

RELATIONS AND FUNCTIONS

KEY CONCEPT INVOLVED

1. **Relations** - Let A and B be two non-empty sets then every subset of $A \times B$ defines a relation from A to B and every relation from A to B is a subset of $A \times B$.

Let $R \subseteq A \times B$ and $(a, b) \in R$. then we say that a is related to b by the relation R as aRb. If $(a, b) \notin R$ as a **K** b.

- 2. Domain and Range of a Relation Let R be a relation from A to B, that is, let $R \subset A \times B$. then *Domain* $R = \{a : a \in A, (a, b) \in R \text{ for some } b \in B\}$ i.e. dom. R is the set of all the first elements of the ordered pairs which belong to R. *Range* $R = (b : b \in B, (a, b) \in R \text{ for some } a \in A\}$ i.e. range R is the set of all the second elements of the ordered pairs which belong to R. Thus Dom. $R \subset A$, Range $R \subset B$.
- 3. Inverse Relation Let $R \subset A \times B$ be a relation from A to B. Then inverse relation $R^{-1} \subset B \times A$ is defined by $R^{-1} \{(b, a) : (a, b) \in R\}$
 - It is clear that
 - (i) $aRb = bR^{-1}a$
 - (ii) dom. R^{-1} = range R and range R^{-1} = dom R.
 - (iii) $(\mathbf{R}^{-1})^{-1} = \mathbf{R}$.
- 4. Composition of Relation Let R ⊂ A × B, S ⊂ B × C be two relations. Then composition of the relations R and S is denoted by SoR ⊂ A × C and is defined by (a, c) ∈ (SoR) iff b ∈ B such that (a, b) ∈ R, (b, c) ∈ S.
- **5.** Relations in a set let $A \neq \phi$ be a set and $R \subset A \times A$ i.e. R is a relation in the set A.
- 6. **Reflexive Relations -** R is a reflexive relation if $(a, a) \in R$, $\forall a \in R$ it should be noted that if for any $a \in A$
 - such that a \mathbf{K} a. then R is not reflexive.
- Symmetric Relation R is called symmetric relation on A if (x, y) ∈ R ⇒ (y, x) ∈ R.
 i.e. if x is related to y, then y is also related to x.
 It should be noted that R is symmetric iff R⁻¹ = R.
- 8. Anti Symmetric Relations R is called an anti symmetric relation if $(a, b) \in R$ and $(b, a) \in R \Rightarrow a = b$. Thus if $a \neq b$ then a may be related to b or b may be related to a but never both.
- 9. Transitive Relations R is called a transitive relation if $(a, b) \in R$ $(b, c) \in R \Rightarrow (a, c) \in R$
- **10.** Identity Relations R is an identity relation if $(a, b) \in R$ iff a = b. i.e. every element of A is related to only itself and always identity relation is reflexive symmetric and transitive.
- 11. Equivalence Relations a relation R in a set A is called an equivalence relation if
 - (i) R is reflexive i.e. $(a, a) \in \mathbb{R} \forall a \in \mathbb{A}$
 - (ii) R is symmetric i.e. $(a, b) \in R \Longrightarrow (b, a) \in R$
 - (iii) R is transitive i.e. (a, b), (b, c) \in R \Rightarrow (a, c) \in R.
- 12. Functions Suppose that to each element in a set A there is assigned, by some rule, an unique element of a set B. Such rules are called functions. If we let f denote these rules, then we write $f : A \rightarrow B$ as f is a function of A into B.
- **13.** Equal Functions If f and g are functions defined on the same domain A and if f(a) = g(a) for every $a \in A$, then f = g.

- **14.** Constant Functions Let $f: A \rightarrow B$. If f(a) = b, a constant, for all $a \in A$, then f is called a constant function. Thus f is called a constant function if range f consists of only one element.
- **15.** Identity Functions A function f is such that $A \rightarrow A$ is called an identity function if $f(x) = x, \forall x \in A$ it is denoted by I_{Λ} .
- 16. One-One Functions (Injective) Let $f: A \rightarrow B$ then f is called a one-one function. If no two different elements in A have the same image i.e. different elements in A have different elements in B. Denoted by symbol f is one-one if

 $f(a) = f(a') \Longrightarrow a = a'$

 $a \neq a' \Longrightarrow f(a) \neq f(a')$ i.e.

A mapping which is not one-one is called many one function.

17. Onto functions (Surjective) - In the mapping $f: A \rightarrow B$, if every member of B appears as the image of atleast one element of A, then we say "f is a function of A onto B or simply f is an onto functions" Thus f is onto iff f(A) = B

range = codomain i.e.

A function which is not onto is called into function.

