


Marking Scheme Mathematics –Basic(241) Class- X Session- 2021-22 TERM II

	Class- X Session- 2021-22	
	TERM II	
Q.N.	HINTS/SOLUTION	Marks
<u>Q.N.</u> 1	$3x^2 - 7x - 6 = 0$	
	$\Rightarrow 3x^2 - 9x + 2x - 6 = 0$	1/2
	$\Rightarrow 3x(x-3) + 2(x-3) = 0$	
	$\Rightarrow (x-3)(3x+2) = 0$	1/2
	$\therefore x = 3, -\frac{2}{3}$	1
	OR	
	Since the roots are real and equal, $\therefore D = b^2 - 4ac = 0$	
	$\Rightarrow k^2 - 4 \times 3 \times 3 = 0 (\because a = 3, b = k, c = 3)$	1
	\Rightarrow k ² = 36	
	\Rightarrow k = 6 or -6	1/2 +1/2
2	Let l be the side of the cube and L, B, H be the dimensions of the cuboid	4.12
	Since $l^3 = 64 \ cm^3 \therefore l = 4 \ cm$	1/2
	Total surface area of cuboid is $2[LB + BH + HL]$, Where L=12, B=4 and H=4	1/2
	$=2(12 \times 4 + 4 \times 4 + 4 \times 12) \ cm^2 = 224 \ cm^2$	1
3	Runs scored Frequency Cumulative Frequency	
	0-20 4 4	
	20-40 6 10	
	40-60 5 15	
	60-80 3 18	1/2
	80-100 4 22	
	Total frequency $(N) = 22$	
	$\frac{N}{2}$ = 11; So 40-60 is the median class.	1/2
	2	-/-
	$\left(\frac{N}{2}\right) - cf$	
	Median = $l + \frac{\left(\frac{N}{2}\right) - cf}{f} \times h$	1/2
	$=40+\frac{11-10}{5}\times 20$	
	= 44 runs	1/2
		_/ _
4	The common difference is 9 - 4=5	1
	If the first term is 6 and common difference is 5, then new AP is,	
	6, 6+5, 6+10	1
5	=6,11,16 :: Mode = 38.	
2	 Mode – 36. ∴ The modal class is 30-40. 	1/2
	$1^{\circ\circ}$ The modal blass is 00^{-4} .	-, -
	Mode = $l + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h$	1/2

9	PA = PB (Tangent segments drawn to a circle from an external point are equal)	
	\therefore In $\triangle APB$, \angle PAB = \angle PBA	1
	Also, $\angle APB = 60^{\circ}$	
	In $\triangle APB$, sum of three angles is 180° .	
	Therefore, $\angle PAB + \angle PBA = 180^{\circ} - \angle APB = 180^{\circ} - 60^{\circ} = 120^{\circ}$.	
	$\therefore \angle PAB = \angle PBA = 60^{\circ} (\because \angle PAB = \angle PBA)$	1
	$\therefore \Delta APB$ is an equilateral triangle.	
	So, $AB = 6cm$	1
10	Let the three consecutive multiples of 5 be $5x$, $5x+5$, $5x+10$.	
	Their squares are $(5x)^2$, $(5x + 5)^2$ and $(5x + 10)^2$.	
	$(5x)^2 + (5x+5)^2 + (5x+10)^2 = 725$	1
	$\Rightarrow 25x^2 + 25x^2 + 50x + 25 + 25x^2 + 100x + 100 = 725$	
	$\Rightarrow 75x^2 + 150x - 600 = 0$	
	$\Rightarrow x^2 + 2x - 8 = 0$	
	$\Rightarrow (x+4)(x-2) = 0$	
	$\Rightarrow x = -4, 2$	1
	$\Rightarrow x = 2$ (ignoring –ve value)	
	So the numbers are 10, 15 and 20	1
	Section-C	

	P	60° 120° O B	OR		
[Draw a circle o	of radius 6cm			
[Draw OA and	Construct $\angle AOB = 1$	20 ⁰		1
[Draw ∠ <i>0AP</i> =	$\simeq \angle OBP = 90^{\circ}$			1 1
F	PA and PB are	e required tangents			1
		apply tan∠ $APO = \tan 3$	$30^{\circ} = \frac{6}{R4}$		
		angent = $6\sqrt{3}$ cm	PA		1
	g				
	Age	No of passengers(fi)	Xi	$f_i x_i$	
	0-10	14	5	70	
1 1					
	10-20	30	15	450	
	20-30	38	25	450 950	
	20-30 30-40	38 52	25 35	450 950 1820	2
	20-30 30-40 40-50	38 52 50	25 35 45	450 950 1820 2250	2
	20-30 30-40 40-50 50-60	38 52 50 61	25 35 45 55	450 950 1820 2250 3355	2
	20-30 30-40 40-50 50-60 60-70	38 52 50 61 42	25 35 45 55 65	450 950 1820 2250 3355 2730	2
	20-30 30-40 40-50 50-60	38 52 50 61 42 13	25 35 45 55	450 950 1820 2250 3355 2730 975	2
	20-30 30-40 40-50 50-60 60-70	38 52 50 61 42	25 35 45 55 65	450 950 1820 2250 3355 2730	2
- - - - - - - - - - - - - - - - - - -	20-30 30-40 40-50 50-60 60-70 70-80	38 52 50 61 42 13	25 35 45 55 65	450 950 1820 2250 3355 2730 975	2

13 (i)	The ship is nearer to the lighthouse as its angle of depression is greater.		l
	In \triangle ACB, tan $60^{\circ} = \frac{AB}{BC}$ $\Rightarrow \sqrt{3} = \frac{40}{BC}$ $\therefore BC = \frac{40}{\sqrt{3}} = \frac{40\sqrt{3}}{3}m$	1	
	30 ⁰ 60° C		
(ii)	In \triangle ADB, tan $30^0 = \frac{AB}{BD}$ $\Rightarrow \frac{1}{\sqrt{3}} = \frac{40}{DB}$		
	\therefore DB = $40\sqrt{3}m$	1	
	Time taken to cover this distance = $(\frac{60}{2000} \times 40\sqrt{3})$ minutes = $\frac{60\sqrt{3}}{100}$ = 2.076 minutes	1	
• • /:)			
14 (i)	Let r_1 and r_2 be respectively the radii of apples and oranges $\therefore 2r_1: 2r_2 = 2: 3 \Rightarrow r_1: r_2 = 2: 3$	1/2	l
	$4\pi r_1^2 : 4\pi r_2^2 = \left(\frac{r_1}{r_2}\right)^2 = \left(\frac{2}{3}\right)^2 = 4:9$	$1\frac{1}{2}$	
(ii)	Let the height of the drum be h. Volume of the drum = volume of the cylinder + volume of the sphere $\pi 3^2 h = (\pi 3^2 \times 8 + \frac{4}{3}\pi 3^3) cm^3$ $\Rightarrow h = (8 + 4)cm$	1	
	$\Rightarrow h = 12cm$		ł
		1	
		1	