

Solutions-solutions

SUBJECTIVE PROBLEMS:

<u>Sol 1.</u>

(i) Molarity = Moles of solute/Volume of solution in L

(ii) $N_1V_1 = N_2V_2$

A 13% solution (by weight) contains 13 g of solute (i.e H₂SO₄) per 100 gm of solution

Moles of solute = Mass of H_2SO_4/M . wt. of $H_2SO_4 = 13/98 = 0.1326$

Volume of solution in L

= Mass of solution/density of solution *1000 = 100/1.02 * 1000 = 0.0980 Litre

: Molarity of solution = 0.1326/0.0980 = 1.35 M

Again, Molality = Moles of solute/Mass of solvent in kg

Mass of solute in 100 ml of solution = 13 g [13% solution]

Mass of solvent = Mass of solution – Mass of solvent

= 100 – 13 = 87 g

∴ Molality = 13/98/87/100 = 1.57 m

Normality = Miolarity * Mol. wt/Eq. wt. or 1.35 * 98/49 = 2.70 N

 $N_1 = 2.70$, $V_1 = 100$ ml, $N_2 = 1.5$, $V_2 = ?$ [: Eq. wt = 98/2 2H₂SO₄ = 49]

 $N_1V_1 = N_2V_2$

2.70 * 100 = 1.5 * v₂

Or $V_2 = 2.70 \times 100/1.5 = 180$ ml. \therefore 100 ml of this acid should be diluted to 180 ml to prepare 1.5 solution.

<u>Sol 2.</u>

Molarity = Moles of solute/Volume of solution in L

= Mass of solute/M. wt. of solute/Mass of solution/density of solution * 1000

M = 86/98/100/1.787 * 1000 = 0.8775/55.5 * 1000 = 15.81 M

 $M_1V_1 = M_2V_2$

 $M_1 = 15.81, V_1 = ?$

 $M_2 = 0.2, V_2 = 1 L = 1000 \text{ ml}$

 \therefore 15.81 * V_1 = 0.2 * 1000

Or V₁ = 0.2 *1000/15.81 = 12.65 ml

 \therefore Amount of acid to be used to make 1 L of 0.2 M H₂SO₄ – 12.65.

<u>Sol 3.</u>

N₁= I, V_I=?,N₂=26.7, V₂=0.4

 $N_1 V_1 = N_2 V_2$

 $1 \times V_1 = 26.7 \times 0.4$

 $V_1 = 26.7 * 0.4/1 = 10.68$

49g (: eqwt of $H_2SO_4 = 49$) pf H_2SO_4 will be neutralized by = 1N 1000 ml NaOH

 \therefore 0.5g of H₂SO₄ will be neutralized

= 1000/49 * 0.5 = 10.20 ml 1N NaOH

Volume of 1 N NaOH used by dissolved

SO₃ = 10.68 - 10.20 = 0.48 ml

 $SO_3 + 2NaOH \rightarrow Na_2SO_4 + H_2O$

 \therefore Eqwt of SO₃ = Molwt/2 = 80/2 = 40

Wt of SO_3 in 0.48 ml of 1 M solution

= 40/1000 * 0.48 = 0.0192 g

% of SO₃ = 0.0192/0.5 * 100 = 3.84 %

<u>Sol 4.</u>

 $p^{\circ} - p/p^{\circ} = n/N$ [Roults Equation]

Let the molality of the solution = m

Now the solution contain 'm' moles of solute per 1000 gm of benzene

Vapour pressure of benzene, p° = 639.7 mm

Vapour pressure of solution, p = 63.9 mm

Moles of benzene (Mol. wt. 78), N = 1000/78

Moles of solute, n = ?

Substitute these values in the Raout's equation

 $p^{\circ} - p/p^{\circ} = n/N \text{ or } 639.7 - 631.9/639.7 = n *78/1000$

or 7.8/639.7 = 78 n/1000

∴ n = 1000 * 7.8/78 *639.7 = 0.156

Hence, molality of solution = 0.156 m

<u>Sol 5.</u>

 $P_T = p_1^o + p_2^o x_2$

At 300 K, the vapour pressure of the solution containing 1 mole of A & 3 moles of B = 550 mm of Hg and vapour pressure of the solution containing 1 mole of A & 4 moles of B at 300 K = 560 mm Hg.

