Marking Scheme

Class- X Session- 2021-22

TERM 1

Subject- Mathematics (Standard)

	SECTION A			
QN	Correct	HINTS/SOLUTION	MAR	
1	Option	Least assume its months in A and the least miner months in 2 LCM(A 2).	KS 1	
1	(b)	Least composite number is 4 and the least prime number is 2. LCM(4,2): $HCE(4,2) = 4\cdot2 = 2\cdot1$	1	
		HCF(4,2) = 4:2 = 2:1		
2	(a)	For lines to poincide, a_1 b_1 c_1	1	
	(a)	For lines to coincide: $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$		
		so, $\frac{5}{15} = \frac{7}{21} = \frac{-3}{-k}$		
		i.e. $k = 9$		
3	(b)	By Pythagoras theorem	1	
	()	The required distance $=\sqrt{(200^2 + 150^2)}$		
		$= \sqrt{(40000 + 22500)} = \sqrt{(62500)} = 250 \text{m}.$		
_		So the distance of the girl from the starting point is 250m.		
4	(d)	Area of the Rhombus = $\frac{1}{2} d_1 d_2 = \frac{1}{2} \times 24 \times 32 = 384 \text{ cm}^2$.	1	
		Using Pythagoras theorem		
		$side^2 = (\frac{1}{2}d_1)^2 + (\frac{1}{2}d_2)^2 = 12^2 + 16^2 = 144 + 256 = 400$		
		Side = 20cm		
		Area of the Rhombus = base x altitude		
		384 = 20 x altitude		
		So altitude = $384/20 = 19.2$ cm		
5	(a)	Possible outcomes are (HH), (HT), (TH), (TT)	1	
		Favorable outcomes(at the most one head) are (HT), (TH), (TT)		
		So probability of getting at the most one head $=3/4$		
6	(d)	Ratio of altitudes = Ratio of sides for similar triangles	1	
		So AM:PN = AB:PQ = 2:3		
7	(b)	$2\sin^2\beta - \cos^2\beta = 2$	1	
		Then $2 \sin^2 \beta - (1 - \sin^2 \beta) = 2$		
		$3 \sin^2 \beta = 3 \text{ or } \sin^2 \beta = 1$		
8	(c)	β is 90° Singe it has a terminating desimal expansion	1	
O	(C)	Since it has a terminating decimal expansion, so prime factors of the denominator will be 2,5	1	
9	(a)	Lines x=a is a line parallel to y axis and y=b is a line parallel to x axis. So they	1	
	(u)	will intersect.	_	
10	(d)	Distance of point A(-5,6) from the $\operatorname{origin}(0,0)$ is	1	
	,	$\sqrt{(0+5)^2 + (0-6)^2} = \sqrt{25+36} = \sqrt{61}$ units		
11	(b)	$a^2=23/25$, then $a=\sqrt{23}/5$, which is irrational	1	
12	(c)	LCM X HCF = Product of two numbers	1	
	(0)	$36 \times 2 = 18 \times x$	•	
		x = 4		
13	(b)	$\tan A = \sqrt{3} = \tan 60^{\circ} \text{ so } \angle A = 60^{\circ}, \text{ Hence } \angle C = 30^{\circ}.$	1	
		So cos A cos C- sin A sin C = $(1/2)x (\sqrt{3}/2) - (\sqrt{3}/2)x (1/2) = 0$		
1.4	()		1	
14	(a)	$1x + 1x + 2x = 180^{\circ}$, $x = 45^{\circ}$.	1	
		$\angle A$, $\angle B$ and $\angle C$ are 45°, 45° and 90° resp.		
		$\frac{\sec A}{\csc B} - \frac{\tan A}{\cot B} = \frac{\sec 45}{\csc 45} - \frac{\tan 45}{\cot 45} = \frac{\sqrt{2}}{\sqrt{2}} - \frac{1}{1} = 1 - 1 = 0$		
		cosec B cot B cosec 45 cot 45 $\sqrt{2}$ 1		

