

Some Basic Concepts of Chemistry

<u>Sol 1.</u>

Write the balance chemical equation and use mole concept for limiting reagent.

 $AgNO_3 + NaCI \rightarrow NaNO_3 + AgCIO$

170 g58.5 g 143.5 g

From the given data, we find AgNO₃ is limiting reagent as NaCl is in excess.

 $: 170.0 \text{ g of AgNO}_3 \text{ precipitates AgCI} = 143.5 \text{ g}$

∴ 5.77 g of AgNO₃ precipitates AgCI

= 143.5/170 * 5.77 = 4.87 g

<u>Sol 2.</u>

(i) Find volume of H₂ at N.T.P.

(ii) Total amount of H_2 liberated = H_2 liberated by Mg & HCI + H_2 liberated by Al & HCI.

Conversion of volume of H₂ to N.T.P

Given condition N.T.P condition

 $P_1 = 0.92$ atm. $P_2 = 1$ atm.

 $V_1 = 1.20$ litres $V_2 = ?$

 $T_1 = 0 + 273 = 273 \text{ K}$ $T_2 = 273 \text{ K}$

Applying ideal gas equation, $P_1V_1/T_1 = P_2V_2/T_2$

 $0.92 * 1.20/273 = 1 * V_2/273$, $V_2 0.92 * 1.20 * 273/273 * 1$ litres = 1.104

Litres = 1104 ml

The relevant chemical equation are

(i) 2 Al + 6HCI \rightarrow 2AICI₃ + 3H₂

2*27 3*22400

= 54 g = 67200 ml at NTP

(ii) Mg + 2HCI \rightarrow MgCI₂ + H₂

24 g 22400 ml at NTP

Wt. of alloy = 1g

Let the wt. of aluminium in alloy = x g

 \therefore Wt. of magnesium in alloy = (1 -x) g

According to equation (i)

 $54 \text{ g Al} = 67200 \text{ ml of } H_2 \text{ at } N.T.P$

 \therefore x g of Al = 67200/54 * x = 1244.4 x ml of H₂ at N.T.P

Similarly, from equation (ii)

 $24 \text{ g of } Mg = 222400 \text{ ml of } H_2 \text{ at } N.T.P$

(1 - x) g of Mg = 222400/24 * (1 - x) = 933.3 (1 - x) ml of H₂

Hence total vol. of H₂ collected at N.T.P

= 12244.4 x + 933.3 (1 - x)ml

But total vol. of H_2 as calculated above = 1104 ml

 \therefore 1244.4 x + 933.3 (1 - x) = 1104 ml

1244.4 x - 933.3 x = 1104 - 933.3

311.1 x = 170.7, x = 0.5487

Hence 1 g of alloy contains Al = 0.5487 g

: percentage of Al in alloy = 0.5487 * 100/1 = 54.87%

% of Mg in alloy = 100 - 54.87 = 45.13%

<u>Sol 3.</u>

 $3 \text{ MnO}_2 \rightarrow \text{ Mn}_3\text{O}_4$

3 (54.9 + 32) (3 * 54.9 + 64)

= 260.7 g = 228.7 g

Let the amount of pyrolusite ignited = 100.00 g

 \therefore Wt. of MnO₂ = 80 g (80% of 100 g = 80 g)

Wt. of SiO_2 and other inert substances = 15 g

Wt. of water 100 - (80 + 15) = 5 g

According to equation,

 $260.7 \text{ g of } MnO_2 \text{ gives} = 228.7 \text{ g of } Mn_3O_4$

 \therefore 80 g of MnO₂ gives = 228.7/260.7 * 80 = 70.2 g of Mn₃O₄

NOTE :

During ignition, H_2O present in pyrolusite is removed while silica and other inert substances remain as such.

 \therefore Total wt. of the residue = 70.2 + 15 = 85.2 g

Calculation of % of Mn in ignited Mn₃O₄

 $3 \text{ Mn} = \text{Mn}_3 \text{O}_4$

3 * 54.9 = 164.7 g 3 * 54.9 + 64 = 228.7 g

Since, 228.7 g of Mn_3O_4 contains 164.7 g of Mn

70.2 g of Mn_3O_4 contains = 164.7/228.7 * 70.2 = 50.55 g of Mn

Weight of resdue = 85.2 g

Hence, percentage of Mn is the ignited sample

= 50.55/85.2 * 100 = 59.33%

<u>Sol 4.</u>

TIPS/Formulae:

(i) Find the volume of CO_2 at NTP

(ii) Find molecular wt. of metal carbonate

(iii) Find the wt. of metal

(iv) Calculate equivalent weight of metal

Given $P_1 = 700$ mm, $P_2 = 760$ mm, $V_1 = 1336$ ml, $V_2 = ?T_1 = 300$ K, $T_2 = 273$ K

 $P_1V_1/T_1 = P_2V_2/T_2$, or $V_2 = P_1V_1T_2/P_2T_1 = 700 * 1336 * 273/760 * 300$

= 1119.378 ml = 1.12 L at NTP

 $: 1.12 \text{ L of CO}_2$ is given by carbonate = 4.215 g

Molecular weight of metal corbonate = 4.215/1.12 * 22.4 = 84.3

Metal carbonate is $MCO_3 = M + 12 + 48 = M + 60$

Atomic weight of M = 84.3 - 60 = 24.3

Eq. wt. of metal = 1/2 * M. wt. = $\frac{1}{2} * 24.3 = 12.15$

<u>Sol 5.</u>

(a) Equivalents of $KMnO_4 = Equivalents$ of $FeSO_4$ 7H₂O

5.4 ml 0.1 N KMnO₄ = 5.4 *0.1/1000 = 5.4 * 10⁻⁴ equivalents

Amount of $FeSO_4 = 5.4 * 10^{-4} * Mol.$ wt. if $FeSO_4$. $7H_2O = 5.4 * 10^{-4} * 278 = 0.150$ g

Total weight of mixture = 5.5 g

Amount of ferric sulphate = 5.5 - 0.150 g = 5.35 g

Hence Moles of ferric sulphate = Mass/M. wt. = $5.35/562 = 9.5 * 10^{-3}$ gram-mole

(b) Using the relation, Mol. wt. = 2 * vapour density, we get

Mol. wt. = 2 * 38.3 = 76.6

No. of moles = Mass/Mol. wt. = 100/76.6 = 1.30(i)

Let weight of NO_2 in mixture = x g

Then weight of N_2O_4 in mixture = 100 - x

No. of moles of $NO_2 = Mass/Mol.$ wt. = x/46(ii)

No. of moles of $N_2O_4 = Mass/Mol.$ wt. = 100 -x/92(ii)

According to problem

1.30 = x/46 + 100 - x/92

On solving the equation we find, x = 20.1

 \therefore weight of NO₂ = 20.1 g

Moles of $NO_2 = Mass/M$. wt. = 20.1/46 = 0.437 moles.

