

Subject: CHEMISTRY, MATHEMATICS & PHYSICS

Paper Code: JEE_Main_Sample Paper –I_Answer File

Part – A – Chemistry

1)

Ans: d

Exp: Sudden jump from $IE_2 \rightarrow IE_3$ is given by elements which attain stable configuration of noble gas after losing 2 electrons.

2)

Ans: c

Exp: NA

3)

Ans: c

Exp: It is nitrogen. It forms NCl_3 , N_2O_5 and Mg_3N_2 but NCl_5 does not exist due to absence of vacant d-orbital. Nitrogen exhibits a covalency of three only.

4)

Ans: b

Exp: Factual question.

CH₄ = Tetrahedral Shape,

 SeF_4 = Selenium in SeF_4 has an oxidation state of +4. Its shape in the gaseous phase is similar to that of SF_4 , having a see-saw shape

5)

Ans: b

Exp: K.E. of emitted photoelectrons depend on frequency of radiation.

6)

Ans: c

Exp: Adding Catalyst increase or decrease the Activation Energy (Ea).

7)

Ans: c

- Exp: NA
- 8)

Ans: a

11)

Ans: a

Exp: $\ln [CuCl]_4^{2^-}$ orange compound there is one unpaired electron in d-orbital, therefore, its hybridization is sp³ where as in $[CuCl_4]^{2^-}$, yellow compound, unpaired electron jumps to 5s & thus dsp² hybridization.

12)

Ans: d

Exp: Complex is $[Fe(en)_3]^{2+}$; as 'en' is a strong field ligand pairing of electrons will take place

[Fe(en)₃]²⁺: d²sp³hybridization

Hence, hybridization is d²sp³ and complex is diamagnetic. As it has 3 bidentate symmetrical 'en' ligands so it will not show geometrical isomerism.

13)

Ans: b

Exp: There are unpaired electrons, others have no unpaired electrons.

14)

Ans: c

4	eVidvarthi							
T	FREE Educ	ation						
	Ans:	b						
	Exp:	$\Delta H_{f}(CH_{4}) = (\Delta H_{comb.}Of C) + (2 \times \Delta H_{comb.}Of H_{2}) - (\Delta H_{comb.}Of CH_{4})$						
	18)							
	Ans:	c						
	Exp:	Increase in pressure favours the melting of ice.						
	19)							
	Ans:	d						
	Exp:	K _w increases with increase in temperature.						
	20)							
	Ans:	c						

Exp: The benzoic acids forms a dimer due to H-bonding as

21)

Ans: b

Exp: NH_3 is weakly ionising while NH4Cl will be converting into NH_4 + only.

eVidy	arthi
FREI	India's no.1 online academy
22)	
An	5: C
Exp): NA
23)	
An	5: C
Exp	a: Rate is governed by slowest step
	$A + B_2 \xrightarrow{k_1} AB + B$
	$r = k_1 [A] [B_2](i)$
	From $A_2 \xrightarrow{k_c} A + A$
	$k_{c} = \frac{\left[A\right]^{2}}{\left[A_{2}\right]} \dots \dots \dots (ii)$
	$\left[\mathbf{A}\right] = \sqrt{\mathbf{k}_{c}} \left[\mathbf{A}_{2}\right]^{1/2}$
	$r = k_1 \sqrt{k_c} [A_2]^{1/2} [B_2]$ order is $= \frac{1}{2} + 1 = \frac{3}{2}$

24)

Ans: d

Exp: When all particle along are body diagonal one removed, these 2X atoms from corner are removed, one Y particle removed & 2Z particle removed.

FREE Education

Hence new arrangement, X particle = 1/8 x 6 + ½ x 6 = 15/4; Y particle = 6: Z

particle = 3

Hence formula = $X_{15/4} Y_3 Z_6 = X_{5/4} Y Z_2 = X_5 Y_4 Z_8$

25)

Ans: a

Exp: (A) $H_2S_2O_7 = +6$ Each, $Na_2S_4O_6 = +5, 0$, $Na_2S_2O_3 = +4, 0$

26)

Ans: c

Exp: The hydration energy of the ions of alkaline earth metals (M²⁺) is nearly 4 or
5 times greater than that of alkali metals because of their small size and increased charge.

