

PRACTICE PAPER

CHEMISTRY

Q1.

Given that, for the reaction H^+ (aq) + OH^- (aq) H_2 O (I), energy released is 57.1 kJ. Three reactions are given as follows

- (1) 0.25 mole of HCI in solution is neutralized by 0.25 mole of NaOH; heat released is ΔH_1 .
- (2) 0.5 mole of HNO₃ in solution is mixed with 0.2 mole of KOH solution; heat released is ΔH_2 .
- (3) 200 cm 3 of 0.2 M HCI solution is mixed with 300 cm 3 of 0.1 M NaOH solution heat released is ΔH_3 .

The correct order for the numerical value of ΔH_1 , ΔH_2 , ΔH_3 would be

- (a) $\Delta H_1 > \Delta H_2 > \Delta H_3$
- (b) $\Delta H_1 > \Delta H_3 > \Delta H_{32}$
- (c) $\Delta H_3 > \Delta H_2 > \Delta H_1$
- (d) $\Delta H_2 > \Delta H_1 > \Delta H_3$

Q2.

Given the following standard electrode potentials:

Element Electrode reaction

$$E^{\circ}_{(298)}$$
 (Volts)

$$Zn/Zn^{2+}_{(aq)} + 2e \rightarrow Zn_{(s)} - 0.76$$

$$Sn/Sn^{2+}_{(aq)} + 2e^{-} \rightarrow Sn_{(s)} - 0.14$$

$$Pb/Pb^{2+}_{(aq)} + 2e^{-} \rightarrow Pb_{(s)} - 0.13$$

$$\text{Cu/cu}^{2+} + 2\text{e}^{\text{-}} \rightarrow \text{Cu}_{(s)} + 0.34$$

Based on the above data, identify the correct answer. From an aqueous solution of the salts

- (a) Zinc can displace tin, lead, copper
- (b) Tin can displace zinc, lead, copper
- (c) Copper can displace zinc, tin, lead
- (d) Lead can displace zinc, tin, copper

Q3.

The electron energy for the quantum number n=2 in a hydrogen atom is

- (a) 1. 312 x 10⁶ Jmol.-1
- (b) $-3.28 \times 10^5 \text{ Jmol.}^{-1}$
- (c) $+ 3.28 \times 10^5$ Jmol.-1
- (d) $+ 1.312 \times 10^6$ Jmol.⁻¹

Given, $m = 9.1 \times 10^{-31} \text{ kg}$; $e = 1.6 \times 10^{-19} \text{ C}$; $h = 6.6 \times 10^{-34} \text{ kgm}^2 \text{ s}^{-1}$

Q4.

The percent void space in close fcc packing of sphere is

- (a) 31.98 %
- (b) 25.96 %
- (c) 47.64 %
- (d) 74.04 %

Q5.

If the value for equilibrium constant for the reaction, $A_2(g) + 2 B_2(g) \rightleftharpoons 4 C(g)$ is 2. What is the equilibrium constant for the reaction:

$$2(c)(g) \rightleftharpoons \frac{1}{2} A_2(g) + B_2(g)$$

- (a) 2
- (b) 4
- (c) $\sqrt{2}$
- (d) $\frac{1}{\sqrt{2}}$

Q6.

Solution with reversed acidity and alkalinity are known as

- (a) Isotonic solutions
- (b) Iso-hydric solutions
- (c) Buffer solutions
- (d) None of these

Q7.

The rate of a second order reaction is 5×10^{-5} mol L⁻¹ S⁻¹. When the initial concentration of the reactant is 0.25 mol L⁻¹, the value of the rate is

- (a) 8 x 10⁻⁴ Lmol⁻¹
- (b) 2 x 10-4- moll-1
- (c) 8 x 10⁻⁴ molL⁻¹
- (d) 2 x 10-4 Lmol-1

Q8.

The reverse of chemilumiescene is called

- (a) Fluorescence
- (b) Photochemical reaction
- (c) Phosphorescence
- (d) Photosensitization

Q9.

Which of the following molecules has unpaired electron in antibonding molecular orbital?

- (a) 0_2
- (b) F₂
- (c) N_2
- (d) C_2

Q10.

The pH of a buffer solution containing 0.1M acetic acid and 0.1 M sodium acetate (pKa of a acetic acid is 4.74) is

- (a) 4.74
- (b) 5.74
- (c) 3.74
- (d) 9.48

Q11.

What is the hybridization of orbitals of boron and nitrogen, respectively, in BF₃. NH₃?