<u>Sol 6.</u>

Volume of oxygen taken = 30 ml

Volume of unused oxygen = 15 ml

Volume of O₂ used = Volume of O₂ added – Volume of O₂ left

= 30 – 15 = 15 ml

Volume of CO₂ produced

= Volume of gaseous mixture after explosion - Volume of unused oxygen

Or Volume of CO_2 produced = 25 – 15 = 10 ml

Volume of hydrocarbon = 5 m;

General equation for combustion of a hydrocarbon is as follows -

 $C_{x}H_{y} + (x + y/4)$

 $O_2 \rightarrow xCO_2 + y/4 H_2O$

(Hydrocarbon)

5 ml 5(x + y/4)ml 5 x

 \therefore Volume of CO₂ produced = 5x, Since Volume of CO₂ = 10 ml

 $\therefore 5x = \Rightarrow x = 2, \text{ Volume of } O_2 \text{ used} = \text{ml}$ $\therefore 5 (x + y/4) = 15 \Rightarrow x + y/4 = 3$ $\Rightarrow 2 + y/4 = 3 \qquad (\because x = 2)$ $\Rightarrow 8 + y = 12 \therefore y = 4$

<u>Sol 7.</u>

- (i) Equate given mass of AgCI against mass obtained from NaCI and KCI
- (ii) $2\text{NaCI} \equiv \text{Na}_2\text{O} \& 2\text{KCI} \equiv \text{K}_2\text{O}$

Let amount of NaCl in mixture = x gm

 \therefore amount of KCI in mixture = (0.118 - x) gm

 $NaCI + AgNO_3 \rightarrow AgCI + NaNO_3$

58.5 g 143.5 g

:: 58.5 g NaCI gives AgCI = 143.5 g

 \therefore x g NaCI gives AgCI = 143.5/58.5 * x g

Again

 $KCI + AgNO_3 \rightarrow AgCI + KNO_3$

74.5 g 143.5 g

: 74.5 g KCI gives AgCI = 143.5 g

 \therefore (0.118 - x) g KCI gives AgCI = (143.5/74.5 * 0.118 - x)g

Total weight of AgCI = 0.2451g

 $\therefore (143.5/58.5 * x) + [143.5/74.5 * (0.118 - x)] = 0.2451$

:... x = 0.0338g

 \therefore Amount of NaCl in mixture = 0.0338g

: Amount of KCI in mixture = 0.118 - 0.0338 = 0.0842g

Since $2NaCI \equiv Na_2O$

2 * 58.5 62


```
= 117.0
\therefore 117g NaCI is equivalent = 62.0g Na<sub>2</sub>O
```

- \div 0.033g NaCl is equivalent to = 62.0/117 * 0.0338 g Na_2O
- = 0.0179g

% of Na₂O in 0.5g of feldspar = 0.0179/0.500 * 100 = 3.58%

 $2KCI \equiv K_2O$

2 * 774.5 = 149 94

:: 149g of KCI is equivalent to = 94g K₂O

∴ 0.0842g of KCI is equivalent to 94/149 * 0.0842

 $= 0.0531 \text{ g K}_2\text{O}$

 \therefore % of K₂O in 0.5 of feldspar = 0.0531/0.5 * 10.62%

% of Na₂O in feldspar = 3.58%

```
% of K_2O in feldspar = 10.62%
```

<u>Sol 8.</u>

According to problem, three atoms of M combine with 2 atoms of N

Equivalent wt of N = 14/3 (: valency of N in compound is 3)

- :: 288 g n combines with = 72 g metal
- \therefore 14/3 N combines with = 72/28 * 14/3 = 12
- \therefore Eq. wt. of metal = 12

At wt of metal = Eq. wt * valency = 12 * 2 = 24 [Valency]

<u>Sol 9.</u>

In the given reaction two hydrogen atoms of H_3PO_4 are replaced so the basicity of H_2PO_4 is 2.

Using the relation, eq. wt. of acid = Mol. wt. of acid/Basicity

We get, eq. wt. of $H_3PO_4 = Molwt/2 = (1*3) + 31 + (4*16)/2 = 98/2 = g$

<u>Sol 10.</u>

Following reaction take place-

 $3MnSO_4 4H_2O \xrightarrow{heat}$

 $Mn_2O_4 + 4H_2O\uparrow + 3SO_2\uparrow + O_2\uparrow$

(residue)

 $Mn_3O_4 + 2FeSO_4 + 4H_2SO_4 \rightarrow Fe_2(SO_4)_3 + 3MnSO_4 + 4H_2O$

Milliequivalents of FeSO₄ in 30 ml of $0.1N \text{ FeSO}_4 = 30 * 0.1 = 3 \text{ m.eq}$.

According to problem step (iv)

25 ml of KMnO₄ reacts with = 3 m eq of FeSO₄

Thus in step (iii) of the problems,

50 ml of KMnO₄ reacts with = 3/25 * 50 m. eq. of FeSO₄ = 6 meq of FeSO₄

Milli eq. of 100 ml of 0.1N FeSO₄ = 100 * 0.1 = 10 meq.

FeSO₄ wich reacted with $Mn_3O_4 = (10-6) = 4m \text{ eq}$.

Milli eq of $FeSO_4 = Millie q$. of Mn_3O_4

(: Millie q of oxidizing agent and reducing agent are equal)

 $:: Mn_3O_4 \equiv 3Mn_3SO_4.4H_2O$

 \therefore 1 Meq of Mn₃O₄ = 3 Meq of MnSO₄ 4H₂O

 \therefore 4 Meq of Mn₃O₄ = 12 Meq of MnSO₄ 4H₂O

Eq. wt of $MnSO_4 4H_2O = Mol wt./2 = 223/2 = 111.5$

Wt. of $MnSO_4 4H_2O$ in sample = 12 * 111.5 = 1338 mg = 1.338g.

<u>Sol 11.</u>

(a) $CaCI_2 \equiv CaCO_3 \equiv MgCI_2$ M. wt. 111 100 95

From this it is evident, the

111 mg CaCI₂ will give $CaCO_3 = 100$ mg

 \therefore 1 mg CaCl₂ will give CaCO₃ = 100/111 mg = 0.90 mg

 95 mg MgCI_2 gives $CaCO_3 = 100 \text{mg}$

 \therefore 1 mg MgCl₂ gives CaCO₃ = 100/95 mg = 1.05 mg

 \therefore Total CaCO₃ formed by 1 mg CaCI₂ and 1 mg MgCI₂ = 0.90 + 1.05 = 1.95 mg

 \therefore Amount of CaCO₃ present per litre of water = 1.95mg

 \therefore wt of 1 ml of water = 1g = 10³ mg

: wt of 100 ml of water = $10^3 * 10^3 = 10^6$ mg

 \therefore Total hardness of water in terms of parts of CaCO₃ per 10⁶ parts of water by weight = 1.95 parts.

(b) Eqwt of $Ca^{++} = Mol.wt/Charge = 40/2 = 20$

 $Ca^{2+} + Na_2CO_3 \rightarrow CaCO_3 + 2Na^+$

1 milliequivalent of $Ca^{2+} = 20 \text{ mg}$

1 milliequivalent of Na₂CO₃ is required to soften 1 litre of hard water.

(c) $2Mg + O_2 \rightarrow 2MgO$

2 * 24 = 48g 32g 2(24 + 16) = 80g

 $:: 32g \text{ of } O_2 \text{ reacts with} = 448g \text{ Mg}$

 $\therefore 0.5g \text{ of } O_2 \text{ reacts with} = 48/32 * 0.5 = 0.75g$

Weight of unreacted Mg = 1.00 - 0.75 = 0.25g

Thus Mg is left in excess.