27)

Ans: a

Exp: It is believed that out of two hydrogen, one is associated with each oxygen atom at bond angle of 94.8°. All the four atoms H-O-O-H do not lie in the same plane.

28)

eVidyarthi

FREE Education

Ans: b

⊕O-Me NO₂

Exp:

: In this structure, every atom

(except, of course, H) has a stable octet of elections. So it is the most stable.

29)

Ans: c

Exp: Ionization energy of hydrogen atom is about 1310 kJmol⁻¹. Covalent single bond energies are of the order of a few hundred kJ mol⁻¹. Molecular translation energy of gasses = 3/2 RT, which is about 3.7 kJ mol⁻¹ at 300K. Rotational barrier between eclipsed and staggered forms of ethane is about 12kJ mol⁻¹

30)

Ans: c

Exp: $SF_6: sp^3d^2$ hybridization; molecule is octahedral XeF₆:sp³ hybridization; molecule is pentagonal [pyramid]

XeF₄: sp³d² hybridization: molecule is square planar I_3 : sp³d hybridization: molecule is linear

Final angle of the reflected ray with the same normal = 50°

Angle through which reflected ray is rotated = $50^{\circ} - 20^{\circ} = 30^{\circ}$

33) Ans: c

FREE Education

Exp: T.E = KE + PE

= KE – GMm/R

(on surface of earth)

At infinity TE = 0, KE = GMm/R = mgR

 $(g = GM/R^2)$

34) Ans: c

Exp: $B = M.I/4\pi d * \sin \alpha + \sin \beta +$

 $F_{min} = \mu g (m_2 + m_1/2)$

37) Ans: d

Exp: $v_0 = 0 + \alpha x 2n$

 $\alpha = v_0/2n$

for the 2n sec s, displacement

$$x_1 = \frac{1}{2} v_0 / 2n (2n)^2$$

for first n sec s,

 $x_2 = \frac{1}{2} v_0 / 2n (n)^2$

Displacement in the last n secs:

$$x_1 - x_2 = \frac{1}{2} \frac{v0}{2n} ((2n)^2 - (n)^2)$$

 $=3v_0n/4$

- 38) Ans: a
- Exp: The distance travelled by the train in 20secs is

½ (0.5) (20)² = 100

The distance between the two events μ & T is 100m

The observer has to move 100m in 20s in a direction opposite to that of train

 V_{max} = 20t

Area of graph

←

2t

½ v_{max} (3t) = 200

 $t = \sqrt{20/3}$

total time = $3t = 2\sqrt{15}$ secs

41) Ans: c

Exp: The x-coordinate of all the particles in this case cannot be of the same sign.

42)

Ans: c

Exp:

Xcom = (2mx3R)/(m+2m) = 2R

COM lies at pt of contact

43) Ans: a

 $V(r) = -\int_{\infty}^{r} \vec{E} \cdot \vec{d}$

44)

Ans: a

Exp:

The displacement & velocity are directed in the –ve of direction. There would be retardation as lift stops at 4th floor, so acceleration is directed opposite to the velocity in the upward direction.

45)

Ans: c

FREE Education

Exp:

 $\mu mg \in$

 $\alpha = 4/2 = 2m/s^2$ 200 - $\mu \times 30 \times 10 = 30 \times 2$ $\mu = 14/20 = 7/15 = 0.47$

46)

Ans: b

Exp: PR = d

 \therefore PO = d sec θ

and CO = PO cos 2θ = d sec θ 2θ

path difference between the two rays is,

 $\Delta x = PO + OC = (d \sec \theta + d \sec \theta \cos 2 \theta)$

Phase difference between the two rays is

 $\Delta \phi = \pi$ (one is reflected, while another is direct)

Therefore, condition of construction interference should be

×α

200N

 $\Delta x = \lambda/2, \ 3\lambda/2 \ \dots$ Or d sec θ (1 + cos θ) = $\lambda/2$ Or (d/cos θ) (2cos² θ) = $\lambda/2$ Or cos θ = $\lambda/4d$

