10
 VECTOR ALGEBRA

KEY CONCEPT INVOLVED

1. Vector - A vector is a quantity having both magnitude and direction, such as displacement, velocity, force and acceleration.
$A B$ is a directed line segment. It is a vector $\overrightarrow{A B}$ and its direction is from A to B.

$$
\mathrm{A} \longrightarrow \mathrm{~B}
$$

Initial Points - The point A where from the vector $\overrightarrow{\mathrm{AB}}$ starts is known as initial point.
Terminal Point - The point B, where it ends is said to be the terminal point.
Magnitude - The distance between initial point and terminal point of a vector is the magnitude or length of the vector $\overrightarrow{\mathrm{AB}}$. It is denoted by $|\overrightarrow{\mathrm{AB}}|$ or AB .
2. Position Vector - Consider a point $p(x, y, z)$ in space. The vector $\overrightarrow{\mathrm{OP}}$ with initial point, origin O and terminal point P, is called the position vector of P.

3. Types of Vectors
(i) Zero Vector Or Null Vector - A vector whose initial and terminal points coincide is known as zero vector ($\overrightarrow{\mathrm{O}}$).
(ii) Unit Vector - A vector whose magnitude is unity is said to be unit vector. It is denoted as â so that $|\hat{a}|=1$.
(iii) Co-initial Vectors - Two or more vectors having the same initial point are called co-initialvectors.
(iv) Collinear Vectors - If two or more vectors are parallel to the same line, such vectors are known as collinear vectors.
(v) Equal Vectors - If two vectors \vec{a} and \vec{b} have the same magnitude and direction regardless of the positions of their initial points, such vectors are said to be equal i.e., $\vec{a}=\vec{b}$.
(vi) Negative of a vector - A vector whose magnitude is same as that of a given vector $\overrightarrow{A B}$, but the direction is opposite to that of it, is known as negative of vector $\overrightarrow{\mathrm{AB}}$ i.e., $\overrightarrow{\mathrm{BA}}=-\overrightarrow{\mathrm{AB}}$

4. Sum of Vectors

(i) Sum of vectors $\overrightarrow{\mathbf{a}}$ and \vec{b} let the vectors \vec{a} and \vec{b} be so positioned that initial point of one coincides with terminal point of the other. If $\vec{a}=\overrightarrow{A B}, \vec{b}=\overrightarrow{B C}$. Then the vector $\vec{a}+\vec{b}$ is represented by the third side of $\triangle \mathrm{ABC}$. i.e., $\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{AC}}$

This is known as the triangle law of vector addition.
Further $\overrightarrow{\mathrm{AC}}=-\overrightarrow{\mathrm{CA}}$

$$
\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}=-\overrightarrow{\mathrm{CA}} \quad \therefore \quad \overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}+\overrightarrow{\mathrm{CA}}=0
$$

when sides of a triangle ABC are taken in order i.e. initial and terminal points coincides. Then

$$
\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}+\overrightarrow{\mathrm{CA}}=0
$$

(ii) Parallelogram law of vector addition-If the two vectors \vec{a} and \vec{b} are represented by the two adjacent sides OA and OB of a parallelogram OACB, then their sum $\vec{a}+\vec{b}$ is represented in magnitude and direction by the diagonal OC of parallelogram through their common point O i.e., $\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}=\overrightarrow{\mathrm{OC}}$

5. Multiplication of Vector by a Scalar - Let \vec{a} be the given vector and λ be a scalar, then product of λ and $\vec{a}=\lambda \vec{a}$
(i) when λ is +ve , then \vec{a} and $\lambda \vec{a}$ are in the same direction.
(ii) when λ is -ve. then \vec{a} and $\lambda \vec{a}$ are in the opposite direction. Also $|\lambda \vec{a}|=|\lambda||\vec{a}|$.
6. Components of Vector - Let us take the points $\mathrm{A}(1,0,0), \mathrm{B}(0,1,0)$ and $\mathrm{C}(0,0,1)$ on the coordinate axes OX, OY and OZ respectively. Now, $|\overrightarrow{\mathrm{OA}}|=1,|\overrightarrow{\mathrm{OB}}|=1$ and $|\overrightarrow{\mathrm{OC}}|=1$, Vectors $\overrightarrow{\mathrm{OA}}, \overrightarrow{\mathrm{OB}}$ and $\overrightarrow{\mathrm{OC}}$ each having magnitude 1 is known as unit vector. These are denoted by \hat{i}, \hat{j} and \hat{k}.

