Sample Question Paper

CLASS: XII

Session: **2021-22**

Mathematics (Code-041)

Term - 1

Time Allowed: 90 minutes Maximum Marks: 40

General Instructions:

- 1. This question paper contains three sections A, B and C. Each part is compulsory.
- 2. Section A has 20 MCQs, attempt any 16 out of 20.
- 3. Section B has 20 MCQs, attempt any 16 out of 20
- 4. Section C has 10 MCQs, attempt any 8 out of 10.
- 5. All questions carry equal marks.
- 6. There is no negative marking.

SECTION - A

In this section, attempt any 16 questions out of Questions 1 – 20. Each Question is of 1 mark weightage.

1.	$\sin \left[\frac{\pi}{3} - \sin^{-1} \left(-\frac{1}{2} \right) \right]$ is equal to:		1
	a) $\frac{1}{2}$	b) $\frac{1}{3}$	
	c) -1	d) 1	
2.	The value of k (k < 0) for which the f	unction f defined as	1
	$f(x) = \begin{cases} \frac{1 - \cos kx}{x \sin x}, & x \neq 0 \\ \frac{1}{2}, & x = 0 \end{cases}$		
	is continuous at $x = 0$ is:		
	(a) 11 (b)	1	
	a) ± 1 b) - c) $\pm \frac{1}{2}$ d) $\frac{1}{2}$	- 1	
2	Z Z		4
3.	If $A = [a_{ij}]$ is a square matrix of order	2 such that $a_{ij} = \begin{cases} 1, & when i \neq j \\ 0, & when i = j \end{cases}$, then	1
	A ² is:	(s,whent)	
	a) $\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$	b) $\begin{vmatrix} 1 & 1 \\ 0 & 0 \end{vmatrix}$	
	0) 1 1	a) [1 0]	
	c) $\begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix}$	d) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	
4.			1
7.	Value of k , for which $A = \begin{bmatrix} k & 8 \\ 4 & 2k \end{bmatrix}$ is	a sıngular matrıx ıs:	'
		T	_
	a) 4	b) -4 d) 0	4
	c) ±4	d) 0	-

5. Find the intervals in which the function f given by $f(x) = x^2 - 4x + 6$ is sincreasing:		ly 1
	increasing:	
	a) $(-\infty, 2) \cup (2, \infty)$ b) $(2, \infty)$	$\neg \bot$
	a) $(-\infty, 2) \cup (2, \infty)$ b) $(2, \infty)$ c) $(-\infty, 2)$ d) $(-\infty, 2] \cup (2, \infty)$	\dashv
	(a) (a) (b) (b) (c) (c) (c) (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	
6.	Given that A is a square matrix of order 3 and A = - 4, then adj A is	1
	equal to:	
	a) -4 b) 4	
	c) -16 d) 16	
7.	A relation R in set A = $\{1,2,3\}$ is defined as R = $\{(1, 1), (1, 2), (2, 2), (3, 3)\}$.	1
	Which of the following ordered pair in R shall be removed to make it an	
	equivalence relation in A?	
	a) (1, 1) b) (1, 2)	
	c) (2, 2) d) (3, 3)	
8.	If $\begin{bmatrix} 2a+b & a-2b \\ 5c-d & 4c+3d \end{bmatrix} = \begin{bmatrix} 4 & -3 \\ 11 & 24 \end{bmatrix}$, then value of $a+b-c+2d$ is:	1
	15c - d 4c + 3d 111 24], where $15c - d 4c + 3d$	
	a) 8 b) 10	
	a) 8 b) 10 c) 4 d) -8	
	(a) 4	
9.	The point at which the normal to the curve $y = x + \frac{1}{x}$, $x > 0$ is perpendicular	to 1
	the line $3x - 4y - 7 = 0$ is:	
	b) (2.5/2)	
	a) (2, 5/2) b) (±2, 5/2) c) (-1/2, 5/2) d) (1/2, 5/2)	
10.		1
10.	sin (tan ⁻¹ x), where $ x < 1$, is equal to:	
	$\begin{pmatrix} x \end{pmatrix}$	
	a) $\frac{x}{\sqrt{1-x^2}}$ b) $\frac{1}{\sqrt{1-x^2}}$	
	c) $\frac{1}{\sqrt{1+x^2}}$ d) $\frac{x}{\sqrt{1+x^2}}$	
	VITA VITA	
11.	Let the relation R in the set $A = \{x \in Z : 0 \le x \le 12\}$, given by $R = \{(a, b) : a \in Z : 0 \le x \le 12\}$	_ 1
	b is a multiple of 4}. Then [1], the equivalence class containing 1, is:	
		_
	a) {1, 5, 9} b) {0, 1, 2, 5}	
	c) φ d) A	
12.	If $e^x + e^y = e^{x+y}$, then $\frac{dy}{dx}$ is:	1
	u.x	
	a) e ^{y-x} b) e ^{x+y}	
	c) $-e^{y-x}$ d) $2e^{x-y}$	
	c) -e ^y	

