

10

VECTOR ALGEBRA

KEY CONCEPT INVOLVED

1. Vector – A vector is a quantity having both magnitude and direction, such as displacement, velocity, force and acceleration.

AB is a directed line segment. It is a vector \overrightarrow{AB} and its direction is from A to B.

Initial Points – The point A where from the vector \overrightarrow{AB} starts is known as initial point. **Terminal Point** – The point B, where it ends is said to be the terminal point. **Magnitude** – The distance between initial point and terminal point of a vector is the magnitude or length of the vector \overrightarrow{AB} . It is denoted by $|\overrightarrow{AB}|$ or AB.

→B

2. Position Vector – Consider a point p (x, y, z) in space. The vector \overrightarrow{OP} with initial point, origin O and terminal point P, is called the position vector of P.

3. Types of Vectors

- (i) Zero Vector Or Null Vector A vector whose initial and terminal points coincide is known as zero vector (\vec{O}).
- (ii) Unit Vector A vector whose magnitude is unity is said to be unit vector. It is denoted as \hat{a} so that $|\hat{a}| = 1$.
- (iii) **Co-initial Vectors** Two or more vectors having the same initial point are called co-initial vectors.
- (iv) **Collinear Vectors** If two or more vectors are parallel to the same line, such vectors are known as collinear vectors.
- (v) Equal Vectors If two vectors \vec{a} and \vec{b} have the same magnitude and direction regardless of the positions of their initial points, such vectors are said to be equal *i.e.*, $\vec{a} = \vec{b}$.
- (vi) Negative of a vector A vector whose magnitude is same as that of a given vector \overrightarrow{AB} , but the direction is opposite to that of it, is known as negative of vector \overrightarrow{AB} *i.e.*, $\overrightarrow{BA} = -\overrightarrow{AB}$

4. Sum of Vectors

(i) Sum of vectors \vec{a} and \vec{b} let the vectors \vec{a} and \vec{b} be so positioned that initial point of one coincides with terminal point of the other. If $\vec{a} = \overrightarrow{AB}$, $\vec{b} = \overrightarrow{BC}$. Then the vector $\vec{a} + \vec{b}$ is represented by the third side of $\triangle ABC$. *i.e.*, $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$...(i)

This is known as the triangle law of vector addition. Further $\overrightarrow{AC} = -\overrightarrow{CA}$

 $\overrightarrow{AB} + \overrightarrow{BC} = -\overrightarrow{CA}$ \therefore $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = 0$

when sides of a triangle ABC are taken in order i.e. initial and terminal points coincides. Then $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = 0$

(ii) **Parallelogram law of vector addition** – If the two vectors \vec{a} and \vec{b} are represented by the two adjacent sides OA and OB of a parallelogram OACB, then their sum $\vec{a} + \vec{b}$ is represented in magnitude and direction by the diagonal OC of parallelogram through their common point O *i.e.*, $\overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{OC}$

- 5. Multiplication of Vector by a Scalar Let \vec{a} be the given vector and λ be a scalar, then product of λ and $\vec{a} = \lambda \vec{a}$
 - (i) when λ is +ve, then \vec{a} and $\lambda \vec{a}$ are in the same direction.
 - (ii) when λ is -ve. then \vec{a} and $\lambda \vec{a}$ are in the opposite direction. Also $|\lambda \vec{a}| = |\lambda| |\vec{a}|$.
- 6. Components of Vector Let us take the points A (1, 0, 0), B (0, 1, 0) and C (0, 0, 1) on the coordinate axes OX, OY and OZ respectively. Now, $|\overrightarrow{OA}| = 1$, $|\overrightarrow{OB}| = 1$ and $|\overrightarrow{OC}| = 1$, Vectors \overrightarrow{OA} , \overrightarrow{OB} and \overrightarrow{OC} each

having magnitude 1 is known as unit vector. These are denoted by $\hat{i},\,\hat{j}$ and \hat{k} .

Consider the vector \overrightarrow{OP} , where P is the point (x, y, z). Now OQ, OR, OS are the projections of OP on coordinates axes.