47)

Ans: B

Exp: Heat released by 5kg of water when its temperature falls from 20° C to 0° C

is,

Q1 = $mc\Delta\theta$ = (5)(103) (20-0) = 105cal

When 2 kg ice at -20oC comes to a temperature of 0° C, it takes energy

Q2 = mc $\Delta\theta$ = (2) (500) (20) = 0.2 x 105cal

The remaining heat

 $Q = Q1 - Q2 = 0.8 \times 105$ cal will melt a mass m of the ice,

Where,

 $m = Q/L = 0.8 \times 105/80 \times 103 = 1 \text{kg}$

total mass of water=5+1=6kg

48)

Ans: a

Exp: The circuit can be redrawn as follows:


```
49)
```

Ans: b

Exp: All the three plates will produce electric field at P along negative z – axis. Hence,

$$\vec{E}_{p} = \left[\frac{\sigma}{2\varepsilon_{0}} + \frac{2\sigma}{2\varepsilon_{0}} + \frac{\sigma}{2\varepsilon_{0}}\right] \left(-\hat{k}\right)$$
$$= -\frac{2\sigma}{\varepsilon_{0}}\hat{k}$$

∴Correct answer is (b).

50)

Ans: b

Exp: Net electrostatic energy of the configuration will be

U = K
$$\left[\frac{q.q}{a} + \frac{Q.q}{\sqrt{2a}} + \frac{Q.q}{a} \right]$$
 Here, K = $\frac{1}{4\pi\varepsilon_0}$
Putting U = 0 we get, Q = $\frac{-2q}{2+\sqrt{2}}$

51)

Ans: d

$$\frac{dN}{dt} = 50 - \frac{N}{0.5}$$

Exp: $\int_{0}^{N} \frac{dN}{50 - 2N} = \int_{0}^{t} dt$
 $N = (100(1 - e^{-t/2})) = 25$
 $t = 2\ln(4/3)$

52) Ans: a

Exp: Path difference = $(\mu - 1) t = n\lambda$; For minimum t, n = 1; $\therefore t = 2\lambda$

53)

Ans: C

Exp: B.A'+B+A.B'+A

= B.(A'+1)+A.(B'+1)

=B.1+A.1=A+B

FREE Education

54)

Ans: d

$$eV_0 = \frac{hc}{\lambda_0} - W_0$$
 and $eV' = \frac{hc}{2\lambda_0} - W_0$

Exp: Subtracting them, we have

$$e(V_0 - V') = \frac{hc}{\lambda_0} \left[1 - \frac{1}{2} \right] = \frac{hc}{2\lambda_0} \text{ or } V' = V_0 - \frac{hc}{2e\lambda_0}$$

55)

Ans: D

Exp: Tension in the string b/w B and C=T,

Tension in the string attached to A and B=T₁

For block C: T=Mg, For block B: $T-u100g-u(100+140)g-2T_1=0$

For block C: T₁=u100g, hence,

Mg-100ug-240ug-200ug=0

M=u540=162kg

56)

Ans: D

$$\int \vec{E} \cdot \vec{dl} = \left| \frac{d\phi}{dt} \right|$$

$$= S \left| \frac{dB}{dt} \right|$$
or
$$E (2\pi r) = \pi a^{2} \left| \frac{dB}{dt} \right| \text{ for } r \ge a$$

$$\therefore E = \frac{a^{2}}{2r} \left| \frac{dB}{dt} \right|$$

$$\therefore \text{ Induced electric field } \propto \frac{1}{r}$$
For
$$r \le a$$

$$E (2\pi r) = \pi r^{2} \left| \frac{dB}{dt} \right|$$

or
$$E = \frac{r}{2} \left| \frac{dB}{dt} \right|$$

Exp:

At
$$r = a, E = \frac{a}{2} \left| \frac{dB}{dt} \right|$$

Therefore, variation of E with r (distance from centre) will be as follows:

or $E \propto r$

eVidyarthi FREE Education

57)