Let the vapour pressure of pure $A = p_1^{\circ}$

And the vapour pressure of pure $B = p_2^{o}$

Further, let x_1 and x_2 be the mole fractions of A and B in the solutions. Then the total vapour pressure of solution

$$P_{total} = p_1^{0} x_1 + p_2^{0} x_2$$
 ...(i)

In solution 1, $p_{total} = 550 \text{ mm}$,

 $\therefore x_1 = 1/1 - 3, x_2 = 3/1 + 3$ [: moles of A = 1 moles of B = 3]

Substituting these values in (i) we get

$$550 = p_1^{0} * \frac{1}{4} + p_2^{0} * \frac{3}{4}$$

Or 550 =
$$p_1^0/4 + 3p_2^0/4$$

$$2200 = p_1^{0} + 3p_2^{0}$$
 ...(ii)

In solution 2, $p_{total} = 560$ mm,

 $X_1 1/1 + 4$, $x_2 = 4/1 + 4$ [: moles of A = 1 moles of B = 4]

Substituting the various values, in equ. (i) we get

$$560 = p_1^0 * 1/5 + p_2^0 * 4/5$$

Or 560 $p_1^0/5 + 4p_2^0/5$

 $2800 = p_1^0 + 4p_2^0$ (iii)

Solving equation (ii) and (iii), we get

$$P_2^{0} = 6400 \text{ mm of Hg}$$

 $p_1^{0} = 400 \text{ mm of Hg}$

 \therefore Vapour pressure of pure A = 400 mm of Hg

And vapour pressure of pure B = 600 mm of Hg

<u>Sol 6.</u>

The chemical equation for the combustion of organic compound $C_x H_{2y} O_y$ can be represented as:

 $C_xH_{2y}O_y + 2xO_2 = x CO_2 + y H_2O + x O_2$

The gases obtained after cooling = x + x = 2x

 \therefore 2x = 2.24 litres [:: H₂O is in liquid state]

Or x = 2.24/2 = 1.12 litres

Number of moles of $CO_2 = 1.12$ litres/222.4 litres mole [: 22.4 L at NTP = 1 mole]

= 1/2 mole = 0.05 mole

The empirical formula of the organic compound is C(H₂O) ...(i

The mole fraction of the solute (A)

= relative decrease in vapour pressure of the solvent (B)

 $P^{o} - p/p^{o} = W_{A}/M_{A}/W_{A}/M_{A}+W_{B}/M_{B}$

Or 0.104/17.5 = 50/M_A/50/M_A+1000/18 [M_A = mol. wt. g A]

 $Or 0.104/17.5 = 50/M_A(50 * 18 + 100M_A/18M_A)$

Or 104/17500 = 50 * 18/900 + 1000 M_A

Or M_A = 150.6

Molecular wt. of the organic compound

 $(CH_2O)_n = 150$

Molecular wt. $CH_2O = 12 + 2 + 16 = 30$

 $:: 30 * n = 150 [:: (CH_2O)_n = mol, formula]$

Or n = 150/30 = 5

: Molecular formula of the given organic compound is (CH_2O) or $C_5H_{10}O_5$.

<u>Sol 7.</u>

If they form an ideal solution which obeys 'Raoult's Law and for which

 $\Delta H_{\text{mixing}} = 0$ and $\Delta V_{\text{mixing}} = 0$

Thus we can separate two volatile and miscible liquids by fractional distillation if, they should not form azeotropic solutions.