Weight of MgO formed = 80/48 * 0.75 = 1.25g

 $MgO + H_2SO_4 \rightarrow MgSO_4 + H_2O$

(40g)

According to reaction

:: 40g~MgO is dissolved it gives 1000 ml of 1 N. H_2SO_4

- \div 40 g MgO is dissolved it gives 2000 ml 0.5 N H_2SO_4
- \div 1.25 MgO is dissolved it gives
- $= 2000 * 1.25/40 \text{ ml of } 0.5 \text{ N H}_2\text{SO}_4$
- = 62.5ml of 0.5N H₂SO₄

<u>Sol 12.</u>

Given P = 1 atm V = 1L, T = 127°C = 127 + 273 = 4000K

PV = nRT (Ideal gas equation)

Or *n*=*PV*/*RT*=1*1/0.082*400=0.0304

Mol. wt Mass/Moles = 2.8/0.0304 = 92.10

Element	Wt. of element	Relation no. of	Ratio of of atoms	Whole no.
		atom		of atoms
С	10.5	10.5/12	0.875/0.875	1 * 7 = 7
		= 0.875	= 1	
		1.0/1 = 1	1/0.875 = 1.14	1.14 * 7 = 8
Н	1.0			

 \therefore Emperical formula = C₇H₈

Emperical formula, wt = 12 * 7 + 1 * 8 = 92

n = Molecular wt/Emperical formula wt = 92.10/92 = 1

molecular formula = n^* empirical formula

 $= 1 (C_7 H_8) = C_7 H_8$

<u>Sol 13.</u>

(i) No. of C atom in 14g of ${}^{14}C = 6.02 * 10^{23}$

 \therefore No. of C atom in 7 mg (7/1000g) of ¹⁴C

 $= 6.02 * 10^{23} * 7/14 * 1000 = 3.01 * 10^{20}$

No. of neutrons in 1 carbon atom = 7

: Total no. of neutrons in 7 mg of ${}^{14}C = 3.01 * 10^{20} * 7$

 $= 21.07 * 10^{20}$

Wt of neutron = wt of 1 hydrogen atom

- $= 1/6.02 * 10^{23} g$
- ∴ Wt of 3.01 * 10²⁰ * 7 neutrons

 $= 3.0 * 10^{20} * 7 / 6.02 * 10^{23} = 3.5 * 10^{-3} g$

<u>Sol 14.</u>

Weight of AgCI formed = 2.567 g

Amount of AgCI formed due to MCI = 1.341 g

(: NaCI does not decompose on heating to 300°C)

: Weight of AgCI formed due to NaCI

= 2.567 - 1.341 = 1.226g

 $NaCI \equiv AgCI \equiv MCI$

58.5 143.5

{NaCI + AgNO₃ \rightarrow AgCI + NaNO₃ MCI + AgNO₃ \rightarrow AgCI + MNO₃}

: 143.5g of AgCI is obtained from NaCI = 58.5g

 \therefore 1.226 g of AgCI is obtained form NaCI

= 58/143.5 * 1.226 = 0.4997 g

:. Wt of MCI 1 g of mixture = 1.000 - 0.4997 = 0.5003 g

: 1.341 g of AgCI is obtained from MCI = 0.5003g

 \div 143.5g of AgCI is obtained from MCI

= 0.5003/1.341 * 143.5 * 53.53 g

 \therefore Molecular weight of MCI = 53.53

<u>Sol 15.</u>

(i) Find equivalent wt. of H_2O_2 and $KM_nO_4.$

(ii) Xmol of N.KMnO₄ = Xml of N.H₂O₂

 $\mathrm{H_2O_2}\!\rightarrow\mathrm{H_2O}+[0]$

 $2KMnO_4 + 3H_2SO_4 \rightarrow K_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4 + 3H_2O + 5 [O]$

 \therefore Equivalent wt. of H₂O₂ = Mol. wt./2 = 34/2 = 17

Equivalent wt. of $KMnO_4 = Mol. wt./5 = 158/5 = 31.6$

Let normality of $KMnO_4$ solution = N, then

Xml. of N.KMnO₄ = Xml. of N.H₂O₂

 $w = X^* N^* 17/1000 \text{ g of } H_2 O_2$

According to problem X*17 * N/1000 g of H₂O₂ is present in

1 g of solution, Also given(1)

100 g of H_2O_2 contain X g of H_2O_2

 $1 \text{ g of } H_2O_2 \text{ contain} = X/100 * 1 \text{ g of } H_2O_2 \dots(2)$

Comparing the two relation (1) and (2)

17 * N * X / 1000 = X / 100

Or *N* = *X*/100 * 1000/17 *X* = 1000/100 * 17 = 10/17

Hence, normality of KMnO₄ solution is 10/17 N or 0.588 N

ALTERNATIVE SOLUTION:

The complete oxidation under acidic conditions can be represented as follows:

 $5H_2O_2 + 2MnO_4 + 6H^+ \rightarrow 5O_2 + 2Mn_2 + 2Mn^{2+} + 8H_2O$

Since $34 \text{ g of } H_2O_2 = 2000 \text{ ml of } 1N \cdot H_2O_2$

(: Eq. wt or $H_2O_2 = 34/2$)

 \therefore 34 g of H₂O₂ = 2000 ml of 1 N KMnO₄ [$\because N_1 V_1 = N_2 V_2$]

Or X/100 g of $H_2O_2 = 2000 * X/100 * 34$ ml of 1 N KMnO₄

Therefore the unknown normality = 2000 * X/34 * 100 * X = 10/17 or 0.588 N

<u>Sol 16.</u>

Balance the reactions by ion electron method.

(i) $Cu_2O + 2H^+ \rightarrow 2CU^{2+} + H_2O + 2e^-] * 3(i)$ $NO_3^- + 4H^+ + 3e^- \rightarrow NO + 2H_2O] * 2(ii)$ $3Cu_2O + 14H^+ + 2NO_3^- \rightarrow 6Cu^{2+} + 2NO + 7H_2O$ (ii) $K_4[Fe(CN)_6] + 6H_2SO_4 + 6H_2O$ $\rightarrow 2K_2SO_4 + FeSO_4 + 3(NH_4)_2SO_4 + 6CO$ (iii) $C_2H_2OH + 4I_2 + 8OH^ \rightarrow CHI_3 + HCO_3^- + 5I^- + 6H_2O$

<u>Sol 17.</u>

TIPS/Formulae:

- (i) Write balanced reaction for changes.
- (ii) M. eq. of Fe^{2+} formed = M. eq. KMnO₄ised

= Vin ml * molarity * x

The given redox changes are

 $Fe^{3+} + e^- \rightarrow Fe^{2+}$

 $2N^- \rightarrow 2 N^+ + 2e^-$

[In NH₂OH, O.S. of N = - 1 and in N₂O, O.S. of N = + 1. For two molecules of NH₂OH, electron involved = 4]

 $Mn^{7+} + 5e^- \rightarrow Mn^{2+}$

= Meq. Of KMnO₄ used = Vol. in ml * Molarity * x

= 12 * 0.02 * 5 = 12 [50/10 = 5]

∴Meq.of Fe²⁺ formed by NHH₂OH in 1000 ml of dil. Solution

= 1.2 * 1000 / 50 = 24

Meq.of original solution

= Meq. of NH_2OH in 1000 ml. of dilute solution

 $W_{\text{NH base 20H}}/33/2 * 1000 = 24 \text{ [Eq. wt} = 33/2 \text{]}$

 $W_{\text{NH base 20H}} = 24 * 16.5 / 1000 = 0.396 \text{ g}$

:: Wt. of NH₂OH in 10 ml. of original solution = 0.396 g

 \div Wt. of NH2OH in 1 litre of original solution

 $= 0.396 * 100 = 39.6 \text{ g} \text{ l}^{-1}$

ALTERNATIVESOLTUION:

Given $2NH_2OH + 4Fe^{3+} \rightarrow N_2O + H_2O + 4Fe^{2+} + 4H^+$ (i)

And $MnO_{4}^{-} + 5Fe^{2+} + 8H^{+} \rightarrow Mn^{2+} + 5Fe^{3+} + 4H_{2}O$...(ii)