Ans: a

Exp: Current, i = (frequency) (charge)

Magnetic moment,

$$\mathbf{M} = (\mathbf{i})(\mathbf{A}) = \left(\frac{\mathbf{q}\omega}{\pi}\right)(\pi \mathbf{R}^2) = (\mathbf{q}\omega \mathbf{R}^2)$$

Angular momentum,

$$L = 2I\omega = 2(mR^{2})\omega$$
$$\therefore \frac{M}{L} = \frac{q\omega R^{2}}{2(mR^{2})\omega} = \frac{q}{2m}$$

58)

Ans: a

FREE Education

$$U = eV = eV_0 \ln\left(\frac{r}{r_0}\right)$$
$$|F| = \left|-\frac{dU}{dr}\right| = \frac{eV_0}{r}$$

Exp:

This force will provide the necessary centripetal force.

Hence,
$$\frac{mv^{2}}{r} = \frac{eV_{0}}{r}$$

or
$$v \oint \frac{eV_{0}}{m} \qquad \cdots(\cdots)^{i}$$

Moreover,
$$mvr = \frac{nh}{2\pi} \qquad \cdots(\cdots)^{ii}$$

Dividing Eq.) ii (by) i , we have
$$mr = \frac{nh}{2\pi} \qquad or r_{n} \propto n$$

59)

Ans: B

Exp: The apparent freq. of sound coming from the police car and from the

stationary siren observed by the motorcyclist will be same.

(330-v)/(330-22) *176= (330+v)/330 *165

v is approx. 22m/s

60)

Ans: a

$$I_{\text{remaining}} = I_{\text{whole}} - I_{\text{removed}}$$

Exp: or $I = \frac{1}{2} (9M) (R)^2 - \left[\frac{1}{2} m \left(\frac{R}{3} \right)^2 + m \left(\frac{2R}{3} \right)^2 \right] \qquad \dots \dots (i)$
Here, $m = \frac{9M}{\pi R^2} x \pi \left(\frac{R}{3} \right)^2 = M$

Substituting in Eq. (i), we have $I = 4MR^2$

∴correct answer is (a)

Part – C – Mathematics

61) Ans: c

4	eVidvar	thi	
	FREE Educa	ation	
	62)	Ans:	b
		Exp:	6! – 2! 5! = 480
	63)	Ans:	b
		Exp:	2x+v = 5
			x + 3y = 5
			x - 2y = 0
			Solving eqs. (i) and (ii) we get
			Solving eqs. (i) and (ii), we get $y = 2$ and $y = 1$
			x = 2 and $y = 1$
			Which is satisfied Eq. (III).
	64)	Ans:	a
		Exp:	$i^{i} = (e^{i\pi/2})^{i}$
			$= e^{-\pi/2}$
	65)	Ans:	b
		Exp:	$ z_1 - z_2 = z_1 - (z_2 - 3 - 4i) - (3 + 4i) $
		•	$\geq z_1 - z_2 - 3 - 4i - 3 + 4i $
			= 12-5-5=2

PREE Education

 66) Ans: d

 Exp: In 10jumps = 10m

$$11^{th}$$
 jump = $10 + 2 = 12m$ (not slip)

 67) Ans: c

 Exp: $32 = 2^5$
 $(32)^{32} = (2^5)^{32} = 2^{16}$;

 = $(3-1)^{16}$;

 = $3m+1, m \in I_+$

 Now, $(32)^{32^0} = 32^{3^{n+1}} = 2^{5(3^{n+1})} = 2^{19^n + 5}$
 \cdot $32^{23^2} = 2^{3(5m+1)}, 2^2$