15	(d)	total distance 176	1
15	(u)	Number of revolutions= $\frac{\cot x \operatorname{distance}}{\operatorname{circumference}} = \frac{170}{2 \operatorname{X} \frac{22}{7} \operatorname{X} 0.7}$	_
		,	
		= 40	
16	(b)	$\frac{\text{perimeter of } \Delta ABC}{\text{perimeter of } \Delta DEF} = \frac{BC}{EF}$	1
		$\frac{7.5}{\text{perimeter of }\Delta \text{DEF}} = \frac{2}{4} \text{ . So perimeter of }\Delta \text{DEF} = 15\text{cm}$	
17	(b)	Since DE BC, \triangle ABC $\sim \triangle$ ADE (By AA rule of similarity)	1
		So $\frac{AD}{AB} = \frac{DE}{BC}$ i.e. $\frac{3}{7} = \frac{DE}{14}$. So DE = 6cm	
18	(a)	Dividing both numerator and denominator by $\cos \beta$,	1
10	(u)	$\frac{4\sin\beta - 3\cos\beta}{4\sin\beta + 3\cos\beta} = \frac{4\tan\beta - 3}{4\tan\beta + 3} = \frac{3-3}{3+3} = 0$	
		$4\sin\beta + 3\cos\beta - 4\tan\beta + 3 - 3 + 3 = 0$	
19	(d)	$\begin{bmatrix} 2 & 5 & 7 & 2 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	1
	. ,	$-2(-5x + 7y = 2)$ gives $10x - 14y = -4$. Now $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} = -2$	
20	(a)	Number of Possible outcomes are 26 Favorable outcomes are M, A, T, H, E, I, C, S	1
		probability = $8/26 = 4/13$	
		SECTION B	
21	(c)	Since $HCF = 81$, two numbers can be taken as $81x$ and $81y$,	1
		ATQ $81x + 81y = 1215$	
		Or $x+y=15$ which gives four co prime pairs-	
		1,14	
		2,13	
		4,11	
		7, 8	
22	(c)	Required Area is area of triangle $ACD = \frac{1}{2}(6)2$	1
	(C)	= 6 sq units	_
23	(b)	$\tan \alpha + \cot \alpha = 2$ gives $\alpha = 45^{\circ}$. So $\tan \alpha = \cot \alpha = 1$	1
		$\tan^{20}\alpha + \cot^{20}\alpha = 1^{20} + 1^{20} = 1 + 1 = 2$	
24	(a)	Adding the two given equations we get: $348x + 348y = 1740$.	1
25	(c)	So $x + y = 5$ LCM of two prime numbers = product of the numbers	1
20	(C)	$221=13 \times 17$.	-
		So p= 17 & q= 13	
		∴3p - q= $51-13=38$	
26	(a)	Probability that the card drawn is neither a king nor a queen	1
		$=\frac{52-8}{52}$	
	~ .	=44/52=11/13	
27	(b)	Outcomes when 5 will come up at least once are-	1
		(1,5), (2,5), (3,5), (4,5), (5,5), (6,5), (5,1), (5,2), (5,3), (5,4) and (5,6) Probability that 5 will come up at least once = 11/36	
		1 100aomity that 5 will come up at least once – 11/30	
28	(c)	$1 + \sin^2 \alpha = 3 \sin \alpha \cos \alpha$	1
		$\sin^2\alpha + \cos^2\alpha + \sin^2\alpha = 3\sin\alpha\cos\alpha$	
		$2\sin^2\alpha - 3\sin\alpha\cos\alpha + \cos^2\alpha = 0$	
		$(2\sin\alpha - \cos\alpha)(\sin\alpha - \cos\alpha) = 0$ ∴ cotα = 2 or cotα = 1	
		Cota – 2 of cota – f	
29	(a)	Since ABCD is a parallelogram, diagonals AC and BD bisect each other, ∴ mid	1
		point of AC= mid point of BD	