 $:: 10NH_{2}OH + 4MnO^{-_{4}} + 12H^{+} \rightarrow 5N_{2}O + 21H_{2}O + 4Mn^{2+}$

[On multiplying (i) by 5 and (ii) by 4 and then adding the resulting equations]

Molecular weight of $NH_2OH = 33$

Thus 400 ml of 1M MnO_4 would react with $NH_2OH = 330g$

 \therefore 12 ml of 0.02 M KMnO₄ would react with NH₂OH = 330 * 12 *0.02/400 g

∴ Amount of NH₂OH present in 1000 ml of dilute solution 330 *12 *0.02 *1000/400 *50 g

Since 10 ml of sample of hydroxylamine is dilute to one litre

 \therefore A mount of hydroxyl amine in one litre of original solution = 330 *0.02 *12 *1000/4000 *50 * 1000/10 g = 39*6 g

<u>Sol 18.</u>

TIPS/Formulae:

(i) Mole fraction = Moles of substance/Total moles

(ii) 1 mole of $Na_2S_2O_3$ gives 2 moles of Na^+ and 1 mole $S_2O_3^{2-}$

Molecular wt. of sodium thiosulphate solution $(Na_2S_2O_3) = 23 * 2 + 32 * 2 + 16 * 3 = 158$

(i) The percentage by weight of $Na_2S_2O_3$

= wt of Na₂S₂O₃/wt of solution * 100 = 3 * 158 * 100/100 * 1.25 = 37.92

 $[wt. of Na_2S_2O_3 = Molarity * Molwt]$

(ii) Mass of 1 litre solution = 1.25 * 1000 g = 1250 g

[: density = 1.25g/l]

Mole fraction of Na₂S₂O₃

= Number of moles of $Na_2S_2O_3/Total$ number of moles

Moles of water = 1250 - 158 * 3/18 = 43.1

Mole fraction of $Na_2S_2O_3 = 3/3 + 43.1 = 0.065$

(iii) 1 mole of sodium thiosulphate (Na₂S₂O₃) yields 2 moles

of Na⁺ and 1 mole of S_2O^{2-3}

Molality of $Na_2S_2O_3 = 3 * 1000/776 = 3.87$

Molality of Na⁺ = 3.87 * 2 = 7.74m

Molality of $S_2O^{2-3} = 3.87m$

<u>Sol 19.</u>

One mole of metal carbonate, on heating, decomposes to form 1 mole of oxide with the evolution of 1 mole of CO_2 gas.

 $MCO_3 \xrightarrow{heat} MO + CO_2 \uparrow$

1 mole 1 mole 1 mole

Thus on heating, metal carbonate will loose weight corresponding to the weight of carbon dioxide.

From the given data, loss in wt. = 4.08 - 3.64 g = 0.44 g

Conversion of 0.44 g of CO_2 into mole of CO_2

44 of $CO_2 = 1$ mole of CO_2

 $\therefore 0.44$ g of CO₂ = 0.44/44 = 0.01 mole

From the equation, it is also obvious that

1 mole of $CO_2 \equiv 1$ mole of $MCO_{3=}$

 \therefore 0.01 mole of CO₂ \equiv 0.01 mole of MCO₃

Thus the given mixture has 0.01 mole of MCO₃ which will yield 0.01 mole of MO.

From the problem, we also know that

16 ml of 2.5 N NaOH \equiv 16 ml of 2.5 n HCI [N₁V₁ = N₂V₂]

= 16 * 2.5 ml of N HCI = 40 ml of N HCI

 \therefore volume of N HCI remain unused = 40 ml

Total volume of N HCI added = 100 ml

 \therefore Volume of N HCI used = 100 - 40 = 60 ml

Hence 60 ml of N HCI is used in neutralizing BaO and MO according to the following reaction.

 $MO + 2HCI \downarrow MCI_2 + H_2O$

Thus 0.01 mole of MO \equiv 0.02 mole of HCI

= 0.02 * 1000 ml of N HCI

= 20 ml of N HCI

 \therefore Vol. of N HCI used = 60 - 20 = 40 ml

Eq. wt. of BaO = 138 + 16/2 = 77

40 ml of N HCI = 40 ml of N BaO = 40 *77/1000 = 3.08 g of BaO

Total wt. of the oxides = 3.64 g

: Wt. of MO in the mixture = 3.64 - 3.08 = 0.56 g

But we know that 0.01 mole of MO is present in the residue it means

0.01 mole of MO = 0.56 g of MO

1 mole of MO = 56 g of MO

Suppose the atomic weight of M = a

Then the mol. wt. of MO = a + 16

We also know that 1 mole of MO (i.e. Mol. wt. of Mo) = 56

 $\therefore a + 16 = 56 \text{ or } a = 56 - 16 = 40$

 \therefore The atomic weight of metal M = 40

Hence, the metal M must be calcium

ALTERNATIVE SOLUTION:

Weight of MCO₃ and BaO = 4.08 g (given)

Weight of residue = 3.64 g (given)

: Weight of CO₂ evolved on hating = (4.08 - 3.64) g= 0.44 g

= 0.44/44 = 0.01 mole

Number of moles of $MCO_3 \equiv 0.01$ mole

$$[:: MCO_3 \xrightarrow{heat} MO + CO_2]$$

Volume of 1N HCI in which residue is dissolved = 100 ml

Volume of 1N HCI used for dissolution = (100 - 2.5 * 16) ml = 60 ml

= 60/1000 = 0.06 equivalents

The chemical equation for dissolution can be written as

```
\underbrace{BaO + MO}_{Residue} + 4HCI \rightarrow BaCI_2 + MCI_2 + 2H_2O
```

[Number of moles of BaO and MO = 1 + 1 = 2]

Number of moles of BaO + Numebr of moles of MO = 0.06/2 = 0.03

Number of moles of BaO = (0.03 - 0.01)

= 0.02 moles

Molecular weight of BaO = 138 + 16 = 154

: Weight of BaO = (0.02 * 154) g

= 30.8 g

Weight of $MCO_3 = (4.08 - 3.08) = 1.0 \text{ g}$

Since weight of 0.01 mole of $MCO_3 = 1.0 \text{ g}$

: Mol. wt. of $MCO_3 = 1/0.01 = 100$

Hence atomic weight of unknown M = (100 - 60) = 40

The atomic weight of metal is 40 so the metal M is Ca

<u>Sol 20.</u>

TIPS/Formulae:

Balanced the atoms as well as charges by ion electron/ oxidation number method.

While balancing the equations, both the charges and atoms must balance.

(i)
$$4Zn + NO_3^- + 10H^+ \rightarrow 4Zn^{2+} + NH_4^+ + 3H_2O$$

(ii)
$$\operatorname{Cr}_2 O_7^{2-} + 3\operatorname{C}_2\operatorname{H}_4O + 8\operatorname{H}^+$$

 $\rightarrow 3C_2H_4O + 2Cr^{3+} + 4H_2O$

(iii) $2HNO_3 + 6HCI \rightarrow 2NO + 3CI_2 + 4H_2O$

(iv)
$$2Ce^{3+} + S_2O_8^{2-} \rightarrow 2SO_4^{2-} + 2Ce^{4+}$$

(v) $CI_2 + 2OH^- \rightarrow CI^- + CIO^- + H_2O$

(vi) $2Mn^{2+} + 5PbO_2 + 4H^+ \rightarrow 2MnO_4^- + 2H_2O + 5Pb^{2+}$

(vii) $4S + 60H^{-} \rightarrow 2S^{2-} + S_2O_3^{2-} + 3H_2O$

(viii) $CIO_3^- + 6I^- + 6H_2SO_4 \rightarrow CI^- + 6HSO_4^- + 3I_2 + 3H_2O_4$

(ix) $6Ag^+ + AsH_3 + 3H_2O \rightarrow 6Ag + H_3AsO_3 + 6H^+$

<u>Sol 21.</u>

TIPS/Formulae:

Equivalents of *A* oxidized = Equivalents of *A* reduced. Since in acidic medium, A^{n+} is oxidized to AO₃⁻, the change in oxidation state from

(+5) to (+n) = 5 - n [:: 0.S. of A in AO⁻³ = + 5]

 \therefore Total number of electrons that have been given out during oxidation of 2.68 * 10⁻³ moles of A^{n+}

 $= 2.68 * 10^{-3} * (5 - n)$

Thus the number of electrons added to reduce 1.61 * 10⁻³

Moles of Mn_4 to Mn^{2+} , i.e.