13.	Given that matrices A and B are	of order 3×n and m×5 respectively, then the	· 1
	order of matrix C = 5A +3B is:	or or action and mine respectively, alon all	
	a) 3×5	b) 5×3	
	c) 3×3	d) 5×5	
14.	If y = 5 cos x - 3 sin x, then $\frac{d^2y}{dx^2}$ is	o oqual to:	1
	If $y = 3 \cos x - 3 \sin x$, then $\frac{1}{dx^2}$	s equal to.	
	a) - y	b) y	
	c) 25y	d) 9y	
15.	[2 5] c 1/2/		1
10.	For matrix A = $\begin{bmatrix} 2 & 5 \\ -11 & 7 \end{bmatrix}$, $(adjA)'$	is equal to:	
	a) $\begin{bmatrix} -2 & -5 \\ 11 & -7 \end{bmatrix}$	b) $\begin{bmatrix} 7 & 5 \\ 11 & 2 \end{bmatrix}$	
	111 -/3	111 23	
	c) $\begin{bmatrix} 7 & 11 \\ -5 & 2 \end{bmatrix}$	$d) \begin{bmatrix} 7 & -5 \\ 11 & 2 \end{bmatrix}$	
	/ L=5 2 J	, [11 2]	
16.	The points on the curve $\frac{x^2}{x^2} + \frac{y^2}{y^2} =$	= 1 at which the tangents are parallel to y-	1
	axis are:	- six illinoi amiganto amo paramo iso y	
	a) (0,±4)	b) (±4,0)	
	c) (±3,0)	d) (0, ±3)	
17.	3	matrix of order 3×3 and $ A = -7$, then the	1
	value of $\sum_{i=1}^{3} a_{i2} A_{i2}$, where A_{ij} de	enotes the cofactor of element a_{ij} is:	
	a) 7	b) -7	٦
	c) 0	b) -7 d) 49	-
18.	If $y = \log(\cos e^x)$, then $\frac{dy}{dx}$ is:	1 3) 10	1
	a) $\cos e^{x-1}$	b) $e^{-x}\cos e^x$	٦
	c) $e^x \sin e^x$	d) $-e^x \tan e^x$	1
19.	/	on as the feasible region in the graph, at	1
	which point(s) is the objective fur		
	Y		
	↑ \# ³ /		
	D(0,20)		
	15 C(15,15)		
	(0,10) $(0,10)$ $($	0,0)	
	X'-9 5 1 20 35 50	X	
	Y' (10,0)	x + 3y = 60	
	x + y = 10		
	a) Point B	b) Point C	7
	c) Point D	d) every point on the line	
		segment CD	

20	The best of the footier of	()	1
20.		$(x) = 2\cos x + x$ in the closed interval $[0, \frac{\pi}{2}]$	l
	is:		
	a) 2	b) $\frac{\pi}{1} + \sqrt{3}$	
	c) $\frac{\pi}{2}$	b) $\frac{\pi}{6} + \sqrt{3}$ d) The least value does not	
		exist.	
			
