1 RELATIONS AND FUNCTIONS

KEY CONCEPT INVOLVED

1. Relations - Let A and B be two non-empty sets then every subset of $A \times B$ defines a relation from A to B and every relation from A to B is a subset of $A \times B$.
Let $R \subseteq A \times B$ and $(a, b) \in R$. then we say that a is related to b by the relation R as $a R b$. If (a, b) $\notin R$ as a R R b.
2. Domain and Range of a Relation - Let R be a relation from A to B, that is, let $R \subset A \times B$. then Domain $R=\{\mathrm{a}: \mathrm{a} \in \mathrm{A},(\mathrm{a}, \mathrm{b}) \in \mathrm{R}$ for some $\mathrm{b} \in \mathrm{B}\}$ i.e. dom. R is the set of all the first elements of the ordered pairs which belong to R . Range $R=(\mathrm{b}: \mathrm{b} \in \mathrm{B},(\mathrm{a}, \mathrm{b}) \in \mathrm{R}$ for some $\mathrm{a} \in \mathrm{A}\}$ i.e. range R is the set of all the second elements of the ordered pairs which belong to R. Thus Dom. $R \subset A$, Range $R \subset B$.
3. Inverse Relation - Let $R \subset A \times B$ be a relation from A to B. Then inverse relation $R^{-1} \subset B \times A$ is defined by $\mathrm{R}^{-1}\{(\mathrm{~b}, \mathrm{a}):(\mathrm{a}, \mathrm{b}) \in \mathrm{R}\}$
It is clear that
(i) $\mathrm{aRb}=\mathrm{bR}^{-1} \mathrm{a}$
(ii) dom. $\mathrm{R}^{-1}=$ range R and range $\mathrm{R}^{-1}=\operatorname{dom} \mathrm{R}$.
(iii) $\left(\mathrm{R}^{-1}\right)^{-1}=\mathrm{R}$.
4. Composition of Relation - Let $R \subset A \times B, S \subset B \times C$ be two relations. Then composition of the relations R and S is denoted by $S o R \subset A \times C$ and is defined by $(a, c) \in(S o R)$ iff $b \in B$ such that $(a, b) \in$ $R,(b, c) \in S$.
5. Relations in a set - let $\mathrm{A}(\neq \phi)$ be a set and $\mathrm{R} \subset \mathrm{A} \times \mathrm{A}$ i.e. R is a relation in the set A .
6. Reflexive Relations - R is a reflexive relation if ($a, a) \in R, \forall a \in R$ it should be noted that if for any $a \in A$ such that a $\not \subset \quad$ a. then R is not reflexive.
7. Symmetric Relation - R is called symmetric relation on $\operatorname{Aif}(x, y) \in R \Rightarrow(y, x) \in R$. i.e. if x is related to y, then y is also related to x. It should be noted that R is symmetric iff $R^{-1}=R$.
8. Anti Symmetric Relations - R is called an anti symmetric relation if $(a, b) \in R$ and $(b, a) \in R \Rightarrow a=b$. Thus if $\mathrm{a} \neq \mathrm{b}$ then a may be related to b or b may be related to a but never both.
9. Transitive Relations - R is called a transitive relation if $(a, b) \in R(b, c) \in R \Rightarrow(a, c) \in R$
10. Identity Relations $-R$ is an identity relation if $(a, b) \in R$ iff $a=b$. i.e. every element of A is related to only itself and always identity relation is reflexive symmetric and transitive.
11. Equivalence Relations - a relation R in a set A is called an equivalence relation if
(i) R is reflexive i.e. (a, a) $\in \mathrm{R} \forall \mathrm{a} \in \mathrm{A}$
(ii) R is symmetric i.e. $(\mathrm{a}, \mathrm{b}) \in \mathrm{R} \Rightarrow(\mathrm{b}, \mathrm{a}) \in \mathrm{R}$
(iii) R is transitive i.e. $(a, b),(b, c) \in R \Rightarrow(a, c) \in R$.
12. Functions - Suppose that to each element in a set A there is assigned, by some rule, an unique element of a set B. Such rules are called functions. If we let f denote these rules, then we write $f: A \rightarrow B$ as f is a function of A into B .
13. Equal Functions - If f and g are functions defined on the same domain A and if $f(a)=g(a)$ for every $a \in A$, then $f=g$.
14. Constant Functions - Let $f: A \rightarrow B$. If $f(a)=b$, a constant, for all $a \in A$, then f is called a constant function. Thus f is called a constant function if range f consists of only one element.
15. Identity Functions - A function f is such that $\mathrm{A} \rightarrow \mathrm{A}$ is called an identity function if $\mathrm{f}(\mathrm{x})=\mathrm{x}, \forall \mathrm{x} \in \mathrm{A}$ it is denoted by I_{A}.
16. One-One Functions (Injective) - Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ then f is called a one-one function. If no two different elements in A have the same image i.e. different elements in A have different elements in B.
Denoted by symbol f is one-one if