- **18.** Inverse of a function Let $f: A \to B$ and $b \in B$ then the inverse of b i.e. $f^{-1}(b)$ consists of those elements in A which are mapped onto b i.e. $f^{-1}(b) = \{x ; x \in A, f(x) \in b\}$
 - \therefore f⁻¹ (b) \subset A, f⁻¹ (b) may be a null set or a singleton.
- **19.** Inverse Functions Let $f : A \rightarrow B$ be a one-one onto-function from A onto B. Then for each $b \in B$. $f^{-1}(b) \in A$ and is unique. So, $f^{-1}: B \rightarrow A$ is a function defined by $f^{-1}(b) = a$, iff f(a) = b. Then f⁻¹ is called the inverse function of f. If f has inverse function, f is also called invertible or nonsingular.

Thus f is invertible (non-singular) iff it is one-one onto (bijective) function.

- **20.** Composition Functions Let $f: A \rightarrow B$ and $g: B \rightarrow C$, be two functions, Then composition of f and g denoted by gof: $A \rightarrow C$ is defined by (gof) (a) = g {f (a)}.
- **21.** Binary Operation A binary operation * on a set A is a function $*: A \times A \rightarrow A$. We denote *(a, b) by a * b
- **22.** Commutative Binary Operation A binary operation * on the set A is commutative if for every a, $b \in A$, a * b = b * a.
- 23. Associative Binary Operation A binary operation * on the set A is associative if (a * b) * c = a * (b * c).
- 24. An Identity Element e for Binary Operation Let $*: A \times A \rightarrow A$ be a binary operation. There exists an element $e \in A$ such that $a * e = a = e * a \forall a \in A$, then e is called an identity element for Binary Operation *.
- **25.** Inverse of an Element a Let $* : A \times A \rightarrow A$ be a binary operation with identity element e in A. an element $a \in A$ is invertible w.r.t. binary operation *, if there exists an element b in A such that a * b = e = b * a and b is called the inverse of a and is denoted by a^{-1} .

CONNECTING CONCEPTS

- **1.** In general $gof \neq fog$.
- 2. $f: A \rightarrow B$, be one-one, onto then
- f⁻¹ of = I_A and fof⁻¹ = I_B 3. f: A \rightarrow B, g: B \rightarrow C, h: C \rightarrow D then (hog) of = ho (gof).
- 4. $f: A \rightarrow B, g: B \rightarrow C$ be one-one and onto then gof : $A \rightarrow C$ is also one-one onto and $(gof)^{-1} = f^{-1} \circ g^{-1}$.
- 5. Let : A \rightarrow B, then I_B of = f and foI_A = f. It should be noted that foI_B is not defined since for $(foI_B)(x) = fo \{I_B(x)\} = f(x)$
 - $I_B(x)$ exist when $x \in B$ and f(x) exist when $x \in A$
- 6. $f: A \rightarrow B, g: B \rightarrow C$ are both one-one, then gof : $A \rightarrow C$ is also one-one it should be noted that for gof to be one-one f must be one-one.
- 7. If $f: A \rightarrow Bg: B \rightarrow C$ are both onto then gof must be onto. However, the converse is not true. But for gof to be onto g must be onto.

The domain of the functions 8.

$$(f+g)(x) = f(x)+g(x)$$

 $(f-g)(x) = f(x)-g(x)$
 $(fg)(x) = f(x)g(x)$

is given by (dom. f) \cap (dom g) while domain of the function (f/g) (x) = $\frac{f(x)}{g(x)}$ is given by.

 $(dom f) \cap (dom. g) - \{x : g(x) = 0\}$

- 9. If O(A) = m, O(B) = n, then total number of mappings from A to B is n^{m} .
- **10.** If A and B are finite sets and O(A) = m, O(B) = n, $m \le n$.

n! Then number of injection (one-one) from A to B is ${}^{n}P_{m} = \frac{...}{(n-m)!}$

- 11. If $f: A \rightarrow B$ is injective (one-one), then $O(A) \le O(B)$.
- 12. If $f: A \rightarrow B$ is surjective (onto), then $O(A) \ge O(B)$.
- **13.** If $f: A \rightarrow B$ is bijective (one-one onto), then O(A) = O(B).
- 14. Let $f: A \rightarrow B$ and O(A) = O(B), then f is one-one \Leftrightarrow it is onto.
- **15.** Let $f: A \to B$ and $X_1, X_2 \subseteq A$, then f is one-one iff $f(X_1 \cap X_2) = f(X_1) \cap f(X_2)$ **16.** Let $f: A \to B$ and $X \subseteq A, Y \subseteq B$, then in general $f^{-1}(f(x)) \subseteq X$, $f(f^{-1}(y)) \subseteq Y$ If f is one-one onto $f^{-1}(f(x)) = x$, $f(f^{-1}(y)) = Y$.