(+7) to $(+2) = 1.61 * 10^{-3} * 5$

[Number of electrons involved = +7 - (+2) = 5]

 $\therefore 1.61 * 10^{-3} * 5 = 2.68 * 10^{-3} * (5 - n)$

5 - n = 1.61 * 5/2.68 or n = 5 - 8.05/2.68 = 2

<u>Sol 22.</u>

TIPS/Formulae:

(i) Find normality of acid mixture and Na_2CO_3 . $10H_2O$. Equate them to find volume of H_2SO_4 .

(ii) Meq. Of $H_2SO_4 = V * N = V * N/1000$ eq.

(iii) Equivalent of SO_4^{2-} = Equivalents of $H_2SO_4 *$ Eq. wt. of SO_4^{--}

N * V(ml.) = meq

Acid mixture contains 5 ml of 8N, HNO₃, 4.8 ml of 5N, HCI

and say, 'V' ml of 17 M \equiv 34 N, H₂SO₄.

 $[1MH_2SO_4 = 2N.H_2SO_4]$

N of the acid mixture = meq. (total) of acid/mls. Of solution

= 5 *8 + 4.8 * 5 + V *34/2000 [Total volume = 2 L = 2000 ml]

or, $N_{mixture} = 64 + 34V/2000$

 \therefore Eq. of wt. of Na₂CO₃ 10H₂O = Mol. wt./2

= 106 + 180/2 = 143

N of $Na_2CO_3 = Meq$. Of Na_2CO_3 /Volume of solution (ml)

= 1/143 / 100/1000 = 1/143 * 1000/100 = 0.069N

 $N_1V_1=N_2V_2$

 $Or 30 * N_{mixture} = 42.9 * 0.069$

(acid) (sod. carbonate) $\therefore N_{\text{mixture}} = 42.9 * 0.069/30 = 0.0986 N$ Hence 64 + 34V/2000 = 0.0986 64 + 34 V = 0.0986 * 2000, 64 + 34 V = 197.2 34 V = 197.2 - 64.0 = 133.2 \therefore or V = 133.2/34 = 3.9 ml. Hence meq. Of H₂SO₄ = V * N of H₂SO₄ = 3.9 * 34 = 132 meq. = 0.1326 eq. of H₂SO₄ = 0.1326 eq. of SO_4^{2-} = 0.1326 * 48 g of SO_4^{2-} (\because Eq. wt. of $SO_4^{2-} = 32 + 64/2 = 48$) = 6.3648 g of SO_4^{2-} are in 3.9 ml of 17M H₂SO₄

<u>Sol 23.</u>

 $HI < I_2 < ICI < HIO_4$; O.N. of I in $I_2 = 0$, HI = -1, ICI = +1, $HIO_4 = +7$.

<u>Sol 24.</u>

(i) From the given half-cell reaction,

Here Eq. wt. of $NaBrO_3 = Mol. wt./6 = 151/6 = 25.17$

[: number of electron involved = 6]

Now we know that

Meq. = Normally * Vol. in ml. = 85.5 * 0.672 = 57.456

AsloMeq. = W_{NaBrO base 3}/Eq. wt._{NaBrO base 3} * 1000

 $= W_{NaBrO base 3}/25.17 * 1000$

 $W_{\text{NaBr0 base 3}}/25.17 * 1000 = 57.456 \text{ g}$

 $::W_{NaBr0 base 3} = 1.446 g$

Molarity of NaBrO₃ = Normality/Valence factor

= 0.672/6 = 0.112 M

(ii) From the given-cell reaction,

Eq. wt. of $NaBrO_3 = Mol. wt./5 = 151/5 = 30.2$

[Number of electron involved per $BrO_3 = 10/2 = 5$]

Thus, the amount of NaBrO₃ required for preparing 1000 ml. of 1 N NaBrO₃ = 30.2 g

∴The amount of NaBrO₃ required for preparing 85.5 ml of 0.672 N NaBrO₃.

= 30.2 * 0.672 *85.5/1000 = 1.7532 g

Hence, Molality = 0.672/5 = 0.1344 M

<u>Sol 25.</u>

(i) Molal concentration = Molality

= Moles of solute/Mass of solvent in Kg

(ii) Mole fraction of sugar

= Moles of sugar/Total moles in solution

(i) Weight of sugar syrup = 214.2 g

Weight of sugar in the syrup = 34.2 g

 \therefore Weight of water in the syrup = 214.2 - 34.2 = 180.0 g

Mol. wt. of sugar, $C_{12}H_{22}O_{11} = 342$

∴Molal concentration = 34.2 *1000/342 *180 = 0.56

(ii) Mol. wt. water, $H_2O = 18$

: Mole fraction of sugar = 34.2/342/180/18+34.2/342

= 0.1/10 + 0.1 = 0.1/10.1 = 0.0099

<u>Sol 26.</u>

No. of equivalent of KMnO₄

= No. of equivalents of hydrazine sulphate.

 $N_2H_4 \rightarrow N_2$

2 0

Change in oxidation state for each $N_2H_4 = 2 * 2 = 4$

Equivalent weight of $N_2H_6SO_4 = 130/4 = 32.5$

Normality of $KMnO_4 5 * 450$ (: valence factor = 5)

Number of equivalents of $KMnO_4 = 20 * 5/50 * 1000 = 1/500$ and if weight of hydrazine sulphate be x gm then equivalents of hydrazine sulphate = x/32.5

 $\therefore 1/500 = x/32.5 \text{ or } x 32.5/500 = 0.065 \text{ g}$

Hence wt. of $N_2H_6SO_4$ in 10 ml solution = 0.065 g

 \therefore Wt. of N₂H₆SO₄ in 1000 ml solution = 6.5 g

<u>Sol 27.</u>

TIPS/Formulae:

No. of equivalents of KMnO₄ in neutral medium

= No. of equivalents of reducing agent.

Assuming that KMnO₄ shows the following changes during its oxidising nature.

Acidic medium $Mn^{7+} + n_1e^- \rightarrow Mn^{a+} \therefore n_1 = 7 - a$

Neutral medium $Mn^{7+} + n_2e^- \rightarrow Mn^{b+} \therefore n_2 = 7 - b$

Alkaline medium $Mn^{7+} + n_3e^- \rightarrow Mn^{c+}$ $\therefore n_3 = 7 - c$

Let *V*ml. of reducing agent be used for KMnO₄ in different medium.