 = $4.(8)^{5m+1}$

 = $4.(7+1)^{5m+1}$

 = $4.[7n + 1], n \in I_+$

 = $28n+4$
 \cdot Remainder = 4

 68) Ans: d

Exp: Probability of showing even number in a throw = $3/6 = \frac{1}{2}$

Get CBSE Notes, Video Tutorials, Test Papers & Sample Papers

	eVidvarthi								
T	FREE Educ	ation							
		$\therefore A^2$	$\mathbf{H} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ -1 & -2 & -3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ -1 & -2 & -3 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$						
			This is nilponent matrix of index 2.						
	71)	Ans:	а						
		Exp:	Total ways = ${}^{12}C_2 = 66$						
			E_3 = the even of the sum being 3						
			E ₆ = the even of the sum being 6						
			E_9 = the even of the sum being 9						
			E_{12} = the even of the sum being 12						
			E_{15} = the even of the sum being 15						
			E_{18} = the even of the sum being 18						
			E_{21} = the even of the sum being 21						
			(sum maximum = 11 + 12 = 23)						

$$\begin{bmatrix} (\text{Which is not divisible by 3}) \\ (\text{Heighest number divisible by 3 is 21}) \\ \therefore n(E_3) = 1, n(E_6) = 2, n(E_9) = 4, \end{bmatrix}$$

$$n(E_{12}) = 5, n(E_{15}) = 5, n(E_{18}) = 3, n(E_{21}) = 3$$

$$\therefore \quad \text{Re quired probability} = \frac{\sum_{i=1}^{7} n(E_{3i})}{66}$$

$$= \frac{22}{66} = \frac{1}{3}$$

72) Ans: b

Exp:
$$4\cos^2\theta - 2\sqrt{2}\cos\theta - 1 = 0$$

 $\cos\theta = 2\sqrt{2}\pm\sqrt{(8+16)}/8 = \sqrt{2}\pm\sqrt{6}/4$
 $\cos\theta = \sqrt{6}+\sqrt{2}/4 \implies \theta = \pi/12; 2\pi - \pi/12 = 23\pi/12$
 $\cos\theta = -\sqrt{6} - \sqrt{2}/4$
 $\cos\theta = \cos(\pi - 5\pi/12); \cos(\pi + 5\pi/12)$
 $\Theta = 7\pi/12; 17\pi/12$

73) Ans: c

Exp: $E = 4+5(\omega)^{334} + 3(\omega)^{365} = 4+5\omega + 3\omega^2$ = $1+2\omega+3(1+\omega+\omega^2) = 1+(-1+i\sqrt{3}) = i\sqrt{3}$

74) Ans: b

Exp: Any line passing through the intersection of the given lines is

 $x+3y+4+\lambda(3x+y+4) = 0$ (i)

Or, $(1+3\lambda)x+(3+\lambda)y+4(1+\lambda) = 0$

The slope of the line m = - $1+3\lambda/3+\lambda$

As the line is equally inclined with the axes,

m = tan45° or tan135° = ± 1

 \therefore - 1+3 λ /3+ λ = ±1, \Rightarrow λ =±1

:. The required lines are (putting $\lambda = -1, 1$ in (i))

 $x+ 3y + 4 \pm (3x+y+4) = 0$

Or, x + y + 2 = 0 and x - y = 0

75) Ans: b

Exp:

$$(x^{2} + y^{2})\sin^{2} \alpha = (x\cos\beta - y\sin\beta)^{2}$$

$$\Rightarrow x^{2} (\sin^{2} \alpha - \cos^{2} \beta) + 2xy\sin\beta\cos\beta + y^{2} (\sin^{2} \alpha - \sin^{2} \alpha) = 0 \quad \dots \dots \dots (i)$$

Let the angle between the lines representing by (1) is θ

$$\therefore \tan \theta = 2 \left| \frac{\sqrt{h^2 - ab}}{a + b} \right|$$

$$= 2 \frac{\sqrt{\sin^2 \beta \cos^2 \beta - (\sin^2 \alpha - \cos^2 \beta)(\sin^2 \alpha - \sin^2 \beta)}}{|\sin^2 \alpha - \cos^2 \beta + \sin^2 \alpha - \sin^2 \beta}$$

$$= 2 \frac{\sqrt{\left\{ \sin^2 \beta \cos^2 \beta - \sin^4 \alpha + \sin^2 \alpha \sin^2 \beta + \sin^2 \alpha \cos^2 \beta - \sin^2 \beta \cos^2 \beta \right\}}}{|(2\sin^2 \alpha - 1)|}$$