		CTION – B	
		questions out of the Questions 21 - 40. is of 1 mark weightage.	
	Lacii Question	113 OF Finance weightage.	
21.	The function $f: R \rightarrow R$ defined as	$f(x) = x^3 \text{ is:}$	1
	a) One on but not ente	h) Not one one but ente	
	a) One-on but not ontoc) Neither one-one nor onto	b) Not one-one but onto d) One-one and onto	
	,		
22.	If $x = a \sec \theta$, $y = b \tan \theta$, then $\frac{d^2}{dx}$	$\frac{y}{a}$ at $\theta = \frac{\pi}{a}$ is:	1
	dx	2 6	
	$3)$ $-3\sqrt{3}b$	b) $-2\sqrt{3}b$	
	a) $\frac{-3\sqrt{3}b}{a^2}$ c) $\frac{-3\sqrt{3}b}{a}$	b) $\frac{-2\sqrt{3}b}{a}$ d) $\frac{-b}{3\sqrt{3}a^2}$	
	c) $\frac{-3\sqrt{3b}}{a}$	d) $\frac{1}{3\sqrt{3}a^2}$	
23.	y In the giv	ven graph, the feasible region for a LPP is	1
23.	shaded.	veri grapri, the reasible region for a EFF is	
	The objective function $Z = 2x - 3y$, will be minimum		
	at:	•	
	(0, 8)		
	(6, 5)		
	(0, 0) (5, 0)		
	(0,0) (5,0) a) (4, 10)	b) (6, 8)	
	c) (0, 8)	d) (6, 5)	
24.	The derivative of $\sin^{-1}(2x\sqrt{1-x^2})$	$\frac{1}{1}$ w.r.t sin ⁻¹ x, $-\frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}$, is:	1
	a) 2 b) $\frac{\pi}{2} - 2$		
	1 2		
25.	[1 _1 0] [2	2 –41	1
	If $A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{bmatrix}$, then:		
	$\begin{bmatrix} 1 & 1 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix} \xrightarrow{\text{and } D} \begin{bmatrix} 1 & 2 & 1 \\ 2 & -1 & 5 \end{bmatrix}, \text{ then.}$		
	a) A ⁻¹ = B c) B ⁻¹ = B	b) A-1 = 6B	
	C) B = B	d) $B^{-1} = \frac{1}{6}A$	

26.	The real function $f(x) = 2x^3 - 3x^2 - 36x + 7$ is:	1 1
20.	The real function $f(x) = 2x - 3x - 30x + 7$ is.	'
	a) Strictly increasing in $(-\infty, -2)$ and strictly decreasing in $(-2, \infty)$	
	b) Strictly decreasing in (-2,3)	
	c) Strictly decreasing in $(-\infty, 3)$ and strictly increasing in $(3, \infty)$	
	Strictly decreasing in $(-\infty, s)$ and strictly increasing in (s, ∞)	
	d) Strictly decreasing in $(-\infty, -2) \cup (3, \infty)$	
		4
27.	Simplest form of $\tan^{-1}\left(\frac{\sqrt{1+cosx}+\sqrt{1-cosx}}{\sqrt{1+cosx}-\sqrt{1-cosx}}\right)$, $\pi < x < \frac{3\pi}{2}$ is:	1
	a) $\frac{\pi}{4} - \frac{x}{2}$ b) $\frac{3\pi}{2} - \frac{x}{2}$	
	c) $-\frac{x}{2}$ d) $\pi - \frac{x}{2}$	
28.	Given that A is a non-singular matrix of order 3 such that $A^2 = 2A$, then va	lue 1
	of 2A is:	
	a) 4 b) 8	\neg
	c) 64 d) 16	
29.	The value of <i>b</i> for which the function $f(x) = x + cosx + b$ is strictly	1
	decreasing over $\bf R$ is: a) $b < 1$ b) No value of b exists	<u> </u>
	c) $b \le 1$ d) $b \ge 1$	
30.	Let R be the relation in the set N given by $R = \{(a, b) : a = b - 2, b > 6\}$, th	en: 1
30.	a) $(2,4) \in \mathbb{R}$ b) $(3,8) \in \mathbb{R}$	
	c) $(6,8) \in \mathbb{R}$ d) $(8,7) \in \mathbb{R}$	
31.	$(\frac{x}{x}, x \in 0)$	1
01.	The point(s), at which the function f given by $f(x) = \begin{cases} \frac{x}{ x }, & x < 0 \\ -1, & x \ge 0 \end{cases}$.
	is continuous, is/are: $(-1, x \ge 0)$	
	a) $x \in \mathbb{R}$ b) $x = 0$	
	c) $x \in \mathbb{R} - \{0\}$ d) $x = -1$ and 1	
		, dy 1
32.	32. If $A = \begin{bmatrix} 0 & 2 \\ 3 & -4 \end{bmatrix}$ and $kA = \begin{bmatrix} 0 & 3a \\ 2b & 24 \end{bmatrix}$, then the values of k , a and b respective	
	are:	