∴Meq.of reducing agent

= Meq. of KMnO₄ in acid medium

Meq.of KMnO₄ in neutral medium

= Meq. of KMnO₄ in alkaline medium

 $= 1 * n_1 * 20 = 1 * n_2 * 33.4 = 1 * n_3 * 100$

 $= n_1 = 1.667 n_2 = 5 n_3$

Since n_1 , n_2 and n_3 are integers and n_1 is not greater than 7

 \therefore n₃ = 1

Hence $n_1 = 5$ and $n_2 = 3$

 \therefore Different oxidation states of Mn in

Acidic medium $Mn^{7+} + 5e^- \rightarrow Mn^{a+}$ or a = +2

Neutral medium $Mn^{7+} + 3e^- \rightarrow Mn^{b+}$ or b = +4

Alkaline medium $Mn^{7+} + 1e^- \rightarrow Mn^{c+}$ or c = + 6

Further, same volume of reducing agent is treated with K₂Cr₂O₇, and therefore

Meq.of reducing agent = Meq. of $K_2Cr_2O_7$

 $1 * 5 * 20 = 1 * 6 * V [:: Cr^{+6} + 6e^{-} \rightarrow 2Cr^{3+}]$

 $V = 16.66 \text{ mL} \div 1\text{M} = 6 * 1\text{N}$

<u>Sol 28.</u>

TIPS/Formulae:

No. of equivalent of KMnO₄

= No. of equivalent of reducing agents.

Case I. Reaction of NaOH with $H_2C_2O_4$ and $NaHC_2O_4$.

 $(i)H_2C_2O_4 + 2NaOH \rightarrow Na_2HC_2O_4 + 2H_2O$

(ii) $NaHC_2O_4 + NaOH \rightarrow Na_2HC_2O_4 + H_2O$

Number of milliequivalents of NaOH = $N^* V = 3.0 * 0.1 = 0.3$

: Combined normality of the mixture titrated with NaOH

= 0.3/10 = 0.03

Case II. Reaction of C_2O_4 - ion and $KMnO_4$

(iii) $5C_2O_4^- + MnO_4^- + 16H^+ \rightarrow 2Mn^{2+} + 10CO_2 + 8H_2OKMnO_4$ will react in same manner with both NaHC₂O₄ and H₂C₂O₄ as it can be seen from the above reaction.

Number of milliequivalents of $KMnO_4 = 4.0 * 0.1 = 0.4$

: Combined normality of the mixture titrated with KMnO₄

$$= 0.4/10 = 0.04$$

The difference (0.04N - = 0.03 N = 0.01 N) is due to NaHC₂O₄

The total normality of $NaHC_2O_4$ will be = 0.01 + 0.01 = 0.02 N

From equation (*ii*) in case I.

Eq. wt. of $NaHC_2O_4 = 112$

Amount of NaHC₂O₄ in one litre of solution formed

= 0.01 * 112 = 1.12 g and amount of H₂C₂O₄

 $= 2.02 - Wt. of NaHC_2O_4 2.02 - 1.12 = 0.90 g$

<u>Sol 29.</u>

Let the amount of NaNO₃ in the mixture = x g

: The amount of $Pb(NO_3)_2$ in the mixture = (5 - x) g

Heating effect of sodium nitrate and lead nitrate

 $2NaNO_{3} \xrightarrow{\Delta} 2NaNO_{2} + O_{2}$ $2(23+14+48) = 170 g \qquad 2*16 = 32 g$ $2 Pb(NO_{3})_{2} \xrightarrow{\Delta}$ 2(207+28+96) = 662 g $2PbO_{2} + 4NO_{2} + O_{2}$ $4(14+32) = 184 g \qquad 2*16 = 32 g$ 2*16 = 32 g

Now since, 170 g of NaNO₃ gives = 32 g of O₂

 \therefore x g of NaNO₃ gives = 32/170 * x g of O₂

Similarly, 662 g of Pb(NO₃)₂ gives = 216 g of gases (5 - x) g of Pb(NO₃)₂ gives = 216/662 * (5 - x) g of gases $(NO_2 + O_2)$ Actual loss, on heating, is 28% of 5 g of mixture = 5 * 28/100 = 1.4 g \therefore 32 x/170 + 216/662 * (5 -x) = 1.4 32x * 662 + 216(5 -x) * 170 = 1.4 * 170 * 662 21184 x + 183600 - 36720 x = 157556 - 15536 x = - 26044 X = 1.676 g Wt. of NaNO₃ = 1.676 g And Wt. of Pb(NO₃)₂ = 5 - 1.676 g = 3.324 g

<u>Sol 30.</u>

Molality = Mass of solute/M. wt. of solute/Mass of solvent in kg

Mass of H_2SO_4 in 100 ml of 93% H_2SO_4 solution = 93 g

 \therefore Mass of H₂SO₄ in 1000 ml of the H₂SO₄ solution = 930 g

Mass of 1000 ml H_2SO_4 solution = 1000 * 1.84 = 1840 g

Mass of water in 1000 ml of solution = 1840 - 930 g

= 910 g = 0.910 kg

Moles of $H_2SO_4 = Wt.$ of $H_2SO_4/Mol.$ wt. of $H_2SO_4 = 930/98$

 \therefore Moles of H₂SO₄ in 1 kg of water

= 930/98 * 1/0.910 = 10.43 mol

 \therefore Molality of solution = 10.43m

<u>Sol 31.</u>

In the given problem, a solution containing Cu^{2+} and $C_2O_4^{2-}$ is titrated first with KMnO₄ and then with Na₂S₂O₃ in presence of KI. In titration with KMnO₄, it is the $C_2O_4^{2-}$ ions that react with the $C_2MnO_4^{-}$ ions. The concerned balanced below may be written as given below.

 $2MnO_4^- 5 C_2O_4^{2-} + 16H^+ \rightarrow 2MnO^{2+} + 10CO_2 + 8H_2O$

Thus according to the above reaction

 $2 \text{mmol } MnO_4^- \equiv 5 \text{ mmol } C_2O_4^{2-}$

However,

No. of mmol of MnO_4^- used in titration = Vol. in ml * M

 $= 22.6 * 0.02 = 0.452 \text{ mmol } MnO_4^-$

since 2 mmol $MnO_4^- \equiv \text{mmol } C_2O_4^{2-}$

 $0.452 \text{ mmol } MnO_4^- \equiv 5/2 * 0.452 = 1.130 \text{ mmol } C_2O_4^{2-1}$

Titration with Na₂S₂O₃ in the presence of KI.

Here Cu²⁺ react and the reactions involved during titration are

$$2Cu^{2+} + 2I^- \rightarrow 2Cu^+ + I_2$$

$$2S_2O_3^{2-} + I_2 \rightarrow 2I^-S_4O_6^{2-}$$

Thus $2Cu^{2+} \equiv I_2 \equiv 2S_2O_3^{2-}$

No. of m mol of $S_2 O_3^{2-}$ used in titration

 $= 0.05 * 11.3 = 0.565 \text{ mmol } S_2 O_3^{2-}$

Now since 2 mmol $S_2 O_3^{2-} \equiv 2$ mmol Cu^{2+} [From above equation]

 $0.565 \text{ mmol } S_2 O_3^{2-} = 2/2 * 0.565 \text{ mmol } Cu^{2+}$

 $= 0.565 \text{ mmol } \text{Cu}^{2+}$

: Molar ratio of Cu²⁺ to C₂ O_4^{2-} = 0.565 mmol/1.130 mmol = 1 : 2

Balanced equations in two cases

Case I. $Mn^{+7} + 5e^- \rightarrow Mn^{+2}$


```
C_{2}^{+3} \rightarrow 2C^{+4} + 2e^{-}
Case II. 2Cu^{+2} + 2e^{-} \rightarrow Cu_{2}^{+}
2I^{-} \rightarrow I_{2} + 2e^{-}
and I_{2} + 2e^{-} \rightarrow 2I^{-}
2S_{2}^{+2} \rightarrow S_{4}^{+3/2} + 2e^{-}
```

<u>Sol 32.</u>

Mass of Fe₂O₃ in the sample = 55.2/100 * 1 = 0.552 g

Number of moles of $Fe_2O_3 = 0.552/159.8 = 3.454 * 10^{-3}$

Number of moles of Fe^{3+} ions = 2 * 3.454 * 10⁻³

 $= 6.9 * 10^{-3}$ mol = 6.90 mmol

Since its only 1 electron is exchanged in the conversion of Fe^{3+} to Fe^{2+} , the molecular mass is the same as equivalent mass.

