

The solid state & surface chemistry-solutions

SUBJECTIVE PROBLEMS:

<u>Sol 1.</u>

Avogadro's number = 6.023×10^{23} At. wt. of mercury(Hg) = 200 \therefore In 1 g of Hg, the total number of atom = $6.023 \times 10^{23}/200 = 6.023 \times 10^{23}/2 \times 10^{2}$ = $3.0115 \times 10^{21} = 3.012 \times 10^{21}$ \therefore Density of Mercury (Hg) = 13.6 g/c.c. \therefore mass of 3.012×10^{21} atoms = $1/3.012 \times 10^{21}$ Now volume of 1 atom of mercury (Hg) = $1/3.012 \times 10^{21} \times 13.6 \text{ c.c.} = 10^{3} \times 10/3012 \times 10^{21} \times 136 \text{ c.c.}$ = $10^{-17}/3012 \times 136 \text{ c.c.} = 10^{3} \times 10/3012 \times 10^{21} \times 136 \text{ c.c.}$ = $2.44 \times 10^{23} \text{ c.c.}$ Since each mercury atom occupies a cube of edge length equal to its diameter, therefore,

Diameter of one Hg atom = $(2.44 * 10^{-23})^{1/3}$ cm

 $= (24.4 * 10^{-24})^{1/3}$ cm.

= 2.905 * 10^{-8} cm = **2.91** Å

<u>Sol 2.</u>

For bcc lattice, (radius), $r = \sqrt{3a/4}$

Solution

∴ r = v3 *4.29 Å/4 = 1.73 * 4.29 Å/4 = **1.86 Å**

<u>Sol 3.</u>

For a hcp unit cell, there are 6 atoms per unit cell. If r is the radius of the metal atoms, volume occupied by the metallic

Atoms 6 * 4/3 * π * r³ = 6 * 1.33 * 22/7 * r³ = 25.08 * r³

Geometrically it has been shown that the base area of hcp unit cell

= 6 * $\sqrt{3}/4$ * 4r² and the height = 4r * $\sqrt{2}/3$

∴ Volume of the unit cell

= Area * height = 6 *
$$\sqrt{3}/4$$
 * 4r² * 4r * $\sqrt{\frac{2}{3}}$ = 33.94 r³

 \div Volume of the empty space of one unit cell

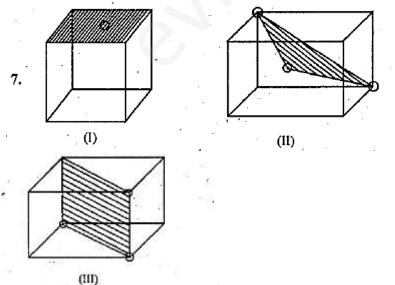
$$= 33.94 r^{3} - 25.08 r^{3} = 8.86 r^{3}$$

: Percentage void = 8.816 $r^3/33.94 r^3 * 100 = 26.1\%$

Educational Material Downloaded from http://www.evidyarthi.in/ Get CBSE Notes, Video Tutorials, Test Papers & Sample Papers

<u>Sol 4.</u>

Density of NaCl = n * at. wt./Av. No. $*a^3$ = 4 * 58.5/6.023 $*10^{23} * (5.64 * 10^{-8})^3$ $= 2.16 \text{ g/cm}^{3}$

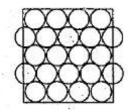

Sol 5.

For bcc lattice, $r = \sqrt{3} * a/4 = \sqrt{3}/4 * 287 = 124.27 \text{ pm}$ Now Density = n *at. wt./V * Av. No.. = n * at. wt./a³ *Av. No. N = 2 for bcc; a = 287×10^{-10} cm : Density = 2 *51.99/(287 *10⁻¹⁰)³ * 6.023 *10²³ = **7.30** g/ml

Sol 6.