			1
	a) -6, -12, -18	b) -6, -4, -9	
	c) -6,4,9	d) -6,12,18	4
33.			
	$\begin{array}{l} Minimize Z = 30x + 50y \\ \text{authors to the constraints} \end{array}$		
	subject to the constraints,		
	$3x + 5y \ge 15$		
	$2x + 3y \le 18$		
	$x \ge 0, y \ge 0$		
	In the feasible region, the minimum value of Z occurs at		
	a) a unique point b)		
	c) infinitely many points d)	two points only	
34.	The area of a trapezium is defined by function f and given by $f(x) = (10 + 1)^{-1}$		
	$(x)\sqrt{100-x^2}$, then the area when it is		
	x y 100 x , then the area when the	maximised is.	
	a) 75 <i>cm</i> ²	b) $7\sqrt{3}cm^2$	
	c) $75\sqrt{3}cm^2$	d) $5cm^2$	
	C) 75\3Cm	d) Sem	
35.	If A is square matrix such that $A^2 = A$,	then (I + A) ³ – 7 A is equal to:	1
	n / t io oqualo matint ouom that / t / /,	anon (i v / i) i / i io oqual to/	•
	a) A	b) I + A	
	c) I – A	d) I	
36.	If $tan^{-1} x = y$, then:		1
	a) $-1 < y < 1$	b) $\frac{-\pi}{2} \le y \le \frac{\pi}{2}$	
		2 2	
	c) $\frac{-\pi}{2} < y < \frac{\pi}{2}$	d) $y \in \{\frac{-\pi}{2}, \frac{\pi}{2}\}$	
		2 2 2	
37.	Let A = {1, 2, 3}, B = {4, 5, 6, 7} and le	$f = \{(1, 4), (2, 5), (3, 6)\}$ be a function	1
	from A to B. Based on the given inform	nation, f is best defined as:	
		T	
	a) Surjective function	b) Injective function	
00	c) Bijective function	d) function	4
38.	For A = $\begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$, then 14A ⁻¹ is given b	y:	1
	r-1 Z1		
	[2] 14 [2 -1]	b) [4 -2]	
	a) $14\begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$	b) $\begin{bmatrix} 4 & -2 \\ 2 & 6 \end{bmatrix}$	
	52 12	5 2 42	
	c) $2\begin{bmatrix} 2 & -1 \\ 1 & -3 \end{bmatrix}$	d) $2\begin{bmatrix} -3 & -1 \\ 1 & -2 \end{bmatrix}$	
	11 –31	r 1 —Zı	
39.	The point(s) on the curve $y = x^3 - 11x$	x + 5 at which the tangent is $v = x - 11$	1
30.	is/are:	2 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.	-
) (2, -9)	
	c) (±2,19) d) (-2, 19) and (2, -9)	
40.	Given that $A = \begin{bmatrix} \alpha & \beta \\ \nu & -\alpha \end{bmatrix}$ and $A^2 = 3I$, th	en:	1
	$[\gamma -\alpha]^{\alpha}$		