$$
\begin{array}{ll}
& f(a)=f\left(a^{\prime}\right) \Rightarrow a=a^{\prime} \\
\text { i.e. } & a \neq a^{\prime} \Rightarrow f(a) \neq f\left(a^{\prime}\right)
\end{array}
$$

A mapping which is not one-one is called many one function.
17. Onto functions (Surjective) - In the mapping $f: A \rightarrow B$, if every member of B appears as the image of atleast one element of A, then we say " f is a function of A onto B or simply f is an onto functions" Thus f is onto $\operatorname{iff} \mathrm{f}(\mathrm{A})=\mathrm{B}$
i.e. range $=$ codomain

A function which is not onto is called into function.
18. Inverse of a function - Let $f: A \rightarrow B$ and $b \in B$ then the inverse of b i.e. $f^{-1}(b)$ consists of those elements in A which are mapped onto b i.e. $f^{-1}(b)=\{x ; x \in A, f(x) \in b\}$
$\therefore \mathrm{f}^{-1}(\mathrm{~b}) \subset \mathrm{A}, \mathrm{f}^{-1}(\mathrm{~b})$ may be a null set or a singleton.
19. Inverse Functions - Let $f: A \rightarrow B$ be a one-one onto-function from A onto B. Then for each $b \in B$. $f^{-1}(b) \in A$ and is unique. So, $f^{-1}: B \rightarrow A$ is a function defined by $f^{-1}(b)=a$, $\operatorname{iff} f(a)=b$.
Then f^{-1} is called the inverse function of f. If f has inverse function, f is also called invertible or nonsingular.
Thus f is invertible (non-singular) iff it is one-one onto (bijective) function.
20. Composition Functions - Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$, be two functions,

Then composition of f and g denoted by gof : $A \rightarrow C$ is defined by (gof) $(a)=g\{f(a)\}$.
21. Binary Operation - A binary operation $*$ on a set A is a function $*: \mathrm{A} \times \mathrm{A} \rightarrow \mathrm{A}$. We denote $*(\mathrm{a}, \mathrm{b})$ by a $* \mathrm{~b}$
22. Commutative Binary Operation - A binary operation $*$ on the set A is commutative if for every $a, b \in A$, $\mathrm{a} * \mathrm{~b}=\mathrm{b} * \mathrm{a}$.
23. Associative Binary Operation - A binary operation $*$ on the set A is associative if $(\mathrm{a} * \mathrm{~b}) * \mathrm{c}=\mathrm{a} *(\mathrm{~b} * \mathrm{c})$.
24. An Identity Element e for Binary Operation - Let $*: \mathrm{A} \times \mathrm{A} \rightarrow \mathrm{A}$ be a binary operation. There exists an elemente $\in A$ such that $a * e=\mathrm{e}=\mathrm{e} * \mathrm{a} \in \mathrm{A}$, then e is called an identity element for Binary Operation $*$.
25. Inverse of an Element a-Let $*: \mathrm{A} \times \mathrm{A} \rightarrow \mathrm{A}$ be a binary operation with identity element e in A . an element $\mathrm{a} \in \mathrm{A}$ is invertible w.r.t. binary operation $*$, if there exists an element b in A such that $a * b=e=b * a$. and b is called the inverse of a and is denoted by a^{-1}.