Consider the vector $\overrightarrow{\mathrm{OP}}$, where P is the point ($\mathrm{x}, \mathrm{y}, \mathrm{z}$). Now OQ, OR, OS are the projections of OP on coordinates axes.
$\therefore \quad \mathrm{OQ}=\mathrm{x}, \mathrm{OR}=\mathrm{y}, \mathrm{OS}=\mathrm{z}$
$\therefore \quad \overrightarrow{\mathrm{OQ}}=x \hat{\mathrm{i}}, \quad \overrightarrow{\mathrm{OR}}=y \hat{\mathrm{j}}, \quad \overrightarrow{\mathrm{OS}}=\mathrm{z} \hat{\mathrm{k}}$

$$
\Rightarrow \quad \overrightarrow{\mathrm{OP}}=x \hat{\mathrm{i}},+y \hat{\mathrm{j}},+\mathrm{z} \hat{\mathrm{k}}, \quad|\overrightarrow{\mathrm{OP}}|=\sqrt{x^{2}+y^{2}+\mathrm{z}^{2}}=|\overrightarrow{\mathrm{r}}|
$$

x, y, z are called the scalar components and $x \hat{i}, y \hat{j}, z \hat{k}$ are called the vector components of vector $\overrightarrow{\mathrm{OP}}$.
7. Vector joining two points - Let $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}\left(x_{2}, y_{2} z_{2}\right)$ be the two points. Then vector joining the points P_{1} and P_{2} is $\overrightarrow{\mathrm{P}_{1} \mathrm{P}_{2}}$. Join $\mathrm{P}_{1}, \mathrm{P}_{2}$ with O . Now $\overrightarrow{\mathrm{OP}}_{2}=\overrightarrow{\mathrm{OP}}_{1}+\overrightarrow{\mathrm{P}_{1} \mathrm{P}_{2}}$ (by triangle law)

$\therefore \quad \overrightarrow{\mathrm{P}_{1} \mathrm{P}_{2}}=\overrightarrow{\mathrm{OP}}_{2}-\overrightarrow{\mathrm{OP}}_{1}$
$=\left(x_{2} \hat{i}+y_{2} \hat{j}+z_{2} \hat{k}\right)-\left(x_{1} \hat{i}+y_{1} \hat{j}+z_{1} \hat{k}\right)=\left(x_{2}-x_{1}\right) \hat{i}+\left(y_{2}-y_{1}\right) \hat{j}+\left(z_{2}-z_{1}\right) \hat{k}$ $\left|\overrightarrow{\mathrm{P}_{1} \mathrm{P}_{2}}\right|=\sqrt{\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}+\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)^{2}}$

8. Section Formula

(i) A line segment PQ is divided by a point R in the ratio $\mathrm{m}: \mathrm{n}$ internally i.e., $\frac{\mathrm{PR}}{\mathrm{RQ}}=\frac{\mathrm{m}}{\mathrm{n}}$

If \vec{a} and \vec{b} are the position vectors of P and Q then the position vector \vec{r} of R is given by

$$
\overrightarrow{\mathrm{r}}=\frac{\mathrm{m} \overrightarrow{\mathrm{~b}}+\mathrm{na}}{\mathrm{~m}+\mathrm{n}}
$$

If R be the mid-point of $P Q$, then $\vec{r}=\frac{\vec{a}+\vec{b}}{2}$
(ii) when R divides PQ externally, i.e., $|\vec{a}||\cdot \vec{b}| \hat{n}$

Then $\vec{r}=\frac{m \vec{b}-n \vec{a}}{m-n}$
9. Projection of vector along a directed line - Let the vector $\overrightarrow{\mathrm{AB}}$ makes an angle θ with directed line ℓ.

Projection of AB on $\ell=|\overrightarrow{\mathrm{AB}}| \cos \theta=\overrightarrow{\mathrm{AC}}=\overrightarrow{\mathrm{p}}$.

The vector $\overrightarrow{\mathrm{p}}$ is called the projection vector. Its magnitudes is $\mid \overrightarrow{\mathrm{b}}$, which is known as projection of vector $\overrightarrow{\mathrm{AB}}$. The angle θ between $\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AC}}$ is given by

$$
\begin{aligned}
\cos \theta & =\frac{\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}}{|\overrightarrow{\mathrm{AB}}||\overrightarrow{\mathrm{AC}}|}, \quad \text { Now projection } \mathrm{AC}=|\overrightarrow{\mathrm{AB}}| \cos \theta=\frac{\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}}{|\overrightarrow{\mathrm{AC}}|} \\
& =\overrightarrow{\mathrm{AB}} \cdot\left(\frac{\overrightarrow{\mathrm{AC}}}{|\overrightarrow{\mathrm{AC}}|}\right), \quad \text { If } \overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{a}}, \text { then } \overrightarrow{\mathrm{AC}}=\overrightarrow{\mathrm{a}} \cdot\left(\frac{\overrightarrow{\mathrm{p}}}{|\overrightarrow{\mathrm{p}}|}\right)=\overrightarrow{\mathrm{a}} \cdot \hat{\mathrm{p}}
\end{aligned}
$$