https://www.evidyarthi.in/

	a) $1 + \alpha^2 + \beta \gamma = 0$ b) c) $3 - \alpha^2 - \beta \gamma = 0$ d)	$1 - \alpha^2 - \beta \gamma = 0$ $3 + \alpha^2 + \beta \gamma = 0$	
SECTION – C In this section, attempt any 8 questions. Each question is of 1-mark weightage. Questions 46-50 are based on a Case-Study.			
41.	 1. For an objective function Z = ax + by, where a, b > 0; the corner points of the feasible region determined by a set of constraints (linear inequalities) are (0, 20), (10, 10), (30, 30) and (0, 40). The condition on a and b such that the maximum Z occurs at both the points (30, 30) and (0, 40) is: a) b - 3a = 0 b) a = 3b 		
	c) $a + 2b = 0$ d) $2a - b$	b=0	
42.	For which value of m is the line $y = mx + 1$ a tages of $\frac{1}{2}$ b) 1 c) 2 d) 3	angent to the curve y ² = 4x?	1
43.	The maximum value of $[x(x-1)+1]^{\frac{1}{3}}$, $0 \le$ a) 0 b) $\frac{1}{2}$ c) 1 d) $\sqrt[3]{\frac{1}{3}}$	$x \le 1$ is:	1
44.	In a linear programming problem, the constrainand y are $x - 3y \ge 0$, $y \ge 0$, $0 \le x \le 3$. The feature of the second and y are $x - 3y \ge 0$, $y \ge 0$, $0 \le x \le 3$. The feature of the second and y are $x - 3y \ge 0$, $y \ge 0$, $0 \le x \le 3$. The feature of the second and y are $x - 3y \ge 0$, $y \ge 0$, $0 \le x \le 3$. The feature of the second and y are $x = 0$. In the second and y are $x = 0$, $y \ge 0$, $y $	asible region unded in the first ant	1
45.	Let $A = \begin{bmatrix} 1 & \sin\alpha & 1 \\ -\sin\alpha & 1 & \sin\alpha \\ -1 & -\sin\alpha & 1 \end{bmatrix}$, where $0 \le \alpha \le 1$	A ε(2,∞)	1
	c) $ A \in (2,4)$ d) $ A \in [2,4]$ CASE STUDY		
	The fuel cost to the square the fuel cost	st per hour for running a train is pro re of the speed it generates in km p sts ₹ 48 per hour at speed 16 km pe ed charges to run the train amount t	er hour. If

	Based on the given information, answer the following questions.		
46.	Given that the fuel cost per hour is k times the square of the speed the train generates in km/h, the value of k is:		
	a) $\frac{16}{3}$ c) 3	b) $\frac{1}{3}$ d) $\frac{3}{16}$	
47.	If the train has travelled a distance of 500km, then the total cost of running the train is given by function:		
	a) $\frac{15}{16}v + \frac{600000}{v}$	b) $\frac{375}{4}v + \frac{600000}{v}$	
	$c) \ \frac{5}{16}v^2 + \frac{150000}{v}$	d) $\frac{3}{16}v + \frac{6000}{v}$	
48.	The most economical speed to run the train is:		
	a) 18km/h c) 80km/h	b) 5km/h d) 40km/h	
49.	The fuel cost for the train to travel 500km at the most economical speed is:		
	a) ₹3750 c) ₹7500	b) ₹750 d) ₹75000	
50.	The total cost of the train to travel 500km at the most economical speed is:		
	a) ₹3750 c) ₹7500	b) ₹75000 d) ₹15000	
