

CHAPTER – 4 QUADRATIC EQUATIONS

S.no	Terms	Descriptions
1	Quadratic Polynomial	$P(x) = ax^2 +bx+c$ where $a \neq 0$
2	Quadratic equation	ax² +bx+c =0 where a≠0
3	Solution or root of the Quadratic equation	A real number α is called the root or solution of the quadratic equation if $a\alpha^2 + b\alpha + c = 0$
4	zeroes of the polynomial p(x).	The root of the quadratic equation are called zeroes
5	Maximum roots of quadratic equations	We know from chapter two that a polynomial of degree can have max two zeroes. So a quadratic equation can have maximum two roots
6	Condition for real roots	A quadratic equation has real roots if b²- 4ac > 0

How to Solve Quadratic equation:

S.no	Method	Working
1	factorization	This method we factorize the equation by splitting the middle term b
		In ax ² +bx+c=0
		Example
		6x ² -x-2=0
		1) First we need to multiple the coefficient a and c.In this case =6X-2=-12
		2) Splitting the middle term so that multiplication is 12 and difference is the coefficient b
		$6x^2 + 3x - 4x - 2 = 0$
		3x(2x+1) -2(2x+1)=0
		(3x-2) (2x+1)=0
		3) Roots of the equation can be find equating the factors to zero
		3x-2=0 => x=3/2
		2x+1=0 => x=-1/2

In this method we create square on LHS and RHS and then find the value.

$$ax^2 + bx + c = 0$$

1)
$$x^2 + (b/a) x + (c/a) = 0$$

2)
$$(x+b/2a)^2 - (b/2a)^2 + (c/a) = 0$$

3)
$$(x+b/2a)^2=(b^2-4ac)/4a^2$$

$$4) x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Example

$$x^2 + 4x - 5 = 0$$

2)
$$(x+2)^2=9$$

3) Roots of the equation can be find using square root on both the sides

$$x+2 = -3 => x=-5$$

3 Quadratic method

For quadratic equation

$$ax^2 + bx + c = 0$$
.

roots are given by

$$x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
, $x = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$

For b² -4ac > 0, Quadratic equation has two real roots of different value

For b²-4ac =0, quadratic equation has one real root

For b^2 -4ac < 0, no real roots for quadratic equation

Nature Of roots of Quadratic equation:

S.no	Condition	Nature of roots
1	b^2 -4ac > 0	Two distinct real roots
2	b^2 -4ac =0	One real root
3	$b^2-4ac < 0$	No real roots