CHAPTER - 3

LINEAR EQUATIONS IN TWO VARIABLES

An equation of the form $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$, where a, b and c are real numbers, such that a and b are not both zero, is called a linear equation in two variables.

Important points to Note:

S.no Points

1 A linear equation in two variable has infinite solutions
2 The graph of every linear equation in two variable is a straight line
$3 x=0$ is the equation of the y-axis and $y=0$ is the equation of the x-axis
4 The graph $x=a$ is a line parallel to y-axis.
5 The graph $y=b$ is a line parallel to x-axis
6 An equation of the type $y=m x$ represents a line passing through the origin.

7 Every point on the graph of a linear equation in two variables is a solution of the linear
equation. Moreover, every solution of the linear equation is a point on the graph

S.no	Type of equation	Mathematical representation	Solutions
1	Linear equation in one Variable	$a x+b=0, a \neq 0$ a and b are real number	One solution
2	Linear equation in two Variable	$a x+b y+c=0, a \neq 0$ and $\mathrm{b} \neq 0$ a, b and c are real number	Infinite solution possible
3	Linear equation in three Variable	$\begin{aligned} & a x+b y+c z+d=0, a \neq 0 \\ & , b \neq 0 \text { and } c \neq 0 \end{aligned}$	Infinite solution possible
		a, b, c, d are real number	

Simultaneous pair of linear equation:

A pair of linear equation in two variables
$a_{1} x+b_{1} y+c_{1}=0$
$\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$

Graphically it is represented by two straight lines on Cartesian plane.

The graphical solution can be obtained by drawing the lines on the Cartesian plane.

Algebraic Solution of system of Linear equation:

S.no Type of method	Working of method
Method of elimination by	
substitution	

$$
\frac{x}{b_{1} c_{2}-b_{2} c_{1}}=\frac{-y}{a_{1} c_{2}-a_{2} c_{1}}=\frac{1}{a_{1} b_{2}-a_{2} b_{1}}
$$

4) Value of x and y can be find using the $x=>$ first and last expression $y=>$ second and last expression