- (a) Sp^2 , sp^3
- (b) Dsp^2 , sp^3
- (c) Sp^2 , sp^2
- (d) Sp2d, sp2

Q12.

Which of the following compounds is used testing iron in its trivalent state to give intense blue colour for its confirmation?

- (a) KSCN
- (b) K₃ Fe (CM)₆
- (c) K₄ Fe (CN)₆
- (d) NH₄ NCS

Q13.

The slag formed in blast furnace in metallurgy of iron is due to a reaction between:

- (a) Calcium & SiO₂
- (b) Calcium carbonate & Fe₂O₃
- (c) Calcium oxide & SiO₂
- (d) Calcium chloride & Fe₂O₃

Q14.

Which of the following compounds contains coordinate covalent bond?

- (a) N_2H_5 +
- (b) HCI
- (c) BaCI₂
- (d) H_2O

Q15.

Which of the following compound does contain peroxide bridge?

- (a) Na_2O_2
- (b) BaO₂
- (c) H_2O_2
- (d) SrO_2

Q16.

Amongst the inert gases most abundant gas in the atmosphere is

- (a) He
- (b) Kr
- (c) Ne
- (d) Ar

Q17.

The Green House effect in the atmosphere is exhibited due to the presence of following as in atmosphere.

- (a) CO_2
- (b) 0_3
- (c) CO
- (d) all of these

Q18.

Which of the following has highest lattice energy?

- (a) $Be(OH)_2$
- (b) Ca (OH)₂
- (c) Na(OH)₂
- (d) Ba(OH)₂

Q19.

An atom or ion in an octahedral hole of a close packed structure has how many nearest neighbours?

- (a) 4
- (b) 8
- (c) 6
- (d) 12

Q20.

Out of the following vlues, which value is not correct for 20 volume solution of H₂ O₂?

- (a) It contains $60.7 \text{ gm/ltr of H}_2\text{O}_2$
- (b) It is 6.07 % weight / volume
- (c) It is 1.8 molar solution of H₂O₂
- (d) It liberates 40 litres of oxygen on decomposition.

Q21.

Besides Ba₂O, CaO and SiO₂, pyrex glass contains two more oxides. Which of the following are correct?

- (a) Fe₂ O₃, Al₂ O₃
- (b) PbO, ZnO
- (c) TiO_2 , B_2O_3
- (d) B_2O_3 , Al_2O_3

Q22.

Which of the following reactions is not correct?

- (a) SO_3 (in the presence of H_2O) $\rightarrow H_2SO_4$
- (b) P_2O_5 (in the presence of H_2O) $\rightarrow HPO_3$
- (c) N_2O (in the presence of H_2O) $\rightarrow HNO_2$
- (d) $B_2 O_3$ (in the presence of H_2O) $\rightarrow HBO_2$

Q23.

Which of the following compounds is formed when 'hypo' dissolves silver bromide?

- (a) $Na_3 [Ag(S_2O_3)_2]$
- (b) $Na_2 [Ag(SO_3 Br)]$
- (c) Na [Ag $(SO_3)_3$]
- (d) Na [Ag $(S_2 O_3)_2$]

Q24.

Which of the following is the allotrope of carbon?

- (a) Fullerene
- (b) Freon
- (c) Ferrocene
- (d) Furazine

Q25.

The diamagnetic species is

- (a) [Ni (CN)₄]²⁻
- (b) [NiCI₄]²⁻
- (c) $[CoCI_4]^{2-}$
- (d) $[CoF_6]^{2-}$

Q26.

The product in the following reaction is:

- (a) CH₃CH₂CH₂CH₃
- (b) (CH₃)₂CH₂CH₂CH₂CH₂CH₃
- (c) (CH₃)₂ CH₂ CH₂ CH₂ CH₃
- (d) CH₃ CH₂ CH₂ CH₃

Q27.

Nitration of aniline in strongly acidic medium, results in the formation of m- nitroaline also

This is because

- (a) Amino group is meta orienting during electrophonic substitution reaction
- (b) Nitro groups goes always to the meta position irrespective of the substituents
- (c) Nitration of aniline is a nucleophilic substitution reaction in strongly acidic medium
- (d) In strongly acidic conditions aniline is present as anilinium ion.

Q28.