<u>Sol 8.</u>

 $P_{total} = p_A + p_B$

Molecular weight of $CH_3OH = 12 + 3 + 16 + 1 = 32$

Molecular weight of $C_2H_5OH = 24 + 5 + 16 + 1 = 46$

According to Raoult's law

 $P_{total} = p_1 + p_2$

Where P_{total} = Total vapour pressure of the solution

 P_1 = Partial vapour pressure of one component

P₂ = Partial vapour pressure of other componenet

Again, p_1 = Vapour pressure ($p_1^{o_1}$) * mole fraction

Similarly, $p_2 = Vapour pressure (p_2^{\circ})^*$ mole fraction

Mole fraction of $CH_3OH = 40/32/40/32+60/46 = 0.49$

Mole fraction of ethanol = 60/46/60/46+40/32 = 0.51

NOTE THIS STEP : Thus now let us first calculate the partial vapour pressures, i.e., p_1 and p_2 of the two component.

Partial vapour pressure of CH₃OH(p₁)

= 44.5 * 0.51 = 22.69 mm : Total vapour pressure of the solution

= 43.48 + 22.69 mm = 66.17 mm Mole fraction of CH₃OH in vapour = 43.48/66.17 = 0.65

<u>Sol 9.</u>

Molality, M = moles of solute/kg of solvent

Mole fraction, $x_A = n_A/n_A + n_B$, $x_B = n_B/n_A + n_B$

 $p_1 = x_1 p_1^{\circ}$

 $\therefore x_1 = p_{1/p_1}^{\circ} = 750/760 = 0.9868$

 $x_2(solute) = 1 - 0.9868 = 0.0132$

molality, $m = x_2/x_1M_1 * 1000 = 0.0132 * 1000/0.9868 * 18 = 0.7503 mol kg⁻¹$

ALTERNATIVESOLUTION:

Given that :

Temperature = 273 K

boiling point of $H_2O = 373$ K

 \therefore vapour pressure H₂O = 76 cm

We have,

$$P^{o}-P_{s}/P_{s} = w^{*}M/w^{*}M$$

∴ molality

 $= w/w^*M^* 1000 = P^0 - P_s/P_s^* 1/M^* 1000$

= 760 -750/750 * 1/18 * 1000

= 0.741 mol/kg of solvent

Also we have,

```
= 1000 *1.72 *20/50 *2
```

= 344

van't Hoff factor (i) = actual mol. wt./calculate mol. wt = 172/344 = 0.5

 $P^{o}-P_{s}/P_{s} = n/n + N$

: mole fraction = $P^{o} - P_{s}/P^{o} = 760 - 750/760$

= 10/760 = 0.013

<u>Sol 10.</u>

According to Rault's law,

 $P^{o}-P/P^{o} = w/m / w/m + W/M$

Here, $P^{\circ} = 640 \text{ mm}$ p = 600 mm

W = 2.175 g W = 39.0

M = ? M = 78

Substituting the various values in the above equation for Roult'slaw :

640 -600/640 = 2.175/m /2.175/m+39/78

m = 65.25

Sol 11.

First find moles of $Ca(NO_3)_2$ and water. Then use the expression

 $P^{o}-P/P^{o} = n/n + N$ to find vapour pressure of solution

Let initially 1 mole of Ca(NO₃)₂ is taken

Degree of dissociation of $Ca(NO_3)_2 = 70/100 = 0.7$

Ionization of Ca(NO₃)₂ can be represent as

	$Ca(NO_3)_2$	\rightleftharpoons	Ca ²⁺	+	2N0 ⁻ 3
At start	1		0		0
At equilibrium	1 -0.7		0.7		2 * 0.7

 \div Total number of moles in the solution at equilibrium

No. of moles when the solution contains 1 gm of calcium nitrate instead of 1 mole of the salt

= 2.4/164 (164 is the mol. wt. of Cal. nitrate)

 \therefore No. of moles of the solute in the solution containing 7 g of salt, i.e.,

No. of moles of water (N) = Wt. of water/Mol. wt. of water = 100/18 = 5.55

Applying Raoult's law, $P^{o}-P/P^{o} = n/n + N$

760 -p/760 = 0.102/0.102 + 5.55

760 – p/760 = 0.0180

⇒ p = 760 – (760 * 0.0180) = 746.3 mm Hg

ALTERNATIVESOLUTION :