 \therefore Amount of Fe²⁺ ion in 100 ml. of sol. = 6.90 meq

Volume of oxidant used for 100 ml of Fe²⁺ sol

= 17 * 4 = 68ml.

Amount of oxidation used = 68 * 0.0167 mmol

= 1.1356 mmol

Let the number of electrons taken by the oxidant = n

 \therefore No. of meq.of oxidant used = 1.1356 * *n*

Thus 1.1356 * *n* = 6.90

N = 6.90/1.1356 = 6

<u>Sol 33.</u>

1.5 g of sample require = 150 ml. of M/10 HCI

 \therefore 2 g of sample require = 150/1.5 ml of M/10 HCI

= 200 ml. of M/10 HCI

On heating, the sample, only NaNCO₃ undergoes decomposition as given below.

 $2NaHCO_3 \rightarrow Na_2CO_3 + H_2O + CO_2 \uparrow$ 2 moles 1 mole 1 mole 2 equ Neutralization of the sample with HCI takes place as given below. $2NaHCO_3 + HCI \rightarrow NaCI + H_2O + CO_2$ 1 eq 1 eq $Na_2CO_3 + 2HCI \rightarrow 2NaCI + H_2O + CO_2$ 1 mole 1 mole 2 eq 2 eq Hence, 2 g sample \equiv 200 ml. of M/10 HCI = 200 ml. of N/10 HCI = 20 meg = 0.020 eqNumber of moles of CO₂formed, i.e. N = PV/RT = 750/760 * 123.9/0.082 = 0.005Moles of NaHCO₃ in the sample (2 g) = 2 * 0.005 = 0.01Equivalent of $NaHCO_3 = 0.01$ Wt. of NaHCO₃ = 0.01 * 84 = 0.84 g % of NaHCO₃ = $0.84 \times 100/2 = 42\%$ Equivalent of $Na_2CO_3 = 0.02 - 0.01 = 0.01$ Wt. of $Na_2CO_3 = 0.01 * 53 = 0.53 g$ \therefore % of Na₂CO₃ = 0.53 *100/2 = 26.5% \therefore % of Na₂SO₃ in the mixture = 100 - (42 + 26.5) = 31.5% Sol 34. Reaction involved titration is

 KIO_3 + 2KI + $6HCI \rightarrow 3ICI$ + 3KCI + $3H_2O$

1 mole 2 mole

20 ml. of stock KI solution \equiv 30 ml. of M/10 KIO₃ solution

Molarity of KI solution = 30 * 1 *2/20 *10 = 3/10

Millimoles in 50 ml. of KI solution = 50 * 3/10 = 15

Millimoles of KI left unreacted with AgNO3 solution

= 2 * 50 * 1/10 = 10

: millimoles of KI reacted with $AgNO_3 = 15 - 10 = 5$

Millimoles of $AgNO_3$ present in $AgNO_3$ solution = 5

: Wt. of AgNO₃ in the solution = $5 * 10^{-3} * 170 = 0.850$ g

% AgNo₃ in the sample = 0.850/1 * 100 = 85%

<u>Sol 35.</u>

Calculation of number of moles in 45 ml. of 0.025 M Pb(NO₃)₂

Moles of $Pb(NO_3)_2 = 0.25 * 45/1000 = 0.01125$

 \therefore Initial moles of Pb²⁺ = 0.01125

Moles of $NO_3^- = 0.01125 * 2 = 0.02250 [1 mole Pb(NO_3)_2 \equiv 2 moles of NO_3]$

Calculation of number of moles in 25 ml. of 0.1 M chromic sulphate

Moles of chromic sulphate $(Cr_2(SO_4)_3 = 0.1 * 25/1000 = 0.0025 \text{ moles})$.

Moles of $SO_4^- = 0.0025 * 3 = 0.0075$ [1 Mole of chromic sulphate $\equiv 3$ moles of SO_4^{2-}]

Moles of PbSO₄ formed = 0.0075 [SO_{4²⁻} is totally consumed]

Moles of Pb^{2+} left = 0.01125 - 0.0075 = 0.00375

Moles of NO_3^- left = 0.02250 [NO₃⁻ remain untreated]

Moles of chromium ions = 0.0025 * 2 = 0.005

Total volume of the solution = 45 + 25 = 70 ml.

 \therefore Molar concentration of the species left

(i) $Pb^{2+} = 0.00375/70 * 1000 = 0.05357 M$

(ii) $NO_3^- = 0.0225/70 * 1000 = 0.3214 \text{ M}$

(iii)
$$Cr^{3+} = 0.005/70 * 1000 = 0.0714 M$$

<u>Sol 36.</u>

In pure iron oxide (FeO), iron and oxygen are present in the ratio 1 : 1.

However, here number of Fe^{2+} present = 0.93

Or No. of Fe^{2+} ions missing = 0.07

Since each Fe²⁺ ion has 2 positive charge, the total number of charge due to missing (0.07) Fe^{2+} ions = 0.07 * 2 = 0.14

To maintain electrical neutrality, 0.14 positive charge is compensated by the presence of Fe^{3+} ions. Now since, replacement of one Fe^{2+} ion by one Fe^{3+} ion increases one positive charge, 0.14 positive charge must be compensated by the presence of 0.14 Fe^{3+} ions.

In short, 0.93 Fe^{2+} ions have 0.14 Fe^{3+} ions

 100 Fe^{2+} ions have = 0.14/0.93 * 100 = 15.05%

<u>Sol 37.</u>

(i) Density = Mass/Volume

(ii) Molarity = Moles of solute/Volume of solution in L

(iii) Molality = Moles of solute/Mass of solvent in kg

(iv) Mole fraction of solute = Moles of solute/Total moles

The formula of Glauber's salt is Na₂SO₄. 10H₂O

Molecular mass of Na₂SO₄. 10H₂O

 $= [2 * 23 + 32.1 + 4 * 16] + 10 (1.01 * 2 + 16) = 322.3 \text{ g mol}^{-1}$

Weight of the Glauber's salt taken = 80.575 gm

Out of 80.575 g of salt, weight of anhydrous Na_2SO_4

= 142.1/322.3 * 80.575 = 35.525 g

Number of moles of Na₂SO₄ per dm³ of the solution

= 35.525/142.1 = 0.25

Molarity of the solution = 0.25 MDensity of solution = 1077.2 kgm^{-3} = $1077.2 *10^3/10^6 \text{gm cm}^{-3} = 1.0772 \text{ g cm}^{-3}$ Total weight of sol = $V * d = 1 \text{ dm}^3 * d$ = $1000 \text{ cm}^3 * 1.0772 \text{ gcm}^{-3} = 1077.2 \text{ g}$ Weight of water = 1077.2 - 35.252 = 1041.67 gMolality of sol. 0.25/1041.67 g * 1000 g = 0.2399 = 0.24 mNumber of moles of water in the solution = 1041.67/18 = 57.87Mole fraction of Na₂SO₄

= No. of moles of Na_2SO_4 /Total number of moles = 0.25/0.25 + 57.87

 $= 0.0043 = 4.3 * 10^{-3}$

<u>Sol 38.</u>

Find the milliequivalents and equate them as per data given in question.