 $\therefore \quad OQ = x, OR = y, OS = z \qquad \qquad \therefore \qquad \overrightarrow{OQ} = x\hat{i}, \quad \overrightarrow{OR} = y\hat{j} \quad , \quad \overrightarrow{OS} = z\hat{k}$

x, y, z are called the scalar components and $x\hat{i}$, $y\hat{j}$, $z\hat{k}$ are called the vector components of vector \overrightarrow{OP} . 7. Vector joining two points – Let $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$ be the two points. Then vector joining the

points P_1 and P_2 is $\overrightarrow{P_1P_2}$. Join P_1 , P_2 with O. Now $\overrightarrow{OP_2} = \overrightarrow{OP_1} + \overrightarrow{P_1P_2}$ (by triangle law)

$$\therefore \qquad \overline{P_1P_2} = \overline{OP_2} - \overline{OP_1} \\ = (x_2\hat{i} + y_2\hat{j} + z_2\hat{k}) - (x_1\hat{i} + y_1\hat{j} + z_1\hat{k}) = (x_2 - x_1)\hat{i} + (y_2 - y_1)\hat{j} + (z_2 - z_1)\hat{k} \\ |\overline{P_1P_2}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

8. Section Formula

 \Rightarrow

(i) A line segment PQ is divided by a point R in the ratio m : n internally *i.e.*, $\frac{PR}{RQ} = \frac{m}{n}$

If \vec{a} and \vec{b} are the position vectors of P and Q then the position vector \vec{r} of R is given by

$$\vec{r} = \frac{mb + na}{m + n}$$

If R be the mid-point of PQ, then $\vec{r} = \frac{\vec{a} + \vec{b}}{2}$

(ii) when R divides PQ externally, i.e., $|\vec{a}|| \cdot \vec{b} | \hat{n}$

$$P(\vec{a}) \qquad Q(\vec{b}) \qquad R(\vec{r})$$

Then
$$\vec{r} = \frac{m\vec{b} - n\vec{a}}{m - n}$$

9. Projection of vector along a directed line – Let the vector \overrightarrow{AB} makes an angle θ with directed line ℓ . Projection of AB on $\ell = |\overrightarrow{AB}| \cos \theta = \overrightarrow{AC} = \overrightarrow{p}$.

The vector \vec{p} is called the projection vector. Its magnitudes is $|\vec{b}|$, which is known as projection of vector \vec{AB} . The angle θ between \vec{AB} and \vec{AC} is given by

$$\cos \theta = \frac{AB \cdot AC}{|\overrightarrow{AB}| |\overrightarrow{AC}|}, \quad \text{Now projection } AC = |\overrightarrow{AB}| \cos \theta = \frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{|\overrightarrow{AC}|}$$
$$= \overrightarrow{AB} \cdot \left(\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}\right), \quad \text{If } \overrightarrow{AB} = \overrightarrow{a}, \text{ then } \overrightarrow{AC} = \overrightarrow{a} \cdot \left(\frac{\overrightarrow{p}}{|\overrightarrow{p}|}\right) = \overrightarrow{a} \cdot \overrightarrow{p}$$

Thus, the projection of \vec{a} on $\vec{b} = \vec{a} \cdot \left(\frac{\vec{b}}{|\vec{b}|}\right) = \vec{a} \cdot \hat{b}$

10. Scalar Product of Two Vectors (Dot Product) – Scalar Product of two vectors \vec{a} and \vec{b} is defined as $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$

Where θ is the angle between \vec{a} and \vec{b} ($0 \le \theta \le \pi$)

- (i) when $\theta = 0$, then $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| = ab$ Also $\vec{a} \cdot \vec{a} = |\vec{a}| |\vec{a}| = aa = a^2$
 - $\therefore \qquad \hat{i}\cdot\hat{i}=\hat{j}\cdot\hat{j}=\hat{k}\cdot\hat{k}=1$
- (ii) when $\theta = \frac{\pi}{2}$, then $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \frac{\pi}{2} = 0$ $\hat{i} \cdot \hat{j} = \hat{j} \cdot \hat{k} = \hat{k} \cdot \hat{i} = 0$

11. Vector Product of two Vectors (Cross Product) – The vector product of two non-zero vectors \vec{a} and \vec{b} ,

denoted by $\vec{a} \times \vec{b}$ is defined as

 $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \cdot \hat{n}$, where θ is the angle between \vec{a} and \vec{b} , $0 \le \theta \le \pi$.