 $\begin{array}{rcl} Ca(NO_3)_2 & \rightleftharpoons & Ca^{2+} & + & 2NO^{-}_3 \\ 1 & 0 & 0 & \text{before dissociation} \\ 1 - \propto & \propto & 2 \propto & \text{After dissociation} \end{array}$

: Total moles at equilibrium = $(1 + 2 \propto)$

= 1 + 2 * 0.7 (: a = 0.7)

= 2.4

For $Ca(NO_3)_2$: $m_{ob}/m_{exp} = 1 + 2 \propto$

 $\therefore m_{exp} = m_{ob}/1 + 2 * 0.7 = 164/2.4 = 68.33$

Also at 100° $P^{o}_{H \text{ base } 2}$ O = 760 mm, w = 7g

W = 100 g

Now, $P^{o}-P_{s}/P_{s} = 7 * 18/68.33 * 100 = 0.0184$

Or $P^{o}/P^{s} - 1 = 0.0184$

 $\therefore P_s = 760/1.0184 = 74.26 \text{ mm}$

<u>Sol 12.</u>

Give Wt. of benzene (solvent),

W = Volume * density = 50 * 0.789 = 43.95 g

Wt. of compound (solute), w = 0.643 g

Mol. wt of benzene, M = 78

Mol. wt. of solute, m = ?

Depression in freezing point, $\Delta T_f = 5.51 - 5.03 = 0.48$

Molal freezing constant, K_f = 5.12

Now we know that,

 $M - 1000 * K_f * w/W * \Delta T_f = 1000 * 5.12 * 0.643/43.95 * 0.48 = 156.056$

<u>Sol 13.</u>

 $P^{o} - P/P^{o} = w/3 / w/m + W/M$

Here, w and m are wt. and molecular wt. of solute, W and M are wt. and molecular weight of solvent

p = pressure of solution;

p^o = Normal vapour pressure

Let the initial (normal) pressure $(p^{\circ}) = p$

 \therefore Pressure of solution = 75/100 * p = 3/4 p

M = 60, M = 118, W = 100 gm

∴ p-3/4 p/p = w/60 /w/60 + 100/18

1/4 = w/60 / (w/60) + 5.55Or 4w/60 = w/60 + 5.553w/60 = w/20 = 5.55Or w = 111 g Molality = No. of moles of solute/Wt. of solvent * 1000 = 111 *1000/60 *100 = **18.52 m**

<u>Sol 14.</u>

(i)Volume = No. of moles * molar mass/density

(ii) PV = nRT or P = nRT/V

Volume of 1 mole of liq. Benzene = 78/0.877

Volume of 1 mole of toluene. 92/0.867

In vapour phase,

At 20°C, for 1 mole of benzene,

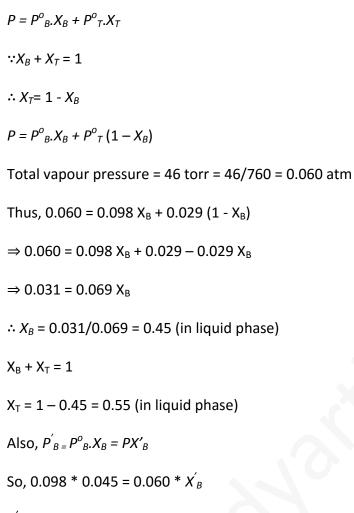
Volume = 1 **78 *2750/0.877 = 244583.80 mL

= 244.58 L

Similarly for 1 mole of toluene,

Volume = 1 *92/0.867 * 7720

= 819192.61 mL = 819.199 L


As we know that, PV = nrt

For benzene, $P_B^o = nRT/V = 1 * 0.0821 * 293/244.58$ atm

= 0.098 atm

For toluene, $P_{T}^{o} = nRT/V = 1 * 0.0825 * 293/819.19$ atm = 0.029 atm

 $\dot{X_B} = 0.098 * 0.45/0.060 = 0.735$ (in gas phase)