For $Fe_3O_4 \rightarrow 3FeO$

 $2e + Fe_3^{(8/3)+} \rightarrow 3Fe^{2+}$

Thus, valence factor for Fe_3O_4 is 2 and for FeO is 2/3

For, $Fe_2O_3 \rightarrow 2FeO$; $2e + Fe_2^{3+} \rightarrow Fe^{2+}$...(1)

Thus valence factor for Fe_3O_3 is 2 and for FeO is 1.

Let Meq.of Fe_3O_4 and Fe_3O_3 be *a* and *b* respectively.

 \therefore Meq.of Fe₃O₄ + Meq. Fe₃O₃ = Meq. of I₂ liberated

= Meq. of hypo used

A + b = 11 * 0.5 * 100/20 = 27.5

Now, the Fe^{2+} ions are again oxidized to Fe^{3+} by $KMnO_4$.

Note that in the change

 $Fe^{2+} \rightarrow Fe^{3+} + e^{-}$; valence factor of Fe^{2+} is 1.

Thus,

Meq. of Fe²⁺ (from Fe₃O₄) + Meq. of Fe²⁺ (from Fe₃O₃) = Meq. of KMnO₄ used(2) If valence factor for Fe²⁺ is 2/3 from Eq. (1), Then Meq. of Fe²⁺ (from Fe₃O₄) = a If valence factor for Fe²⁺ is 1 Then Meq. of Fe²⁺ (from Fe₃O₄) = 3a/2(3) Similarly, form Eq. (2), Meq. of Fe²⁺ from (Fe₃O₃) = b. $\therefore 3a/2 + b = 0.25 * 5 * 12.8 * 100/50 = 32$ or 3a + 2b = 64from Eqs (3) and (4) Meq.of Fe₃O₄ = a = 9 & Meq. of Fe₃O₃ = b = 18.5 \therefore W_{Fe base 30 base 3} = 9 * 232/2 *1000 = 1.044 g And W_{Fe base 30 base 3} = 18.5 *160/2 *1000 = 1.48 g

 \therefore % of Fe₃O₄ = 1.044 *100/3 = 34.8

and % of $Fe_3O_3 = 1.48 * 100/3 = 49.33$

<u>Sol 39.</u>

Write the reactions taking place, balance them and equate moles of I₂ and Na₂S₂O₃.

 $\mathrm{KIO_3} + 5\mathrm{KI} \rightarrow 3\mathrm{K_2O} + 3\mathrm{I_2}$

i.e., $2.I^{5+} + 10e^- \rightarrow I^{0_2}$

 $2I^- \rightarrow I^{0}_2 + 2e^-$

Now liberated I_2 reacts with $Na_2S_2O_3$

 $I_2 + 2e^{-} \rightarrow 2I^{-}$

 $2S_2O_3^{2-} \rightarrow S_3O_6^{2-} + 2e^{-}$

 $\because millimole\ ratio\ of\ I_2:S_2O_3\ 1:2$

Thus, *m* mole of I₂ liberated

 $= m \text{ mole of Na}_2 S_4 O_6 \text{ used } * 1/2 = 45 * M^* 1/2$

[*M* is molarity of thiosulphate]

Also m mole of $KIO_3 = 0.1/214 * 1000$

Now m mole ratio of $KIO_3 : I_2 = 1 : 3$

Thus, (0.1/214) *1000/(45M/2) = 1/3

 $\therefore M = 0.1 * 100 * 3 * 2/214 * 45 = 0.062$

<u>Sol 40.</u>

Use molarity equation to find volume of H₂SO₄ solution.

 $CuCO_3 \qquad \qquad + H_2SO_4 \rightarrow CuSO_4 + H_2O + CO_2 \uparrow$

63.5+12+48.98 98g

= 123.5 g

 \therefore For 123.5 gms of Cu(II) carbonate 98 g of H₂SO₄ are required

For 0.5 gms of Cu(II) carbonate weight of H_2SO_4 reqd.

 $= 98 * 0.5 / 123.5 g = 0.39676 g H_2 SO_4$

Weight of required $H_2SO_4 = 0.39676 \text{ g}$

Weight of solute in grams

= Mol. wt. *Molarity *Volume in mL/1000

0.39676 = 98 *0.5 * V/1000

or *V* = 0.39676 *1000/90 *0.5 ml

volume of H_2SO_4 solution = 8.097 ml

<u>Sol 41.</u>

(i) Volume of virus = $\pi r^2 \ell$ (Volume of cylinder)

(ii) Mass of single virus = Volume/Sp. Volume

(iii) Molecular mass of virus = Mass of single virus * 6.02×10^{23} Volume of virus = $\pi r^2 1$ = $22/7 \times 150/2 \times 150/2 \times 10^{-16} \times 500 \times 10^{-8}$ = $0.884 \times 10^{-16} \text{ cm}^3$ Weight of one virus = $0.884 \times 10^{-16}/0.75 \text{ g}$ = $1.178 \times 10^{-19} \text{ g}$ \therefore Mol. wt. of virus = $= 1.178 \times 10^{-19} \times 6.02 \times 10^{23}$ = 7.09×10^7

<u>Sol 42.</u>

Write the balanced chemical reaction for change and apply mole concept.

The given reactions are :

 $MnO_2 \downarrow + Na_2C_2O_2 + 2H_2SO_4$

 $\rightarrow MnSO_4 + CO_2 + Na_2SO_4 + 2H_2O$

 $\therefore \text{ Meq. Of } MnO_2 \equiv \text{Meq of } C_2O_4 = 10 * 0.2 * 2 = 4$

 \therefore mM of MnO₂ = 4/2 = 2 [Mn⁴⁺ + 2e \rightarrow Mn²⁺ \therefore Valance factor of MnO₂ = 2]

Now $2KMnO_4 + 3MnSO_4 + 2H_2O$

 \rightarrow 5MnO₂ \downarrow + K₂SO₄ + 2H₂O

Since eq. wt. of MnO_2 is derived from $KMnO_4$ and $MnSO_4$ both, thus it is better to proceed by mole concept

 $mM \text{ of } KMnO_4 \equiv mM \text{ of } MnI_2 * (2/5) = 4/5$

also $5H_2O_2 + 2KMnO_4 + 3H_2SO_4$

 $\rightarrow 2MnSO_4 + K_2SO_4 + 8H_2O + 5O_2$

 \therefore mM of H₂O₂ = mM of KMnO₄ = mm OF KMnO₄ * 5/2 = 4/5 * 5/2 = 2

 $\therefore M_{H_2O_2} * 20 = 2 \text{ or } M_{H_2O_2} = 0.1$

 $\begin{array}{l} 2KMnO_4 + 5H_2O_2 + 3h_2SO_4 \\ & \rightarrow K_2SO_4 + 2MnSO_4 + 8H_2O + 5O_2 \\ 2KMnO_4 + 3KMnO_4 + 2H_2O \\ & \rightarrow 5MnO_2 + 2H_2SO_4 + K_2SO_4 \\ MnO_2 + Na_2C_2O_4 + 2H_2SO_4 \end{array}$

 $\rightarrow MnSO_4 + 2CO_2 + Na_2SO_4 + 2H_2O$

<u>Sol 43.</u>

1 litre water = 1 kg i.e. 1000 g water ($: d = 100 \text{ kg/m}^3$)

 $\equiv 1000/18 = 55.55$ moles of water

So, molarity of water = 55.55M