Areas Related to Circles Formulas CBSE Class 10 Maths

Circumference of a Circle or Perimeter of a Circle

- The distance around the circle or the length of a circle is called its circumference or perimeter.
- Circumference (perimeter) of a circle $=\pi d$ or $2 \pi r$, where d is a diameter and r is a radius of the circle and $\pi=\frac{22}{7}$
- Area of a circle $=\pi r^{2}$
- Area of a semicircle $=\frac{1}{2} \pi r^{2}$
- Area of quadrant $=\frac{1}{4} \pi r^{2}$

Perimeter of a semicircle:

Perimeter of a semicircle or protractor $=\pi r+2 r$

Area of the ring Formulas:

Area of the ring or an annulus $=\pi R^{2}-\pi r^{2}$
$=\pi\left(R^{2}-r^{2}\right)$
$=\pi(R+r)(R-r)$

Length of the arc $\mathrm{AB}=\frac{2 \pi r \theta}{360^{0}}=\frac{\pi r \theta}{180^{0}}$

Area of sector formula:

- Area of sector $\mathrm{OACBO}=\frac{\pi r^{2} \theta}{360^{0}}$
- Area of sector $\mathrm{OACBO}=\frac{1}{2}(r \times I)$.

Perimeter of a sector Formula:

Perimeter of sector $\mathrm{OACBO}=$ Length of arc $\mathrm{AB}+2 r$
$=\frac{\pi r \theta}{180^{0}}+2 r$

- Distance moved by a wheel in 1 revolution = Circumference of the wheel.
- Number of revolutions in one minute $=\frac{\text { Distancemovedin } 1 \text { minute }}{\text { Circumference }}$
- Angle described by minute hand in 60 minutes $=360^{\circ}$
- Angle described by hour hand in 12 hours $=360^{\circ}$
- The mid-point of the hypotenuse of a right triangle is equidistant from the vertices of the triangle.
- The angle subtended at the circumference by a diameter is always a right angle.

Area of a segment Formula Class 10 :

- Area of minor segment $\mathrm{ACBA}=$ Area of sector OACBO - Area of $\triangle \mathrm{OAB}$ $=\frac{\pi r^{2} \theta}{360^{0}}-\frac{1}{2} r^{2} \sin \theta$
- Area of major segment $\mathrm{BDAB}=$ Area of the circle - Area of minor segment ACBA $=\pi r^{2}-$ Area of minor segment ACBA.
- If a chord subtends a right angle at the centre, then Area of the corresponding segment $=\left(\frac{\pi}{4}-\frac{1}{2}\right) r^{2}$
- If a chord subtends an angle of 60° at the centre, then

Area of the corresponding segment $=\left(\frac{\pi}{3}-\frac{\sqrt{ } 3}{2}\right) r^{2}$

- If a chord subtends an angle of 120° at the centre, then

Area of the corresponding segment $=\left(\frac{\pi}{3}-\frac{\sqrt{ } 3}{4}\right) r^{2}$

