CHAPTER – 2

POLYNOMIAL EXPRESSIONS

A polynomial expression S(x) in one variable x is an algebraic expression in x term as

$$S(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + ax + a_0$$

Where $a_n, a_{n-1}, \dots, a_n, a_0$ are constant and real numbers and a_n is not equal to zero.

Some Important points to Note:

S.no	Points
1	a_n , a_{n-1} , a_{n-2} ,, a_1 , a_0 are called the coefficients for x^n , x^{n-1} ,, x^1 , x^0
2	n is called the degree of the polynomial
3	when a_n , a_{n-1} , a_{n-2} ,, a_1 , a_0 all are zero, it is called zero polynomial
4	A constant polynomial is the polynomial with zero degree, it is a constant value polynomial
5	A polynomial of one item is called monomial, two items binomial and three items as trinomial
6	A polynomial of one degree is called linear polynomial, two degree as quadratic polynomial and degree three as cubic polynomial

Important Concepts on Polynomial:

Concept	Description
Zero's or roots of the polynomial	It is a solution to the polynomial equation $S(x)=0$ i.e. a number "a" is said to be a zero of a polynomial if $S(a) = 0$. If we draw the graph of $S(x) = 0$, the values where the curve cuts the X-axis are called Zeroes of the polynomial
Remainder Theorem's	If $p(x)$ is an polynomial of degree greater than or equal to 1 and $p(x)$ is divided by the expression (x-a),then the remainder will be $p(a)$
Factor's Theorem's	If x-a is a factor of polynomial $p(x)$ then $p(a)=0$ or if $p(a) = 0,x-a$ is the factor the polynomial $p(x)$

1

Geometric Meaning of the Zeroes of the Polynomial:

Let's us assume

Y = p(x) where p(x) is the polynomial of any form.

Now we can plot the equation y=p(x) on the Cartesian plane by taking various values of x and y obtained by purring the values. The plot or graph obtained can be of any shapes.

The zeroes of the polynomial are the points where the graph meet x axis in the Cartesian plane. If the graph does not meet x axis, then the polynomial does not have any zero's.

Let us take some useful polynomial and shapes obtained on the Cartesian plane

S.no	у=р(x)	Graph obtained	Name of the graph	Name of the equation
1	y=ax+b where a and b can be any values (a≠0) Example y=2x+3		Straight line. It intersect the x- axis at (-b/a ,0) Example (-3/2,0)	Linear polynomial
2	y=ax ^{2+bx+c} where $b^2-4ac > 0$ and $a\neq 0$ and $a> 0$ Example $y=x^2-7x+12$		Parabola It intersect the x- axis at two points Example (3,0) and (4,0)	Quadratic polynomial
3	y=ax ^{2+bx+c} where $b^2-4ac > 0$ and $a \neq 0$ and $a < 0$ Example y=-x ² +2x+8	A	Parabola It intersect the x- axis at two points Example (-2,0) and (4,0)	Quadratic polynomial
4	y=ax ^{2+bx+c} where b ² -4ac = 0 and $a \neq 0$ a > 0 Example y=(x-2) ²	V	Parabola It intersect the x- axis at one points	Quadratic polynomial

5	y=ax ² +bx+c where b ² -4ac < 0 and a \neq 0 a > 0 Example y=x ² -2x+6		Parabola It does not intersect the x-axis It has no zero's	Quadratic polynomial
6	y=ax ² +bx+c where b ² -4ac < 0 and a \neq 0 a < 0 Example y=-x ² -2x-6		Parabola It does not intersect the x-axis It has no zero's	Quadratic polynomial
7	y=ax ³ +bx ² +cx+d where a≠0	It can be of any shape	It will cut the x-axis at the most 3 times	Cubic Polynomial
8	$a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \cdots + a_n + a_0$ Where $a_n \neq 0$	It can be of any shape	It will cut the x-axis at the most n times	Polynomial of n degree

S.no	Type of Polynomial	General form	Zero's	Relationship between Zero's and coefficients
1	Linear polynomial	ax+b ,a≠0	1	$k = \frac{-constant \ term}{Coefficent \ of \ x}$
2	Quadratic	ax²+bx+c, a≠0	2	$k_1 + k_2 = -\frac{Coefficent of x}{Coefficent of x^2}$ $k_1k_2 = \frac{Contant term}{Coefficent of x^2}$
3	Cubic	ax ³ +bx ² +cx+d, a≠0	3	$k_1 + k_2 + k_3$ = $-\frac{Coefficent of x^2}{Coefficent of x^3}$
				$k_1k_2k_3 = -\frac{Contant \ term}{Coefficent \ of \ x^{32}}$ $k_1k_2 + k_2k_3 + k_1k_3$ $= \frac{Coefficent \ of \ x}{Coefficent \ of \ x^2}$

Relation between coefficient and zeros of the polynomial:

Formation of polynomial when the zeroes are given:

Type of polynomial	Zero's	Polynomial Formed
Linear	k=a	(x-a)
Quadratic	k ₁ =a and k ₂ =b	(x-a)(x-b) Or x ² -(a+b)x +ab
		Or x²-(Sum of the zero's)x +product of the zero's
Cubic	$k_1=a$, $k_2=b$ and $k_3=c$	(x-a)(x-b)(x-c)

Division algorithm for polynomial:

Let's p(x) and q(x) are any two polynomial with $q(x)\neq 0$, then we can find polynomial s(x) and r(x) such that

P(x) = s(x) q(x) + r(x)

Where r(x) can be zero or degree of r(x) < degree of g(x)

Dividend = Quotient × Divisor + Remainder