	1		
		$\left(\frac{x+1}{2}, \frac{6+2}{2}\right) = \left(\frac{3+4}{2}, \frac{5+y}{2}\right)$	
		Comparing the co-ordinates, we get,	
		$\frac{x+1}{2} = \frac{3+4}{2}$. So, x= 6	
		Similarly, $\frac{6+2}{2} = \frac{5+y}{2}$. So, y= 3	
		$\therefore (x, y) = (6,3)$	
30	(c)	$\Delta ACD \sim \Delta ABC(AA)$	1
		$\therefore \frac{AC}{AB} = \frac{AD}{AC} (CPST)$	
		ND - NC	
		8/AB = 3/8 This airea AB (4/2 are	
		This gives $AB = 64/3$ cm.	
31	(d)	So BD = AB – AD = $64/3 - 3 = 55/3$ cm. Any point (x, y) of perpendicular bisector will be equidistant from A & B.	1
31	(u)	$\therefore \sqrt{(x-4)^2 + (y-5)^2} = \sqrt{(x+2)^2 + (y-3)^2}$	1
		Solving we get $-12x - 4y + 28 = 0$ or $3x + y - 7 = 0$	
32	(b)	cot v° AC/RC	1
32	(0)	$\frac{\cot y^{\circ}}{\cot x^{\circ}} = \frac{AC/BC}{AC/CD} = CD/BC = CD/2CD = \frac{1}{2}$	1
33	(a)	The smallest number by which 1/13 should be multiplied so that its decimal	1
		expansion terminates after two decimal points is $13/100$ as $\frac{1}{13}$ x $\frac{13}{100}$ = $\frac{1}{100}$ =	
		$\begin{bmatrix} 1 & 1 & 100 & 100 \\ 0.01 & & & & \end{bmatrix}$	
		Ans: 13/100	
		7 Hist. 13/100	
34	(b)	A	1
		\triangle ABE is a right triangle & FDGB is a	
		square of side x cm	
		$\Delta AFD \sim \Delta DGE(AA)$	
		$\therefore \frac{AF}{DG} = \frac{FD}{GE} \text{ (CPST)}$	
		DG GE (STOT)	
		$\frac{16-x}{x} = \frac{x}{8-x} \text{ (CPST)}$	
		$\frac{G}{X} = \frac{1}{8-x} (CPST)$	
	\	B - 8cm 120 24 16/2	
		128 = 24x or x = 16/3cm	
35	(a)	Since P divides the line segment joining R(-1, 3) and S(9,8) in ratio k:1 ∴	1
	(3-7)	coordinates of P are $(\frac{9k-1}{k+1}, \frac{8k+3}{k+1})$	
		Since P lies on the line $x - y + 2 = 0$, then $\frac{9k-1}{k+1} - \frac{8k+3}{k+1} + 2 = 0$	
		9k - 1 - 8k - 3 + 2k + 2 = 0	
		which gives k=2/3	
36	(c)		1
		Shaded area = Area of semicircle +	
		(Area of half square – Area of two	
		quadrants)	
		= Area of semicircle +(Area of half	
		square – Area of semicircle)	
		= Area of half square	
		$= \frac{1}{2} \times 14 \times 14 = 98 \text{cm}^2$	
		- /2 A 17 A17 - /00III	