CONNECTING CONCEPTS

1. In general gof \neq fog.
2. $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$, be one-one, onto then
f^{-1} of $=\mathrm{I}_{\mathrm{A}}$ and fof $^{-1}=\mathrm{I}_{\mathrm{B}}$
3. $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}, \mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}, \mathrm{h}: \mathrm{C} \rightarrow \mathrm{D}$
then (hog) of $=$ ho (gof).
4. $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}, \mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$ be one-one and onto then gof : $\mathrm{A} \rightarrow \mathrm{C}$ is also one-one onto and (gof) $)^{-1}=\mathrm{f}^{-1} \mathrm{og}^{-1}$.
5. Let : $A \rightarrow B$, then I_{B} of $=f$ and foI $_{A}=f$. It should be noted that foI I_{B} is not defined since for $\left(\mathrm{foI}_{\mathrm{B}}\right)(\mathrm{x})=$ fo $\left\{\mathrm{I}_{\mathrm{B}}(\mathrm{x})\right\}=\mathrm{f}(\mathrm{x})$
$I_{B}(x)$ exist when $x \in B$ and $f(x)$ exist when $x \in A$
6. $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}, \mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$ are both one-one, then gof : $\mathrm{A} \rightarrow \mathrm{C}$ is also one-one it should be noted that for gof to be one-one f must be one-one.
7. If $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{Bg}: \mathrm{B} \rightarrow \mathrm{C}$ are both onto then gof must be onto. However, the converse is not true. But for gof to be onto g must be onto.
8. The domain of the functions

$$
\begin{aligned}
(\mathrm{f}+\mathrm{g})(\mathrm{x}) & =\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x}) \\
(\mathrm{f}-\mathrm{g})(\mathrm{x}) & =\mathrm{f}(\mathrm{x})-\mathrm{g}(\mathrm{x}) \\
(\mathrm{fg})(\mathrm{x}) & =\mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{x})
\end{aligned}
$$

is given by $($ dom. $f) \cap($ dom $g)$ while domain of the function $(f / g)(x)=\frac{f(x)}{g(x)}$ is given by. $(\operatorname{domf}) \cap($ dom. g$)-\{\mathrm{x}: \mathrm{g}(\mathrm{x})=0\}$
9. If $O(A)=m, O(B)=n$, then total number of mappings from A to B is n^{m}.
10. If A and B are finite sets and $O(A)=m, O(B)=n, m \leq n$.

Then number of injection (one-one) from A to B is ${ }^{n} P_{m}=\frac{n!}{(n-m)!}$
11. If $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is injective (one-one), then $\mathrm{O}(\mathrm{A}) \leq \mathrm{O}$ (B).
12. If $f: A \rightarrow B$ is surjective (onto), then $O(A) \geq O$ (B).
13. If $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is bijective (one-one onto), then $\mathrm{O}(\mathrm{A})=\mathrm{O}(\mathrm{B})$.
14. Let $f: A \rightarrow B$ and $O(A)=O(B)$, then f is one-one \Leftrightarrow it is onto.
15. Let $f: A \rightarrow B$ and $X_{1}, X_{2} \subseteq A$, then f is one-one iff $f\left(X_{1} \cap X_{2}\right)=f\left(X_{1}\right) \cap f\left(X_{2}\right)$
16. Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{X} \subseteq \mathrm{A}, \mathrm{Y} \subseteq \mathrm{B}$, then in general $\mathrm{f}^{-1}(\mathrm{f}(\mathrm{x})) \subseteq \mathrm{X}, \mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{y})\right) \subseteq \mathrm{Y}$ If f is one-one onto $\mathrm{f}^{-1}(\mathrm{f}(\mathrm{x}))=\mathrm{x}, \mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{y})\right)=\mathrm{Y}$.