State the product available by the following reaction.

$$CH_3CH_2CN + ethanol + H_2O \xrightarrow{conc.H_2SO_4} \stackrel{}{\Delta}$$

- (a) Ethyl formate + NH₃
- (b) Ethyl propanoate + NH₃
- (c) Ethyl nutanoate + NH₃
- (d) Ethyl acetate + NH₃

Q29.

An organic compound contains 49.3 % carbon 6.84 % hydrogen and its vapour density is 73. Molecular formula of the compound is

- (a) $C_3H_8O_2$
- (b) $C_3H_{10}O_2$
- (c) $C_6H_{10}O_4$
- (d) $C_4 H_{10} O_2$

Q30.

Which is the most thermodynamically stable allotropic form of phosphorus?

- (a) Red
- (b) Black
- (c) White
- (d) Yellow

PHYSICS

Q1.

A quantity $X = \epsilon_0 L \frac{\Delta V}{\Delta t}$ where ϵ_0 is absolute permittivity, L is length, ΔV is change in potential difference and Δt is change in time, Dimensions of X are same as that of

- (a) Resistance
- (b) Charge
- (c) Voltage
- (d) Current

Q2.

A player throws a ball upwards with an initial speed of $294~ms^{-1}$. The height to which the ball rises and the time taken to reach the player's hands are assessed in different manners. The correct choice is

- (a) The height is 34.4 m
- (b) The time is 6s
- (c) The time is 3s
- (d) The height is 44 m

Q3.

A man fires a bullet of mass 200g at a speed of $5ms^{-1}$ with a gun of 1kg mass. By what velocity the gun rebounds back?

- (a) 0.1 1ms⁻¹
- (b) (b) 10ms⁻¹
- (c) 1ms⁻¹
- (d) 0.01ms⁻¹

Q4.

The moment of inertia of a square plate about a diagonal is $I_{\text{\scriptsize d}}$ and that about a median is $I_{\text{\scriptsize m}}\text{,}$ then

- (a) $I_m = I_d$
- (b) $I_m < I_d$
- (c) $I_m > I_d$
- (d) None of these

Following question consists of two statements printed as Statement I and Statement 2. While answering these questions you are required to select any one of the response indicated as

- 1. if both statement 1 and Statement 2 are true and Statement 2 is a correct explanation of Statement 1.
- 2. If both Statement 1 and Statement 2 are true but the Statement 2 is not a correct explanation of Statement 1.
- 3. If Statement 1 is true but the Statement 2 is false.
- 4. If Statement 1 is false but Statement 2 is true.

Q5.

Statement 1 : Engine always works to keep a car Statement 2 : Engine always works to keep a car moving

- (a) 1
- (b) 2
- (c) 3
- (d) 4

Q6.

A quantity $X = \varepsilon_0 L \frac{\Delta V}{\Delta t}$ where ε_0 is absolute permittivity, L is length, ΔV is change in potential difference and Δt is change in time. Dimensions of X are same as that of

- (a) Resistance
- (b) Charge
- (c) Voltage
- (d) Current

Q7.

A player throws a ball upwards with an intial speed of 294 ms⁻¹. The height to which the ball rises and the time taken to reach reach the player's hands are assessed in different manners. The correct choice is

- (a) The height is 34.4 m
- (b) The time is 6s
- (c) The time is 3s
- (d) The height is 44 m

Q8.

Three rods of equal length / are joined to form an equilateral triangle PQR. O is the mid point is PQ. Distance OR remains same for small change in temperature. Coefficient of linear expansion, α_1 for PR and α_2 for RQ are same. Then

- (a) $\alpha_2 = 3 \alpha_1$
- (b) $\alpha_2 = 4\alpha_1$
- (c) $\alpha_1 = 3\alpha_2$
- (d) $\alpha_1 4\alpha_2$

Q9.

If v is the mean speed, v_{rms} is the root mean square speed and V_p is the most probable speed of an ideal monoatomic gas at absolute temperature and mass of a gas molecule is m, then average kinetic energy of a molecule is

- (a) $\frac{1}{2}$ mv²
- (b) 3/4 mv²
- (c) $\frac{3}{4}$ mv_{rms}²
- (d) $\frac{3}{4}$ mv_p²

Q10.

A simple pendulum with length l and bob mass m is executing SHM of small amplitude A. The maximum tension in the string will be

- (a) mg (1 + A/l)
- (b) mg $(1 + a/l)^2$
- (c) mg $[1 + (A/l)^2]$
- (d) mg

Q11.