Thus, the projection of \vec{a} on $\vec{b}=\vec{a} \cdot\left(\frac{\vec{b}}{|\vec{b}|}\right)=\vec{a} \cdot \hat{b}$
10. Scalar Product of Two Vectors (Dot Product) - Scalar Product of two vectors \vec{a} and \vec{b} is defined as $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$

Where θ is the angle between \vec{a} and $\vec{b}(0 \leq \theta \leq \pi)$
(i) when $\theta=0$, then $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}|=a b \quad$ Also $\vec{a} \cdot \vec{a}=|\vec{a}||\vec{a}|=a \cdot a=a^{2}$

$$
\therefore \quad \hat{\mathrm{i}} \cdot \hat{\mathrm{i}}=\hat{\mathrm{j}} \cdot \hat{\mathrm{j}}=\hat{\mathrm{k}} \cdot \hat{\mathrm{k}}=1
$$

(ii) when $\theta=\frac{\pi}{2}$, then $\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \cos \frac{\pi}{2}=0$

$$
\hat{i} \cdot \hat{\mathrm{j}}=\hat{\mathrm{j}} \cdot \hat{\mathrm{k}}=\hat{\mathrm{k}} \cdot \hat{\mathrm{i}}=0
$$

11. Vector Product of two Vectors (Cross Product) - The vector product of two non-zero vectors \vec{a} and \vec{b}, denoted by $\vec{a} \times \vec{b}$ is defined as
$\vec{a} \times \vec{b}=|\vec{a}||\vec{b}| \sin \theta \cdot \hat{n}$, where θ is the angle between \vec{a} and $\vec{b}, 0 \leq \theta \leq \pi$.
Unit vector \hat{n} is perpendicular to both vectors \vec{a} and \vec{b} such that $\vec{a} \cdot \vec{b}$ and \hat{n} form a right handed orthogonal system.
(i) If $\theta=0$, then $\vec{a} \times \vec{b}=0, \quad \therefore \vec{a} \times \vec{a}=0$
and $\therefore \hat{i} \times \hat{i}=\hat{j} \times \hat{j}=\hat{k} \times \hat{k}=0$
(ii) If $\theta=\Pi / 2$, then $\vec{a} \times \vec{b}=|\vec{a}||\vec{b}| \hat{n}$
$\hat{i} \times \hat{j}=\hat{k}, \hat{j} \times \hat{k}=\hat{i}, \hat{k} \times \hat{i}=\hat{j}$
Also, $\hat{\mathrm{j}} \times \hat{\mathrm{i}}=-\hat{\mathrm{k}}, \hat{\mathrm{k}} \times \hat{\mathrm{j}}=-\hat{\mathrm{i}}$ and $\hat{\mathrm{i}} \times \hat{\mathrm{k}}=\hat{\mathrm{j}}$

CONNECTING CONCEPTS

1. Direction Cosines - Let $\mathrm{OX}, \mathrm{OY}, \mathrm{OZ}$ be the positive coordinate axes, $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ by any point in the space. Let $\overrightarrow{\mathrm{OP}}$ makes angles α, β, γ with coordinate, axes OX, OY, OZ. The angle α, β, γ are known as direction angles, cosine of theseangles i.e.,

$\cos \alpha, \cos \beta, \cos \gamma$ are called direction cosines of line OP. these direction cosines are denoted by $\ell, \mathrm{m}, \mathrm{n}$ i.e., $\ell=\cos \alpha, m=\cos \beta, \mathrm{n}=\cos \gamma$