Unit vector \hat{n} is perpendicular to both vectors \vec{a} and \vec{b} such that $\vec{a} \cdot \vec{b}$ and \hat{n} form a right handed orthogonal system.

(i) If $\theta = 0$, then $\vec{a} \times \vec{b} = 0$, $\therefore \vec{a} \times \vec{a} = 0$ and $\therefore \hat{i} \times \hat{i} = \hat{j} \times \hat{j} = \hat{k} \times \hat{k} = 0$

(ii) If
$$\theta = \frac{\Pi}{2}$$
, then $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \hat{n}$
 $\hat{i} \times \hat{j} = \hat{k}, \ \hat{j} \times \hat{k} = \hat{i}, \ \hat{k} \times \hat{i} = \hat{j}$

Also, $\hat{i} \times \hat{i} = -\hat{k}$, $\hat{k} \times \hat{i} = -\hat{i}$ and $\hat{i} \times \hat{k} = \hat{i}$

CONNECTING CONCEPTS

1. Direction Cosines – Let OX, OY, OZ be the positive coordinate axes, P(x, y, z) by any point in the space. Let \overrightarrow{OP} makes angles α , β , γ with coordinate, axes OX, OY, OZ. The angle α , β , γ are known as direction angles, cosine of these angles *i.e.*,

 $\cos \alpha$, $\cos \beta$, $\cos \gamma$ are called direction cosines of line OP. these direction cosines are denoted by ℓ , m, n *i.e.*, $\ell = \cos \alpha$, $m = \cos \beta$, $n = \cos \gamma$

2. Relation Between, l, m, n and Direction Ratios -

The perpendiculars PA, PB, PC are drawn on coordinate axes OX, OY, OZ reprectively. Let $|\overrightarrow{OP}| = r$

In $\triangle OAP$, $\angle A = 90^{\circ}$, $\cos \alpha = \frac{x}{r} = \ell$, $\therefore x = \ell r$, In $\triangle OBP$, $\angle B = 90^{\circ}$, $\cos \beta = \frac{y}{r} = m$ $\therefore y = mr$ In $\triangle OCP$, $\angle C = 90^{\circ}$, $\cos \gamma = \frac{z}{r} = n$, $\therefore z = nr$

Thus the coordinates of P may b expressed as (ℓ r, mr, nr)

Also, $OP^2 = x^2 + y^2 + z^2$, $r^2 = (lr)^2 + (mr)^2 + (nr)^2 \implies \ell^2 + m^2 + n^2 = 1$

Set of any there numbers, which are proportional to direction cosines are called direction ratio of the vactor. Direction ratio are denoted by a, b and c.

The numbers ℓ r mr and nr, proportional to the direction cosines, hence, they are also direction ratios of vector \overrightarrow{OP} .

3. Properties of Vector Addition -

- **1.** For two vectors \vec{a} , \vec{b} the sum is commutative *i.e.*, $\vec{a} + \vec{b} = \vec{b} + \vec{a}$
- 2. For three vectors \vec{a}, \vec{b} and \vec{c} , the sum of vectors is associative i.e.,

 $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$

- 4. Additive Inverse of Vector \vec{a} If there exists vector \vec{a} such that $\vec{a} + (-\vec{a}) = \vec{a} \vec{a} = \vec{0}$ then \vec{a} is called the additure inverse of \vec{a}
- 5. Some Properties Let $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ and $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$

(i)
$$\vec{a} + \vec{b} = (a_1\hat{i} + a_2\hat{j} + a_3\hat{k}) + (b_1\hat{i} + b_2\hat{j} + b_3\hat{k}) = (a_1 + b_1)\hat{i} + (a_2 + b_2)\hat{j} + (a_3 + b_3)\hat{k}$$