The bob of a simple pendulum of length l is released at time t=0 from the position of small angular displacement θ . Linear displacement of the bob at any time t is given as

- (a) $l\theta \cos(gt/l)^{1/2}$
- (b) $lcos (gt / l)^{1/2}$
- (c) lgsin θ
- (d) $l \theta \sin (gt/l)^{1/2}$

Q12.

1000 drops of water of radius 1 cm each carrying a charge of 10 esu combine to form a single drop. The capacitance of combined drop increases

- (a) 1 time
- (b) 10 times
- (c) 100 times
- (d) 1000 times

Q13.

The length of given cylindrical wire is increased by 100%. Due to consequent decrease in diameter the change in the resistance of the wire will be

- (a) 300 %
- (b) 200 %
- (c) 100 %
- (d) 50 %

Read the following paragraph

A thin magnetic needle has a time period of vibration as 6s in earth's magnetic field. It suddenly breaks into two pieces of half lengths. Let T be the time period of unbroken needle and T' be the time period of the broken piece.

Now answer the following questions:

Q14.

Ratio of moment of inertia of broken needle to normal is

- (a) 1:1
- (b) 1:2
- (c) 1:4
- (d) 1:8

Q15.

Ratio of magnetic moment of broken needle to normal needle is

- (a) 1:1
- (b) 1:2
- (c) 1:4
- (d) 1:8

Q16.

An inductor resistance battery circuit is switched on at t=0. If the emf of battery is E, the charge passing through the battery in time constant T is

- (a) ET / Re
- (b) eET / R
- (c) ET / Rπe
- (d) 2ET / eR

Following question consists of two statements printed as Statement 1 and Statement 2. While answering these questions you are required to select any one of the responses indicated as

- 1. If both Statement 1 and statement 2 are true and Statement 2 is not a correct explanation of Statement 1.
- 2. If both Statement 1 and Statement 2 are true but the Statement 2 is not a correct explanation of Statement 1.
- 3. If Statement 1 is true but the Statement 2 is false.
- 4. If Statement 1 is false but Statement 2 is true.

Q17.

Statement 1: Energy currents of mechanical type have an aluminium disc.

Statement 2 : Eddy currents or Foucalt's currents are produced I the metallic disc when it is rotated in the magnetic field to move the counters of the metre.

- (a) 1
- (b) 2
- (c) 3
- (d) 4

Q18.

An electromagnetic radiation has an energy 14.4 eV. To which region of electromagnetic spectrum does it belong?

- (a) Ultraviolet region
- (b) Visible region
- (c) X-ray region
- (d) γ region

Q19.

To increase both the resolving power and magnifying power of a telescope

- (a) Both the focal length and aperture of the objective has to be increased.
- (b) The focal length of the objective has to be increased.
- (c) The aperture of the objective has to be increased.
- (d) The wavelength of light has to be decreased.

Q20.

H Polaroid is prepared by

- (a) Orienting herapathite crystals in the same direction
- (b) Using thin tourmaline crystals
- (c) Stretching polyvinyl alcojol and then heating with dehydrating agent
- (d) Stretching polyvinyl alcohol and then impregnating with iodine

Q21.

An ideal mirror has an area a. light energy of frequency v and velocity c falling on this mirror per unit area is E for n photons in unit time. Then

- (a) No force is exerted on the mirror
- (b) A non calculable force exerts on the mirror
- (c) Force acted is given by 2nhv/c
- (d) No force but some pressure is exerted on the mirror.

Q22.

If the refractive index of a material of equilateral prism is $\sqrt{.}$, the angle of minimum deviation of the prism is

- (a) 30°
- (b) 45°
- (c) 60°
- (d) 75°

Q23.

A proton and an α particle have kinetic energy in the ratio 16 : 1. The ratio of de Broglie waves associated with them is

- (a) $100 \, \mu s$
- (b) $200 \mu s$
- (c) 300 µs
- (d) 400 µs

Q25.

When a transistor is used in a circuit

- (a) The emitter base junction is forward biased and base collector junction is reverse biased
- (b) The emitter base junction is reverse biased and the base collector junction is forward biased
- (c) Both junctions are reverse biased.
- (d) None of these

Q26.

How many geo synchronous satellites are required to provide the communication over the whole part of the earth?

- (a) Minimum three
- (b) Minimum one
- (c) Minimum three
- (d) Minimum four

Q27.