Density in fcc = $n_1 * at.wt./V_1 * No.$ Density in bcc = n_2 * at.wt./V₂ *No. fcc unit cell length = 3.5 Åbcc unit cell length = 3.0 Å Density in fcc = $n_1 * at.wt./V_1 * Av.No.$ Density in bcc = n_2 * at.wt./V₂ *Av.No. $\therefore D_{fcc}/D_{hcc} = n_1/n_2 * V_2/V_1$ n_1 for fcc = 4; Also $V_1 = a^3 = (3.5 * 10^{-8})^3$ n_2 for fcc = 2; Also $V_2 = a^3 = (3.0 * 10^{-8})^3$ $\therefore D_{fcc}/D_{bcc} = 4 * (3.0 * 10^{-8})^3/2 * (3.5 * 10^{-8})^3 = 1.259$

Educational Material Downloaded from http://www.evidyarthi.in/ Get CBSE Notes, Video Tutorials, Test Papers & Sample Papers



<u>Sol 8.</u>

The area of square = $4 * 4 = 16 \text{ cm}^2$

Again to have the maximum number of spheres the packing must be hcp. Maximum number of spheres = 14 + 8 = 14 + 4 = 18

full half

Area = 16 cm^2

 \therefore Number of spheres cm² = 18/16

= 1.126

<u>Sol 9.</u>

Number of moles of acetic in 100 ml before adding charcoal = 0.05

Number of moles of acetic acid in 100 ml after adding charcoal = 0.049

Number of moles of acetic acid adsorbed on the surface of charcoal = 0.001

Number of molecules of acetic acid adsorbed on the surface of charcoal = $0.001 * 6.02 * 10^{23} = 6.02 * 10^{20}$

Surface area of charcoal = $3.01 * 10^2 \text{ m}^2$ (given)

Area occupied by single acetic acid molecule on the surface

of charcoal 3.01 $*10^{2}/6.02 * 10^{20} = 5 *10^{-19} \text{ m}^{2}$

<u>Sol 10.</u>

(a) Density of AB = $Z * M/N_0 * a^3$ Here, Z = 4 (for fcc), M = 6.023 Y, A = $2 Y^{1/3} nm = 2 Y^{1/3} * 10^{-9} m$ Thus, Density = $4 * 6.023/6.023 * 10^{23} * (2Y^{1/3} * 10^{-9})^3$ = 5.0 kg m⁻³

(b) Since the observed density (20 kg m⁻³) of AB is higher than the calculated (5 kg m⁻³), the compound must have metal excess **defect.** Non-stocheometric degect.

<u>Sol 11.</u>

For an octahedral void a = 2 (r + R) In fcc lattice the largest void present is octahedral void. If the radius of void sphere is R and of lattice sphere is r. Then,

 $r = \sqrt{2 *400/5} = 141.12 \text{ pm}$ (a = 400 pm)applying condition for octahedral void, 2 (r + R) = a $\therefore 2 \text{ R} = a 2r = 400 - 2 * 141.12 : Diameter of greatest sphere =$ **117.16 pm**

<u>Sol 12.</u>

 P_{N_2} = 0.001 atm, T = 300 K, V = 2.46 cm²

 $\therefore Number \ of \ N_2 \ molecules$

= 6.016 * 10¹⁶

Now total number of surface sites

= Density * Total surface area

```
= 6.023 * 10^{14} * 1000 = 6.023 * 10^{17}
```

Sites occupied by N₂ molecules = $20/100 * 6.023 * 10^{17} = 12.04 * 10^{16}$

 \div No. of sites occupied by each N_2 molecule

= 12.04 *10¹⁶/6.016 * 10¹⁶ = **2**

<u>Sol 13.</u>

For bcc ; $r = \sqrt{3}/2 a$; d = n * M/N_{AV} * a³ or n = d *N_{AV} *a³/M => n = 2 *6 *10²³ (5 *10⁻⁸)³/75 = 2

Therefore Metal crystallizes in BCC structure and for a BCC lattice v3a = 4r

r = v3/4 a = v3 *5/4 = 2.165 Å = 216.5 pm

so the required answer is 217 pm.

Educational Material Downloaded from http://www.evidyarthi.in/ Get CBSE Notes, Video Tutorials, Test Papers & Sample Papers