37	(4)			1
37	(d)	Let O b center of the circle. OA = OB = AB =1cm. So \triangle OAB is an equilateral triangle and \triangle \triangle AOB =60° Required Area= 8x Area of one segment with r=1cm, Θ = 60° = $8x(\frac{60}{360} \times \pi \times 1^2 - \frac{\sqrt{3}}{4} \times 1^2)$ = $8(\pi/6 - \sqrt{3}/4)$ cm ²	e the	1
38	(b)	Sum of zeroes = $2 + \frac{1}{2} = -\frac{5}{p}$ i.e. $5/2 = -\frac{5}{p}$. So p= -2 Product of zeroes = $2x \frac{1}{2} = \frac{r}{p}$ i.e. $r/p = 1$ or $r = p = -2$		1
39	(c)	$2\pi r = 100$. So Diameter = $2r = 100/\pi =$ diagonal of the square. side $\sqrt{2} =$ diagonal of square = $100/\pi$ \therefore side = $100/\sqrt{2\pi} = 50\sqrt{2}/\pi$		1
40	(b)	$3^{x+y} = 243 = 3^{5}$ So $x+y=5$ (1) $243^{x-y} = 3$ $(3^{5})^{x-y} = 3^{1}$ So $5x - 5y = 1$ (2) Since: $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$, so unique solution		1
		SECTION C		
41	(c)	Initially, at t=0, Annie's height is 48ft So, at t =0, h should be equal to 48 $h(0) = -16(0)^2 + 8(0) + k = 48$ So k = 48		1
42	(b)	When Annie touches the pool, her height =0 feet i.e. $-16t^2 + 8t + 48 = 0$ above water level $2t^2 - t - 6 = 0$ $2t^2 - 4t + 3t - 6 = 0$ $2t(t-2) + 3(t-2) = 0$ $(2t+3)(t-2) = 0$ i.e. $t=2$ or $t=-3/2$ Since time cannot be negative, so $t=2$ seconds		1
43	(d)	t= -1 & t=2 are the two zeroes of the polynomial p(t) Then p(t)=k (t1)(t-2) = k(t+1)(t-2) When t = 0 (initially) h ₁ = 48ft p(0)=k(0²-0-2)= 48 i.e2k = 48 So the polynomial is $-24(t²-t-2) = -24t² + 24t + 48$.		1
44	(c)	A polynomial q(t) with sum of zeroes as 1 and the product as -6 is give $q(t) = k(t^2 - (sum of zeroes)t + product of zeroes)$ $= k(t^2 - 1t + -6) \qquad(1)$ When t=0 (initially) q(0)= 48ft	n by	1

		$q(0)=k(0^2-1(0)-6)=48$	
		i.e. $-6k = 48$ or $k = -8$	
		Putting $k = -8$ in equation (1), reqd. polynomial is $-8(t^2 - 1t + -6)$	
		$= -8t^2 + 8t + 48$	
45	(a)	When the zeroes are negative of each other,	1
		sum of the zeroes $= 0$	
		So, $-b/a = 0$	
		$-\frac{(k-3)}{k-3}=0$	
		$-\frac{(k-3)}{-12} = 0 + \frac{k-3}{12} = 0$	
		k-3=0,	
		i.e. $k = 3$.	
4 -			
46	(a)	Centroid of \triangle EHJ with E(2,1), H(-2,4) & J(-2,-2) is	1
		$\left(\frac{2+-2+-2}{3}, \frac{1+4+-2}{3}\right) = (-2/3, 1)$	
47	(c)	If P needs to be at equal distance from A(3,6) and G(1,-3), such that A,P and G	1
		are collinear, then P will be the mid-point of AG.	
		So coordinates of P will be $(\frac{3+1}{2}, \frac{6+-3}{2}) = (2, 3/2)$	
48	(a)	Let the point on x axis equidistant from $I(-1,1)$ and $E(2,1)$ be $(x,0)$	1
	(-5)	then $\sqrt{(x+1)^2 + (0-1)^2} = \sqrt{(x-2)^2 + (0-1)^2}$	
		$x^{2} + 1 + 2x + 1 = x^{2} + 4 - 4x + 1$	
		6x = 3	
		So $x = \frac{1}{2}$.	
		∴ the required point is (½, 0)	
49	(b)	Let the coordinates of the position of a player Q such that his distance from	1
		K(-4,1) is twice his distance from $E(2,1)$ be $Q(x, y)$	
		Then $KQ : QE = 2:1$	
		$Q(x, y) = \left(\frac{2 \times 2 + 1 \times -4}{3}, \frac{2 \times 1 + 1 \times 1}{3}\right)$	
		= (0,1)	
		(0,1)	
50	(d)	Let the point on y axis equidistant from B(4,3) and C(4,-1) be (0,y)	1
	(32)	then $\sqrt{(4-0)^2 + (3-y)^2} = \sqrt{(4-0)^2 + (y+1)^2}$	
		$16 + y^2 + 9 - 6y = 16 + y^2 + 1 + 2y$	
		-8y = -8	
		So y = 1.	
		\therefore the required point is $(0, 1)$	
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	