- (ii) $\vec{a} = \vec{b}$ or $(a_1\hat{i} + a_2\hat{j} + a_3\hat{k}) = (b_1\hat{i} + b_2\hat{j} + b_3\hat{k}) \implies a_1 = b_1, a_2 = b_2, a_3 = b_3$
- (iii) $\lambda \vec{a} = \lambda (a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}) = (\lambda a_1) \hat{i} + (\lambda a_2) \hat{j} + (\lambda a_3) \hat{k}$
- (iv) \vec{a} and \vec{b} are parallel, if and only if there exists a non zero scalar λ such that $\vec{b} = \lambda \vec{a}$

i.e.,
$$b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k} = \lambda (a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}) = (\lambda a_1) \hat{i} + (\lambda a_2) \hat{j} + (\lambda a_3) \hat{k}$$

$$\therefore \quad b_1 = \lambda a_1, \quad , b_2 = \lambda a_2, \quad b_3 = \lambda a_3 \qquad \therefore \quad \frac{b_1}{a_1} = \frac{b_2}{a_2} = \frac{b_3}{a_3} = \lambda$$

- 6. Properties of scalar product of two vectors (Dot Product)
 - (i) $\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$ If $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$ and $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$ Then, $\vec{a} \cdot \vec{b} = (a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}) \cdot (b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k})$, $\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$ $|\vec{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}, |\vec{b}| = \sqrt{b_1^2 + b_2^2 + b_3^2}$ $\therefore \cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} = \frac{a_1 b_1 + a_2 b_2 + a_3 b_3}{\sqrt{a_1^2 + a_2^2 + a_3^2} \cdot \sqrt{b_1^2 + b_2^2 + b_3^2}}$ (ii) $\vec{a} \cdot \vec{b}$ is commutative *i.e.*, $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$ (iii) If α is a scalar, then $(\alpha \vec{a}) \cdot \vec{b} = \alpha (\vec{a} \cdot \vec{b}) = \vec{a} \cdot (\alpha \vec{b})$

7. Properties of Vector Product of two Vectors (Cross Product) -

- (i) (a) If $\vec{a} = 0$ or $\vec{b} = 0$, then $\vec{a} \times \vec{b} = 0$
 - (b) If $\vec{a} \parallel \vec{b}$, then $\vec{a} \times \vec{b} = 0$
- (ii) $\vec{a} \times \vec{b}$ is not commutative

i.e. $\vec{a} \times \vec{b} = \vec{b} \times \vec{a}$, but $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$

- (iii) If \vec{a} and \vec{b} represent adjacent sides of a parallelogram, then its area $|\vec{a} \times \vec{b}|$
- (iv) If \vec{a} , \vec{b} represent the adjacent sides of a triangle, then its area $= \frac{1}{2} |\vec{a} \times \vec{b}|$
- (v) Distributive property $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$
 - (a) If α be a scalar, then $\alpha (\vec{a} \times \vec{b}) = (\alpha \vec{a}) \times \vec{b} = \vec{a} \times (\alpha \vec{b})$
 - (b) If $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$, and $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$

Then, $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$

8. If $\alpha_1 \beta_1 \gamma$ are the direction angles of the vector $\vec{a} = (a_1\hat{i} + a_2\hat{j} + a_3\hat{k})$. Then direction cosines of \vec{a} are given as

$$\cos \alpha = \frac{a_1}{|\vec{a}|} \ , \ \cos \beta = \frac{a_2}{|\vec{a}|} \ , \ \cos \gamma = \frac{a_3}{|\vec{a}|}$$

9. Scalar Product of Two Vectors (Dot Product) – Scalar Product of two vectors \vec{a} and \vec{b} is defined as $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$

where θ is the angle between \vec{a} and $\vec{b} \left(0 \le \theta < \frac{\pi}{2} \right)$ (i) When $\theta = 0$, then $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}|$. Also $\vec{a} \cdot \vec{a} \ a \cdot a = a^2$

$$\therefore \quad \hat{\mathbf{i}} \cdot \hat{\mathbf{i}} = \hat{\mathbf{j}} \cdot \hat{\mathbf{j}} = \hat{\mathbf{k}} \cdot \hat{\mathbf{k}} = 1$$
(ii) When $\theta = \frac{\pi}{2}$, $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = |\vec{\mathbf{a}}| |\vec{\mathbf{b}}| \cos \frac{\pi}{2} = 0$