CHAPTER - 2
 POLYNOMIAL EXPRESSIONS

A polynomial expression $\mathrm{S}(\mathrm{x})$ in one variable x is an algebraic expression in x term as

$$
S(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots \ldots \ldots \ldots . .+a x+a_{0}
$$

Where $a_{n}, a_{n-1}, \ldots \ldots . . a, a_{0}$ are constant and real numbers and a_{n} is not equal to zero.

Some Important points to Note:

S.no Points

$1 \quad a_{n}, a_{n-1}, a_{n-2}, \ldots . . . a_{1}, a_{0}$ are called the coefficients for $x^{n}, x^{n-1}, \ldots . . . x^{1}, x^{0}$
$2 \quad \mathrm{n}$ is called the degree of the polynomial
3 when $a_{n}, a_{n-1}, a_{n-2}, \ldots . . a_{1}, a_{0}$ all are zero, it is called zero polynomial
4 A constant polynomial is the polynomial with zero degree, it is a constant value polynomial

5 A polynomial of one item is called monomial, two items binomial and three items as trinomial

6 A polynomial of one degree is called linear polynomial, two degree as quadratic polynomial and degree three as cubic polynomial

Important Concepts on Polynomial:

Concept Description

Zero's or roots It is a solution to the polynomial equation $S(x)=0$ i.e. a number of the polynomial

Remainder
Theorem's

Factor's Theorem's

If $p(x)$ is an polynomial of degree greater than or equal to 1 and $p(x)$ is divided by the expression ($x-a$), then the remainder will be $p(a)$

If x-a is a factor of polynomial $p(x)$ then $p(a)=0$ or if $p(a)$ $=0, x-a$ is the factor the polynomial $p(x)$

Geometric Meaning of the Zeroes of the Polvnomial:

Let's us assume
$Y=p(x)$ where $p(x)$ is the polynomial of any form.
Now we can plot the equation $\mathrm{y}=\mathrm{p}(\mathrm{x})$ on the Cartesian plane by taking various values of x and y obtained by purring the values. The plot or graph obtained can be of any shapes.

The zeroes of the polynomial are the points where the graph meet x axis in the Cartesian plane. If the graph does not meet x axis, then the polynomial does not have any zero's.

Let us take some useful polynomial and shapes obtained on the Cartesian plane

5	$y=a x^{2}+b x+c$ where $\mathrm{b}^{2}-4 \mathrm{ac}<0 \text { and } \mathrm{a} \neq 0 \mathrm{a}>0$	10	Parabola It does not intersect the x-axis It has no zero's	Quadratic polynomial
	Example $y=x^{2}-2 x+6$			
6	$y=a x^{2}+b x+c$ where $\mathrm{b}^{2}-4 \mathrm{ac}<0 \text { and } \mathrm{a} \neq 0 \mathrm{a}<0$		Parabola It does not intersect the x -axis It has no zero's	Quadratic polynomial
	Example $y=-x^{2}-2 x-6$	π		
7	$y=a x^{3}+b x^{2}+c x+d$ where $a \neq 0$	It can be of any shape	It will cut the x-axis at the most 3 times	Cubic Polynomial
8	$\begin{aligned} a_{n} x^{n}+a_{n-1} x^{n-1} & +a_{n-2} x^{n-2} \\ & +\cdots \ldots \ldots+a x \\ & +a_{0} \end{aligned}$	It can be of any shape	It will cut the x-axis at the most n times	Polynomial of n degree
	Where $\mathrm{a}_{\mathrm{n}} \neq 0$			

Relation between coefficient and zeros of the polvnomial:

S.no	Type of Polynomial	General form	Zero's	Relationship between Zero's and coefficients
1	Linear polynomial	$a \mathrm{a}+\mathrm{b}, \mathrm{a} \neq 0$	1	$k=\frac{- \text { constant term }}{\text { Coefficent of } x}$
2	Quadratic	$a x^{2}+b x+c, a \neq 0$	2	$\begin{aligned} k_{1}+k_{2} & =-\frac{\text { Coefficent of } x}{\text { Coefficent of } x^{2}} \\ k_{1} k_{2} & =\frac{\text { Contant term }}{\text { Coefficent of } x^{2}} \end{aligned}$
3	Cubic	$a x^{3}+b x^{2}+c x+d, a \neq 0$	3	$\begin{aligned} & k_{1}+k_{2}+k_{3} \\ & =-\frac{\text { Coefficent of } x^{2}}{\text { Coefficent of } x^{3}} \end{aligned}$
				$\begin{gathered} k_{1} k_{2} k_{3}=-\frac{\text { Contant term }}{\text { Coefficent of } x^{32}} \\ k_{1} k_{2}+k_{2} k_{3}+k_{1} k_{3} \\ =\frac{\text { Coefficent of } x}{\text { Coefficent of } x^{2}} \end{gathered}$

Formation of polynomial when the zeroes are given:

Type of polynomial	Zero's	Polynomial Formed
Linear	$\mathrm{k}=\mathrm{a}$	($\mathrm{x}-\mathrm{a}$)
Quadratic	$\begin{aligned} & \mathrm{k}_{1}=\mathrm{a} \text { and } \\ & \mathrm{k}_{2}=\mathrm{b} \end{aligned}$	$(\mathrm{x}-\mathrm{a})(\mathrm{x}-\mathrm{b})$
		Or
		$x^{2}-(a+b) x+a b$
		Or
		x^{2}-(Sum of the zero's) $x+$ product of the zero's
Cubic	$\begin{aligned} & \mathrm{k}_{1}=\mathrm{a}, \mathrm{k}_{2}=\mathrm{b} \\ & \text { and } \mathrm{k}_{3}=\mathrm{c} \end{aligned}$	$(\mathrm{x}-\mathrm{a})(\mathrm{x}-\mathrm{b})(\mathrm{x}-\mathrm{c})$

Division algorithm for polynomial:

Let's $\mathrm{p}(\mathrm{x})$ and $\mathrm{q}(\mathrm{x})$ are any two polynomial with $\mathrm{q}(\mathrm{x}) \neq 0$, then we can find polynomial $\mathrm{s}(\mathrm{x})$ and $r(x)$ such that
$\mathrm{P}(\mathrm{x})=\mathrm{s}(\mathrm{x}) \mathrm{q}(\mathrm{x})+\mathrm{r}(\mathrm{x})$
Where $\mathrm{r}(\mathrm{x})$ can be zero or degree of $\mathrm{r}(\mathrm{x})<$ degree of $\mathrm{g}(\mathrm{x})$
Dividend $=$ Quotient \times Divisor + Remainder