<u>Sol 15.</u>

According to Roult's law

 $P^{o} - p/p^{o} = w/m * M/W ; \Delta T_{f} = K_{f} * m$

Substituting the given values;

1000 - 98.88/98.88 = w *78 *1000/m *W * 1000

w/m * 1000/W = 1.12 *1000/78.98.88 = 0.1452

: Molality = **0.1452** (: w/m * 1000/W = Molality) Further $\Delta T = K_f$ molality

 $0.73 = K_f * 0.1452 K_f = 5.027 K molality^{-1}$

<u>Sol 16.</u>

 $\Delta T_f = K_f.m$ $P^o - p/p^o = \text{moles of solute/moles of solvent}$ Depression in freezing point, $\Delta T_f = K_f m$ $\therefore m \Delta T_f/K_f = 0.30/1.86 = 0.161$ According to Raoult's law $P^o - p/p^o = \text{No. of moles of solute/No. of moles of solvent}$ 23.51 - p/23.51 = 0.161/1000/18 = 0.161 * 18/1000(:: No. of moles of H₂O = 1000/18)
On usual calculations, 23.51 - p/23.51 = 0020898 P = 23.51 - 23.51 * 0.0020898 = 23.51 - 068 p = 23.44 mm Hg

<u>Sol 17.</u>

 $\Delta T_b = k_b * m$

Element	%	Relative no. of atoms	Simplest ratio
С	42.86	42.86/12 = 3.57	3.57/1.19 = 3
н	2.40	2.40/1 = 2.40	2.40/1.19 = 2
Ν	16.67	16.67/14 = 1.19	1.19/1.19 = 1
0	38.07	38.07/16 = 2.38	2.38/1.19 = 2

: Empirical formula of the minor product is $C_3H_2NO_2$ Molar empirical formula mass of the minor product = 3 * 12 + 2 * 1 * 14 + 2 * 16 = 84 g mol⁻²

Let M be the molar mass of the minor product. For 5.5 g of the minor product dissolved in 45 g benzene, the molality

(m) of the solution = 5.5 g/M/0.045 kg

Substituting this in the expression of elevation of boiling point,

 $\Delta T_{b} = k_{b}m \Rightarrow 1.84 \text{ K} = (2.53 \text{ K kg mol}^{-1}) (5.5 \text{ g/M}/0.045 \text{ kg})$

$Or M = 168 g mol^{-1}$

No. of unit of empirical formula in molecular formula

```
= 168 \text{g mol}^{-1}/84 \text{g F} = 2
```

Hence the molecular formula of the minor product is

2 (C₃H₂NO₂), i.e., C₆H₄(NO₂)₂.

The product is m – dinitrobenzene

$$\left\langle \bigcirc_{NO_2}^{I} \right\rangle$$

<u>Sol 18.</u>

 $\Delta T_f = i * k_f * m$

Weight of water = 500 * 0.997 = 498.5 g (weight = volume * denisty)

No. of moles of acetic acid

= Wt. of CH₃ COOH in g/Mol. wt. of CH₃ COOH = $3 \times 10^{-3} \times 10^{3}/60 = 0.05$

Since 498.5 g of water has 0.05 moles of CH₃COOH

1000 g of water has = 0.05 *1000/498.5 = 0.1

Therefore molality of the solution = 0.1

Determination of van't Hoff factor, i

 $CH_3COOH \rightarrow CH_3COO^- + H^+$

No. of moles at start 1 0 0

No. of moles at equb. 1 – 0.23 0.23 0.23

Therefore vant Hoff factor

= No. of particles before dissociation/No. of particles after dissociation

= 1 - 0.23 + 0.23 + 0.23/1 = 1.23

Now we know that

 $\Delta T_f = i * k_f * m = 1.23 = 1.86 * 0.1 = 0.2228K$

ALTERNATIVE SOLUTION:

Density of water = 0.997 g/cm^3

Weight of water (W) = 500 * 0.997 = 498.5 g

Weight of acetic acid (w) = 3.0×10^{-3} kg = 33.0 kg

 $\Delta T_f = 1000 * K_f * w/m * W$

Given that K_f for water = 1.86 K kg⁻¹ mol⁻¹

mol. wt. of $CH_3COOH_{(m)} = 60$

 $(\Delta T_f)_{cal} = 1000 * 1.86 * 3.0/60 * 498.5 = 0.186$

(Because CH₃COOH is an electrolyte and 23% dissociated)

 $CH_{3}COOH \rightleftharpoons CH_{3}COO^{-} + H^{+}$ At t = 0 1 mole 0 0

At equilibrium $(1 - \alpha)$ mole α gm-ion α gm-ion

No. of particles after dissociation = $1 - \alpha + \alpha + \alpha = 1 + \alpha$

 \propto for CH₃COOH = 23/100 = 0.23 (on 23% dissociation)

So, no. of particles after dissociation = 1 + 0.23 = 1.23

By van't Hoff factor

 $(\Delta T_f)_{obs}/(\Delta T_f)_{cal}$ = No. of particles after dissociation/No. of particles before dissociation

 $(\Delta T_f)_{obs}/(\Delta T_f)_{cal} = 1.23/1$

 $(\Delta T_f)_{obs} = 1.23 * 0.186 = 0.228 \text{ K}$

Hence depression in freezing point (ΔT_f) = 0.228K

<u>Sol 19.</u>

 $\Delta T_b = K_b * M$

In first case,

 $\Delta T_b = K_b * m = K_b^* Wt.$ of solute/Mol. wt. of solute

 $Or 0.17 = 1.7 * 1.22/M * 1000 * 10^{-3}$

Or **M = 122**

Thus the benzoic acid exists as a monomer in acetone

(ii) $\Delta T_b = K_b * Wt.$ of solute/Mol. wt. of solute

Or 0.13 = 2.6 * 1.22/M' * 100 * 10⁻³

M' = 224

NOTE :Double the expected molecular weight of benzoic acid (244) in acetone solution indicates that benzoic acid exists as a dimer in acetone.

<u>Sol 20.</u>

$$2C_6H_5OH \rightleftharpoons (C_6H_5OH)_2$$

Initial no. of moles 1 0

No. of moles at equilibrium $1 - \propto \alpha/2$

Total number of moles at equilibrium = $1 - \propto + \propto/2 = 1 - \propto/2$

 $\Delta T_f = iK_f^* \text{ (molality)}$

 \Rightarrow 7 = 14 * 75.2/94 * (1 - \propto /2) [weight of phenol = 75.2g mol. wt of phenol = 94]

∴ ∝ = 0.75

Educational Material Downloaded from http://www.evidyarthi.in/ Get CBSE Notes, Video Tutorials, Test Papers & Sample Papers

So the percentage of phenol that dimerises = **75%**.

ALTERNATIVESOLUTION :

Phenol dimerises in the solvent (organic) as :

 $2C_6H_5OH \rightleftharpoons (C_6H_5OH)_2$

1 mol 0 mol (Initial)

 $1 - \propto \text{mol}$ $\propto/2 \text{ mol}$ (Equilibrium)

Van't Hoff factor, $i = 1 - \alpha + \alpha/2 = 1 - \alpha/2$

Where \propto is the degree of dimerization.

```
\Delta T_{f(obs)} = K_f * molality * i
```

Or 7 = 14 * m * $(1 - \alpha/2)$

NOTE : In the given problem, amount of the solvent used to dissolved 75.2 g of phenol is not mentioned. Hence molality m, can not be calculated and so also the value of \propto .

If amount of solution is presumed to be 1 kg (= 100g) then,

M = 75.2/94 = 0.8 (mol. mass of phenol = 9.4)

And 7 = 14 * 75.2/94 * (1 - ∝/2)

Or ∝ = 0.75 = 75%

Educational Material Downloaded from http://www.evidyarthi.in/ Get CBSE Notes, Video Tutorials, Test Papers & Sample Papers