
	P(2	Q (3	$\begin{array}{c} & \overset{\mathbf{x}}{\longrightarrow} \\ \hline & & \\ \hline \\ \hline$		
	P(2	Cor F	$\begin{array}{c} & & \\ & & \\ \hline \\ \hline$	Z=3x+2y 10 9	1
	unboun half pla	Cor F Con nallest ided, w ne has s not t	ner Point P (2, 2) Q (3, 0) value of Z is ve draw the graphered by points common he minimum value	9. Since the feasible region is n of $3x + 2y < 9$. The resulting open with feasible region, therefore ue of Z. Hence the optimal solution	1
	unboun half pla Z = 9 i does no	Cor F Con nallest ided, w ne has s not t ot exist	ner Point P (2, 2) Q (3, 0) value of Z is ve draw the graph s points common he minimum valu	9. Since the feasible region is of $3x + 2y < 9$. The resulting open with feasible region, therefore ue of Z. Hence the optimal solution Section –B	
7	unboun half pla Z = 9 i does no Substitu W	Cor F Con nallest ided, w ne has s not t ot exist ot exist uting, <i>p</i> e get <i>x</i>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9. Since the feasible region is of $3x + 2y < 9$. The resulting open with feasible region, therefore ue of Z. Hence the optimal solution Section –B	
7	unboun half pla Z = 9 i does no Substitu W	Cor F Contract of the second	ner Point p(2, 2) Q(3, 0) value of Z is ye draw the graph is points common he minimum value $p_0 = ₹48$ in $p = x$	9. Since the feasible region is nof $3x + 2y < 9$. The resulting open with feasible region, therefore ue of Z. Hence the optimal solution Section -B $x^2 + 4x + 3$	1

8								
	Year	Quarters	Y	4-Quarterly Moving Total	average	terly Moving e (Centered) i ₹crore)	$1\frac{1}{2}$ for 4 quarterly	
	2018	Q_1 Q_2	12 14	64			moving totals	
	2010	$egin{array}{c} Q_3 \ Q_4 \ Q_1 \end{array}$	18 20 18	70 72		16.75 17.75 18.25		
	2019	$\begin{array}{c} Q_1 \\ Q_2 \\ Q_3 \\ Q_4 \end{array}$	16 20 22	74 76 85	2	18.75 0.125 22.25	$1\frac{1}{2}$ for 4	
	2020	$\begin{array}{c} Q_4 \\ Q_1 \\ Q_2 \\ Q_3 \\ Q_4 \end{array}$	27 24 30 36	93 103 117		24.50 27.5 	Quarterly moving average (Centered)	
	The tre average	end value		given by 4 quai <i>OR</i>	rterly cer		Þ	
	Yea	ir Y	7	$\frac{X}{X} = Year - 2017$	X ²	XY		
	201	4 2	6	-3	9	-78		
	201	5 2	6	-2	4	-52		
	201			-1	1	-44		
	201			0	0	0		
	201			1	1	108		
	201 202			2 3	4	240 498	1	
	Σ	Y = 532		Σ	$X^2 = 28$	$\sum_{n=672} XY$		
		$\frac{532}{7} = \frac{532}{7} = 76$ + bX, Y _c =		$b = \frac{\sum XY}{\sum X^2} = \frac{672}{28}$ 24X	$\frac{2}{2} = 24$		1	
				r 2023 = 76 + 24 ×	:6 =₹22	0 lacs	1	
			<u> </u>					
9	H_0	Null hypoth : $\mu = 0.50 \eta$ $\mu \neq 0.50 \eta$	nm	H_0 and alternate h	ypothesis	s H_1 as follows:	1	

			_
	Thus a two-tailed test is applied under hypothesis H_0 , we have $t = \frac{\bar{x} - \mu}{2} \sqrt{m-1} = \frac{0.53 - 0.50}{2} \times 2 = 2$	1	
	$t = \frac{X-\mu}{S}\sqrt{n-1} = \frac{0.53-0.50}{0.03} \times 3 = 3$ Since the calculated value of $t = 3$ does not lie in the internal	-	
	$-t_{0.025}$ to $t_{0.025}$ i.e., -2.262 to 2.262 for 10-1= 9 degree of freedom		
	So we Reject H_0 at 0.05 level. Hence we conclude that machine	1	
10	is not working properly.		
	We know		
	CAGR= $\left[\left(\frac{FV}{IV}\right)^{\frac{1}{n}} - 1\right] \times 100$, where, IV= Initial value of investment		
	FV=Final value of investment	1	
		N	
	$\Rightarrow 8.88 = \left[\left(\frac{25000}{15000} \right)^{\frac{1}{n}} - 1 \right] \times 100 \Rightarrow 0.0888 = \left(\frac{5}{3} \right)^{\frac{1}{n}} - 1$		
		1	
	$\Rightarrow 1.089 = (1.667)^{\frac{1}{n}}$		
	$\Rightarrow \frac{1}{n} \log(1.667) = \log(1.089) \Rightarrow n(0.037) = 0.2219$ $\Rightarrow n = 5.99 \approx 6 \text{ years}$	1	
	$\rightarrow n = 5.99 \approx 6$ years		
	Section –C		
11	Let the company produces x and y gallons of alkaline solution and		
	base oil respectively, also let C be the production cost. Min $C = 200x + 200y$		
	Min $C = 200x + 300y$ subject to constraints:		
	$x + y \ge 3500 \dots (1)$		
	$x \ge 1250$ (2)	$1\frac{1}{2}$	
	$2x + y \le 6000\dots(3)$	2	
	$x, y \geq 0$		
	Y _↑ ③ ②		
	6000		
	3500 0 7 4 9		
	L L	_ 1	
	$P \rightarrow R$	$1\frac{1}{2}$	
	$0 \rightarrow X$		
	1250 3000 3500		
	Corner Points $C = 200x + 300y$ P(1250, 2250) $\neq 0.25, 000$		
	P(1250, 2250) ₹9,25,000]