$$= 2 \frac{\sqrt{\sin \alpha (1 - \sin^2 \alpha)}}{|-\cos 2\alpha|} = \frac{2 \sin \alpha \cos \alpha}{|-\cos 2\alpha|} = \tan 2\alpha$$

$$\Rightarrow \theta = 2\alpha$$

76) Ans: d

FREE Education

Exp: Equation of circle is $x^2+y^2+2gx+2fy+c=0$ $(1, t) \Rightarrow 1 + t^2+2g+2ft+c=0$ (i) $(t, t) \Rightarrow t^2+t^2+2gt+2ft+c=0$(ii) $(t, 1) \Rightarrow 1+t^2+2gt+2f+c=0$ (iii) Subtracting (ii) from (i), $1+2g - t^2-2gt = 0$ $\Rightarrow 1-t^2+2g(1-t)=0$ $\Rightarrow (1-t)(1+t+2g) = 0$

 \Rightarrow t = 1

∴one point (t, t)

∴ passes through (1, 1)

77) Ans: c

Exp:

$$I\int \sec^{2} \theta (\sec \theta + \tan \theta) \bullet (\sec \theta + \tan \theta) d\theta$$

Put $\sec \theta + \tan \theta = y$ (1)
 $\therefore \sec \theta (\tan \theta + \sec \theta) d\theta = dy$
Now, $\sec \theta - \tan \theta = \frac{1}{y}$ (2)
From (1) and (2), $2 \sec \theta = y + \frac{1}{y}$
 $\therefore I = \frac{1}{2} \int y \left(y + \frac{1}{y} \right) dy = \frac{1}{2} \left[\frac{y^{3}}{3} + y \right] + C$
 $= \frac{1}{2} \left[\frac{(\sec \theta + \tan \theta)^{3}}{3} + (\sec \theta + \tan \theta) \right] + C$
 $= \frac{(\sec \theta + \tan \theta)}{6} \left[(\sec \theta + \tan \theta)^{2} + 3 \right] + C$

78) Ans: d

Exp:

Given,
$$V = \pi r^2 h$$

Differentiating both sides
 $\frac{dV}{dt} = \pi \left(r^2 \frac{dh}{dt} + 2r \frac{dr}{dt} h \right) = \pi r \left(r \frac{dh}{dt} + 2h \frac{dr}{dt} \right)$
 $\frac{dr}{dt} = \frac{1}{10}$ and $\frac{dh}{dt} = -\frac{2}{10}$
 $\frac{dV}{dt} = \pi r \left(r \left(-\frac{2}{10} \right) + 2h \left(\frac{1}{10} \right) \right) = \frac{\pi r}{5} (-r+h)$
Thus, when $r = 2$ and $h = 3$,
 $\frac{dV}{dt} = \frac{\pi (2)}{5} (-2+3) = \frac{2\pi}{5}$

79) Ans: b

Exp:

$$\cos ax = 0 \text{ if } ax = \frac{\pi}{2} \text{ or } \frac{3\pi}{2}$$
$$x = \frac{\pi}{2a} \text{ or } \frac{3\pi}{2a}$$
$$A_{1} = \int_{\frac{\pi}{6a}}^{\frac{\pi}{2a}} \cos ax dx$$
$$= \frac{1}{a} \int_{\pi/6}^{\pi/2} \cos t dt = \frac{1}{a} [\sin t]_{\pi/6}^{\pi/2} = \frac{1}{2a}$$

PREE Education

 81) Ans: b

 Exp:
$$x^2 + (y-r)^2 = r^2$$
(i)

 $\therefore x + (y-r) dy/dx = 0, \therefore (r-y) dy/dx = x$
 $\therefore r = y + x/(dy/dx)$

