CHAPTER - 12
 SURFACE AREA AND VOLUME

FREE Education

S.no	Derm $\mathbf{1}$ $\mathbf{2}$ $\mathbf{3}$$\quad$It is branch of mathematics which is concerned about the measurement of length , area and Volume of plane and Solid figure
a)The perimeter of plane figure is defined as the	
length of the boundary	
b)It units is same as that of length i.e. $\mathrm{m}, \mathrm{cm}, \mathrm{km}$	

Volume Unit conversion:

$\mathbf{1} \mathbf{~ c m}^{\mathbf{3}}$	$\mathbf{1 m L}$	$\mathbf{1 0 0 0} \mathbf{~ m m}^{\mathbf{3}}$
$\mathbf{1}$ Litre	1000 ml	$1000 \mathrm{~cm}^{3}$
$\mathbf{1} \mathbf{~ m}^{3}$	$10^{6} \mathrm{~cm}^{3}$	1000 L
$\mathbf{1} \mathbf{~ d m}^{\mathbf{3}}$	$1000 \mathrm{~cm}^{3}$	1 L

Surface Area and Volume of Cube and Cuboid:

Cube
Cuboid

Type	Measurement
Surface Area of Cuboid of Length \mathbf{L}, Breadth \mathbf{B} and Height \mathbf{H}	$2(\mathrm{LB}+\mathrm{BH}+\mathrm{LH})$.
Lateral surface area of the cuboids	$2(\mathrm{~L}+\mathrm{B}) \mathrm{H}$
Diagonal of the cuboids	$\sqrt{L^{2}+B^{2}+H^{2}}$
Volume of a cuboids	LBH
Length of all $\mathbf{1 2}$ edges of the cuboids	$4(\mathrm{~L}+\mathrm{B}+\mathrm{H})$.
Surface Area of Cube of side \mathbf{L}	$6 \mathrm{~L}^{2}$
Lateral surface area of the cube	$4 \mathrm{~L}^{2}$
Diagonal of the cube	$L \sqrt{3}$
Volume of a cube	L^{3}

Surface Area and Volume of Right circular cylinder:

Radius	The radius (r) of the circular base is called the radius of the cylinder
Height	The length of the axis of the cylinder is called the height (h) of the
	cylinder
Lateral The curved surface joining the two base of a right circular cylinder is Surface called Lateral Surface.	

Type	Measurement
Curved or lateral Surface Area of cylinder	$2 \pi \mathrm{rh}$
Total surface area of cylinder	$2 \pi r(h+r)$
Volume of Cylinder	$\Pi r^{2} h$

Surface Area and Volume of Right circular cone:

Radius The radius (r) of the circular base is called the radius of the cone

Height	The length of the line segment joining the vertex to the center of base is called the height (h) of the cone.
Slant Height	The length of the segment joining the vertex to any point on the circular edge of the base is called the slant height (L) of the cone.
Lateral surface Area	The curved surface joining the base and uppermost point of a right circular cone is called Lateral Surface

Type	Measurement
Curved or lateral Surface Area of cone	$\Pi r L$
Total surface area of cone	$\Pi r(L+r)$
Volume of Cone	$\frac{1}{3} \pi r^{2} h$

Surface Area and Volume of sphere and hemisphere:

Sphere

Hemisphere

Sphere	A sphere can also be considered as a solid obtained on rotating a circle About its diameter		
Hemisphere	A plane through the centre of the sphere divides the sphere into two equal parts, each of which is called a hemisphere		
radius The radius of the circle by which it is formed			
Spherical Shell	The difference of two solid concentric spheres is called a spherical		
Lateral Surface	Total surface area of the sphere		
Area for			
Sphere		\quad	Lateral
:---			
Surface area of Hemisphere			

Type	Measurement
Surface area of Sphere	$4 \pi r^{2}$
Volume of Sphere	$\frac{4}{3} \pi r^{3}$
Curved Surface area of hemisphere	$2 \pi r^{2}$
Total Surface area of hemisphere	$3 \pi r^{2}$
Volume of hemisphere	$\frac{2}{3} \pi r^{3}$
Volume of the spherical shell whose outer and inner radii and 'R' and 'r'	$\frac{4}{3} \pi\left(R^{3}-r^{3}\right)$
respectively	

How the Surface Area and Volume are determined:

Area of Circle	The circumference of a circle is $2 \pi r$. This is the definition of n (pi). Divide the circle into many triangular segments. The area of the triangles is $\mathbf{1 / 2}$ times the sum of their bases, $2 \pi r$ (the circumference), times their height, r.

$$
A=\frac{1}{2} 2 \pi r r=\pi r^{2}
$$

Surface Area of cylinder | This can be imagined as unwrapping the |
| :--- |
| surface into a rectangle. |

Surface area of cone
This can be achieved by divide the
surface of the cone into its triangles, or
the surface of the cone into many thin
triangles. The area of the triangles is $1 / 2$
times the sum of their bases, p, times
their height,

$$
A=\frac{1}{2} 2 \pi r s=\pi r s
$$

Surface Area and Volume of frustum of cone:

$h=$ vertical height of the frustum
$l=$ slant height of the frustum
$n 1$ and $n 2$ are radii of the two bases (ends) of the frustum.

Type	Measurement
Volume of a frustum of a cone	$\frac{1}{3} \pi h\left(r_{1}^{2}+r_{2}^{2}+r_{1} r_{2}\right)$
Slant height of frustum of a cone	$\sqrt{h^{2}+\left(r_{1}-r_{2}\right)^{2}}$
Curved surface area of a frustum of a cone	$\pi l\left(r_{1}+r_{2}\right)$
Total surface area of frustum of a cone	$\pi l\left(r_{1}+r_{2}\right)+\pi\left(r_{1}^{2}+r_{2}^{2}\right)$