An ionized gas contains both positive and negative ions. If it is subjected simultaneously to an electric field along the positive x direction and a magnetic field along the positive x direction, then

- (a) Positive ions deflect towards positive y direction and negative ion towards negative y direction
- (b) All ions deflect towards positive y direction
- (c) All ions deflect towards positive y direction
- (d) Positive ions deflect towards negative y direction and negative ions towards negative y direction

Q28.

A satellite is moving with a constant speed v n a circular orbit about the earth. An object of mss m is ejected from the satellite such that it just escapes from the gravitational pull of the earth. At the time of its ejection, the kinetic energy of the object is

- (a) $\frac{1}{2}mv^2$
- (b) mv^{2}
- (c) $\frac{3}{2} mv^2$
- (d) $2mv^2$

Q29.

An idea spring with spring constant k is hung from the ceiling and a block of mass M is attached to its lower end. The mass is released with the spring initially unstretched. The maximum extension in the spring is

- (a) $\frac{4 Mg}{k}$ (b) $\frac{2 Mg}{k}$ (c) $\frac{Mg}{k}$ (d) $\frac{Mg}{k}$

Q30.

Two blocks of masses 10 kg and 4 kg are connected by a spring of negligible mass and placed on a frictionless horizontal surface. An impulse gives a velocity of 14 m/s to the heavier block in the direction of the lighter block. The velocity of the centre of mass is

- (a) 30 m/s
- (b) 20 m/s
- (c) 10 m/s
- (d) 5 m/s
- (e)

MATHEMATICS

Q1.

In a survey of political preference, asked to give their preference on three government proposals I, II and III, 78% were in favor of at least on the proposals, 50% favored proposal I, 30% favored proposal II, 20% favored proposal III. If 5% favored all the three proposals, what % favored more than one of the three proposals?

- (a) 2
- (b) 11
- (c) 13
- (d) 17

Q2.

The range of the function $f(x) = [\sin x]$ is

- (a) {-1, 1}
- (b) [-1,1]
- (c) $\{-1, 0, 1\}$
- (d) [0, 1]

Q3.

The locus of a point z satisfying |2z - 1| = |z - 2| is a/an

- (a) Straight line
- (b) Cirlce
- (c) Ellipse
- (d) None of these

Q4.

The only of the root of $ax^3 + bx + c = 0$, $\alpha \neq 0$, is zero, if

- (a) c = 0
- (b) $c = 0, b \neq 0$
- (c) b = 0, c = 0
- (d) $b = 0, c \neq 0$

Q5.

If $\alpha + \beta = 4$ and $\alpha^3 + \beta^3 = 44$, α , β are the roots of

- (a) $2x^2 7x + 16 = 0$
- (b) $3x^2 + 9x + 11 = 0$
- (c) $9x^2 27x + 20 = 0$
- (d) None of these

Q6.

Let
$$\Delta = \begin{vmatrix} a & a+b & a+b+c \\ 3a & 4a+3b & 5a+4b+3c \\ 6a & 9a+6b & 11a+9b & 6c \end{vmatrix}$$
, where

 $a = i, b = w, c = w^2$, then Δ is equal to

- (a) -1
- (b) 1
- (c) -i
- (d) i

Q7.

The number of ways of painting the faces of a cube with six different colour is

- (a) 2!
- (b) 3!
- (c) 6!
- (d) None of these

Q8.

$$^{\prime\prime}C_0 - \frac{1}{2}{}^nC_1 + \frac{1}{3}{}^nC_2 + \dots + (-1)^nC_n / n + 1 =$$

- (a) n
- (b) 1/n
- (c) $\frac{1}{n+1}$ (d) $\frac{1}{n-1}$

Q9.

The sum of first two terms of an infinite G.P. is 1 and every term is twice the sum of the successive terms. Its first term is

- (a) $\frac{1}{2}$
- (b) 1/3
- (c) 2/3
- (d) 3/4

Q10.

 $\frac{3+5+7+\ldots + n \ terms}{5+8+11+\ldots + 10 \ terms} = 7, \text{ then the value of n is}$

- (a) 19
- (b) 22
- (c) 33
- (d) 35

Q11.

If the sum of an infinite G.P. is 3 and the sum of the square of its terms is also 3, then its first term and common ratio are

- (a) $\frac{1}{2}$, $\frac{1}{3}$
- (b) $\frac{3}{2}$, $\frac{1}{2}$ (c) $\frac{1}{3}$, $\frac{1}{4}$
- (d) None of these

Q12.

 $Lt_{x\to\infty}\left(\frac{x+5}{x+1}\right)^{x+4}$ is equal to

(a) e

(b) e^2

(c) e^3

(d) e⁴

Q13.