 Put it in (i), we get $(x^2 - y^2) dy/dx - 2xy = 0$

 82) Ans: c

 Exp: $(1+y^2) dx + (1+x^2)dy = 0$
 $\Rightarrow dx/1 \cdot x^2 + dy/1 + y^2 = 0$

 On integration, we get

 $\tan^{-1}x + \tan^{-1}y = \tan^{-1}C$
 $\Rightarrow x+y/1 - xy = C$
 $\Rightarrow x+y/1 - xy = C$
 $\Rightarrow x+y/1 - xy = C$
 $\Rightarrow x+y = C(1-xy)$

 83) Ans: b

 Exp: Let a, ar, ar²,

 $a + ar = 12$
 $ar^2 + ar^3 = 48$
 $ar^2(1+r)/a(r) = 4$

 $\Rightarrow r^2 = 4 \text{ if } r \neq -1$ $\therefore r = -2$ Also, a = -12 (using (1)).

84) Ans: b

Exp: Let $f(x) = x^3 - px + q$

Now for

Maxima/minima f'(x) = 0

$$\Rightarrow 3x^2 - p = 0$$

 $\Rightarrow x^2 = P_3$

85) Ans: b

Exp: BD = AB = 7+x

Also $AB = x \tan 60^\circ = x\sqrt{3}$

R

 $X = 7/\sqrt{3}-1$

 $AB = 7\sqrt{3}/2(\sqrt{3}+1)$

86) Ans: c

FREE Education

Exp: $A = \{4, 5, 6\}, B = \{1, 2, 3, 4\}.$

Obviously $P(A \cup B) = 1$

87) Ans: c

Exp: Let (h, k) be the coordinates of the midpoint of a chord which subtends a right angle at the origin. Then equation of the chord is

$$kx + ky - 4 = h^{2} + k^{2} - 4(u \sin g \ T = S')$$

or
$$hx + ky = h^{2} + k^{2}$$

The combined equation of the pair of lines joining the origin points to the of intersection of $x^{2} + y^{2} = 4$ and $hx + ky = h^{2} + k^{2}$ is

$$x^{2} + y^{2} - 4\left(\frac{hx + ky}{h^{2} + k^{2}}\right)^{2} = 0$$

Lines given by the above equations of the pair of lines joining the origin to therefore coeff. of $x^2+coeff.\, of\, y^2=0$

$$\Rightarrow 2(h^2 + k^2) - (4h^2 + 4k^2) = 0 \Rightarrow h^2 + k^2 = 2$$

$$\therefore Locus of (h,k) is x^2 + y^2 = 2$$

88) Ans: d

Exp:

Mean of a, b, 8, 5, 10 is 6

$$\Rightarrow \frac{a+b+8+5+10}{5} = 6$$

$$\Rightarrow a+b=7 \qquad(1)$$

$$\therefore \text{ Variance} = \sum \frac{(X-A)^2}{1}$$

$$= \frac{(a-6)^2 + (b-6)^2 + 4 + 1 + 16}{5} = 6.8$$

$$\Rightarrow a^2 + b^2 = 25$$

$$a^2 + (7-a)^2 = 25 (\text{U} \sin g(1))$$

$$\Rightarrow a^2 - 7a + 12 = 0$$

$$\therefore a = 4, 3 \text{ and } b = 3, 4$$

FREE Education

89) Ans: a

Exp:

$$(x-h)^{2} + (y-2)^{2} = 25 \qquad \dots \dots (1)$$

$$\Rightarrow 2(x-h) + 2(y-2)\frac{dy}{dx} = 0$$

$$\Rightarrow (x-h) = -(y-2)\frac{dy}{dx}$$

substituting in (1), we have

$$(y-2)^{2}\frac{dy}{dx}2 + (y-2)^{2} = 25$$

$$(y-2)2y'2 = 25 - (y-2)^{2}$$

90) Ans: a

Exp:

$$S_1 \equiv (6,5); S_2 \equiv (-4,5), e = 5/4$$

 $S_1S_2 = 10 \Longrightarrow 2ae = 10 \Longrightarrow a = 4$
and $b^2 = a^2(e^2 - 1) = 16\left(\frac{25}{16} - 1\right) = 9$

Centre of the hyperbola is

)