	O(1250, 2500) ₹12,00,000		
	Q(1250, 3500) ₹13,00,000 R(2500, 1000) ₹8,00,000		
	R(2500, 1000) ₹8,00,000 Minimum cost is 8,00,000 when 2500 gallons of alkaline solutions		
	& 1000 gallons of base oil are manufactured.	1	
	a 1000 galions of base of are manufactured.	I	
12	The amount of sinking fund S at any time is given by		
	$S = R \left[\frac{(1+i)^n - 1}{i} \right]$	1	
	Where $R = Periodic payment$, $i = Interest per period$, n = number of payments		
	S = Cost of machine - Salvage value		
	= 50,000-5000 = ₹45,000		
	$i = \frac{8\%}{4} = 0.02$		
		1	
	$\implies 45000 = R \left[\frac{(1+.02)^{40} - 1}{0.02} \right]$	$1\frac{1}{2}$	
	$\Rightarrow 45000 = R \left[\frac{2.208 - 1}{0.02} \right]$	2	
	\Rightarrow R = $\frac{900}{1.208}$ \Rightarrow R = ₹745.03	1	
		$1\frac{1}{2}$	
13.	Amortized Amount i.e., P= Cost of house-Cash down payment		
	P= 15,00,000 – 4,00,000 = ₹11,00,000		
	$i = \frac{0.09}{12} = 0.0075$		
	$n = 10 \times 12 = 120$	1	
	$EMI = R = \frac{P}{a_{n-i}},$	4	
	$R = \frac{P \times i}{1 - (1 + i)^{-n}}$	1	
	$=\frac{11,00,000\times0.0075}{1-(1.0075)^{-120}} = \frac{8250}{1-0.4079}$	1	
	$-1-(1.0075)^{-120}$ $-1-0.4079$	I	
	$= \frac{8250}{0.5921} = \text{₹13933.5}$		
	Total interest paid $= nR - R = 13933.5 \times 120 - 11,00,000$	1	
	=₹5,72,020	•	
	OR		
	Face value of bond, F = ₹2000		
	Redemption value C = 1.05 × 2000 = ₹2100		
	Nominal rate =8%	1 1	
	$R = C \times i_d = 2000 \times 0.08 = 160$	$1\frac{1}{2}$	
	Number of periods before redemption i.e., $n = 10$		
	Annual yield rate, $i = 10\%$ or 0.1	1	
	Purchase price $V = R \left[\frac{1 - (1+i)^{-n}}{i} \right] + C(1+i)^{-n}$	$1\frac{1}{2}$	
	$= 160 \left[\frac{1 - (1 + 0.1)^{-10}}{0.1} \right] + 2100(1 + 0.1)^{-10}$	2	
	$= 160 \times 6.14 + 2100 \times 0.3855$		
	= 982.4 + 809.6 = 1792		

	Thus present value of the bond is ₹1792.	1
14	Case Study	
/	$\because \frac{dx}{dt} \propto x, \therefore \frac{dx}{dt} = -kx$	
	$\Rightarrow \int \frac{dx}{x} = \int -k dt \Rightarrow \log x = -kt + c$	1
	$\Rightarrow x \stackrel{\sim}{=} e^{-kt+C} \Rightarrow x = \lambda e^{-kt}$	
	Let $x = x_0$ at $t = 0$	
	$\therefore x_0 = \lambda \implies x = x_0 e^{-kt} \text{ where } x_0 = \text{original quantity}$	1
b)	$x = x_0 e^{-kt} \dots (1)$	
5)	Now, $\frac{x_0}{2} = x_0 e^{-5k}$ (: half life = 5 hours)	
	$\Rightarrow e^{-5k} = \frac{1}{2} \Rightarrow e^k = 2^{\frac{1}{5}}$	1
	The quantity of propofol needed in a 50 Kg adult at the end of	
	2 hours = 50 × 3 = 150 mg ⇒ 150 = $x_0 e^{-2k}$ [using (1)] ⇒ $x_0 = 150 e^{2k}$ ⇒ $x_0 = 150 (e^k)^2$	
	$\Rightarrow x_0 = 150(2^{\frac{1}{5}})^2 = 150 \times 1.3195 = 197.93 \text{ mg}$	1