Lt $_{x \to 0} \frac{1 - cosx}{x}$ is equal to

- (a) 0
- (b) ½
- (c) 1
- (d) does not exists

Q14.

Let $f(x) = x^{3/2}$, then f'(0) =

- (a) 0
- (b) ½
- (c) 1
- (d) Does not exists

Q15.

If y = 4x - 5 is tangent to the curve $y^2 = px^3 + q$ at (2, 3), then

- (a) p = 2, q = 3
- (b) p = 2, q = -7
- (c) p = 3, q = 7
- (d) p = 2, q = -3

Q16.

$$\int \sqrt{1 + \cos(x/4)} \ dx =$$

- (a) $8\sqrt{2}\sin(x/8) + c$
- (b) $-8\sqrt{2}\cos(x/8) + c$
- (c) $8\sqrt{2} \sin\left(\frac{x}{4}\right) + c$
- (d) None of these

Q17.

$$\int \log x \, dx =$$

- (a) $x (1 \log x) + c$
- (b) x (log x 1) + c
- (c) $(1 + x) \log x + c$
- (d) $(1 x) \log x + c$

Q18.

$$\int_0^\pi \sqrt{1 - \cos x} \ dx =$$

- (a) $\sqrt{2}$
- (b) 1
- (c) 2
- (d) $2\sqrt{2}$

Q19.

The order of a differential equation whose solution is $y = \alpha cosx + b sinx$, where α and b are arbitrary constants, is

- (a) 1
- (b) 2
- (c) 3
- (d) Cannot be determined

Q20.

If $\frac{dy}{dx} + \frac{1}{y\sqrt{1-x^2}} = 0$, then which of the following statements is true?

- (a) $y^2 + 2\sin^{-1}x = c$
- (b) $x^2 + 2 \sin^{-1} y = c$
- (c) $x^2 + 2 \sin^{-1} x = c$
- (d) None of these

Q21.

The vertices of Δ are (0, 0), (3, 0) and (0, 4). Its orthocenter is at

- (a) (0,0)
- (b) (1/2, ½)
- (c) (1/2, 3/2)
- (d) (1, 3/2)

Q22.

The equation $\frac{x^2}{a^2} + \frac{x^2}{b^2} = 1$ represents a vertical ellipse if

- (a) $a^2 = b^2$
- (b) $a^2 > b^2$
- (c) $a^2 < b^2$
- (d) None of these

Q23.

The points (5, -4, 2), (4, -3, 1) (7, -6, 4), (8, -7, 5) are the vertices of

- (a) Parallelogram
- (b) Square
- (c) Rectangle
- (d) Rhombus

Q24.

A particle acted on the constant forces $4\hat{\imath}+\hat{\jmath}-3\hat{k}$ and $3\hat{\imath}+\hat{\jmath}-3\hat{k}$ to the point $5\hat{\imath}+4\hat{\jmath}+\hat{k}$. the total work done by the forces is

- (a) 10 units
- (b) 20 units
- (c) 30 units
- (d) 0 units

Q25.

The probability that a man will live 10 more years is $\frac{1}{4}$ and the probability that his wife will live 10 more years is $\frac{1}{3}$. then the probability that neither of them will be alive in 10 years is

- (a) 11/12
- (b) ½
- (c) 7/12
- (d) None of these

Q26.

Period of $\cot 3x - \cos (4x + 3)$ is

- (a) $\pi/3$
- (b) $\pi/4$
- (c) π
- (d) $\pi/2$

Q27.

- (a) $\sin^{-1}\frac{65}{56}$
- (b) $\sin^{-1}\frac{56}{65}$
- (c) $\cos^{-1}\frac{13}{25}$
- (d) None of these

Q28.

The area of the figure bounded by curves $y^2 = 2x + 1$ and x - y = 1 is

- (a) 16/3
- (b) 18/3
- (c) 21/2
- (d) None of these

Q29.

$$\log (1 - x) = -(x + \frac{x^2}{2} + \frac{x^3}{3} + \dots)$$
 is valid for

- (a) all $x \in R$
- (b) -1 < x < 1
- (c) $-1 < x \le 1$
- $(d) 1 \le x \le 1$

Q30.

$$1 + \log_e z + \frac{(\log_e z)^2}{2!} + \frac{(\log_e z)^3}{3!} + \dots$$
 is equal to

- (a) z
- (b) z⁻¹
- (c) togz
- (d) None of these