2. Relation Between, $1, m, n$ and Direction Ratios-

The perpendiculars $\mathrm{PA}, \mathrm{PB}, \mathrm{PC}$ are drawn on coordinate axes $\mathrm{OX}, \mathrm{OY}, \mathrm{OZ}$ reprectively. Let $|\overrightarrow{\mathrm{OP}}|=r$
In $\triangle \mathrm{OAP}, \angle \mathrm{A}=90^{\circ}, \cos \alpha=\frac{\mathrm{x}}{\mathrm{r}}=\ell, \therefore \mathrm{x}=\ell \mathrm{r}, \quad$ In $\triangle \mathrm{OBP} . \angle \mathrm{B}=90^{\circ}, \cos \beta=\frac{\mathrm{y}}{\mathrm{r}}=\mathrm{m} \quad \therefore \mathrm{y}=\mathrm{mr}$
In $\triangle \mathrm{OCP}, \angle \mathrm{C}=90^{\circ}, \cos \gamma=\frac{\mathrm{z}}{\mathrm{r}}=\mathrm{n}, \quad \therefore \mathrm{z}=\mathrm{nr}$
Thus the coordinates of P may b expressed as ($\ell \mathrm{r}, \mathrm{mr}, \mathrm{nr}$)
Also, $\mathrm{OP}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}, \mathrm{r}^{2}=(\mathrm{lr})^{2}+(\mathrm{mr})^{2}+(\mathrm{nr})^{2} \Rightarrow \ell^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}=1$
Set of any there numbers, which are proportional to direction cosines are called direction ratio of the vactor. Direction ratio are denoted by a, b and c .
The numbers $\ell \mathrm{r} \mathrm{mr}$ and nr , proportional to the direction cosines, hence, they are also direction ratios of vector $\overrightarrow{\mathrm{OP}}$.

3. Properties of Vector Addition -

1. For two vectors \vec{a}, \vec{b} the sum is commutative i.e., $\vec{a}+\vec{b}=\vec{b}+\vec{a}$
2. For three vectors \vec{a}, \vec{b} and \vec{c}, the sum of vectors is associative i.e.,

$$
(\vec{a}+\vec{b})+\vec{c}=\vec{a}+(\vec{b}+\vec{c})
$$

4. Additive Inverse of Vector $\overrightarrow{\mathbf{a}}-$ If there exists vector $-\vec{a}$ such that $\vec{a}+(-\vec{a})=\vec{a}-\vec{a}=\overrightarrow{0}$ then $-\vec{a}$ is called the additure inverse of \vec{a}
5. Some Properties - Let $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$
(i) $\vec{a}+\vec{b}=\left(a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}\right)+\left(b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}\right)=\left(a_{1}+b_{1}\right) \hat{i}+\left(a_{2}+b_{2}\right) \hat{j}+\left(a_{3}+b_{3}\right) \hat{k}$
(ii) $\overrightarrow{\mathrm{a}}=\overrightarrow{\mathrm{b}}$ or $\left(\mathrm{a}_{1} \hat{\mathrm{i}}+\mathrm{a}_{2} \hat{\mathrm{j}}+\mathrm{a}_{3} \hat{\mathrm{k}}\right)=\left(\mathrm{b}_{1} \hat{\mathrm{i}}+\mathrm{b}_{2} \hat{\mathrm{j}}+\mathrm{b}_{3} \hat{\mathrm{k}}\right) \quad \Rightarrow \mathrm{a}_{1}=\mathrm{b}_{1}, a_{2}=b_{2}, a_{3}=b_{3}$
(iii) $\lambda \vec{a}=\lambda\left(a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}\right)=\left(\lambda a_{1}\right) \hat{i}+\left(\lambda a_{2}\right) \hat{j}+\left(\lambda a_{3}\right) \hat{k}$
(iv) \vec{a} and \vec{b} are parallel, if and only if there exists a non zero scalar λ such that $\vec{b}=\lambda \vec{a}$

$$
\begin{aligned}
& \text { i.e., } \quad \mathrm{b}_{1} \hat{\mathrm{i}}+\mathrm{b}_{2} \hat{\mathrm{j}}+\mathrm{b}_{3} \hat{\mathrm{k}}=\lambda\left(\mathrm{a}_{1} \hat{\mathrm{i}}+\mathrm{a}_{2} \hat{\mathrm{j}}+\mathrm{a}_{3} \hat{\mathrm{k}}\right)=\left(\lambda \mathrm{a}_{1}\right) \hat{\mathrm{i}}+\left(\lambda \mathrm{a}_{2}\right) \hat{\mathrm{j}}+\left(\lambda \mathrm{a}_{3}\right) \hat{\mathrm{k}} \\
& \therefore \quad \mathrm{~b}_{1}=\lambda \mathrm{a}_{1}, \quad, \mathrm{~b}_{2}=\lambda \mathrm{a}_{2}, \mathrm{~b}_{3}=\lambda \mathrm{a}_{3} \quad \therefore \frac{\mathrm{~b}_{1}}{\mathrm{a}_{1}}=\frac{\mathrm{b}_{2}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{3}}{\mathrm{a}_{3}}=\lambda
\end{aligned}
$$

6. Properties of scalar product of two vectors (Dot Product)
(i) $\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$

If $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$
Then, $\vec{a} \cdot \vec{b}=\left(a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}\right) \cdot\left(b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}\right), \vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$

$$
|\overrightarrow{\mathrm{a}}|=\sqrt{\mathrm{a}_{1}^{2}+\mathrm{a}_{2}^{2}+\mathrm{a}_{3}^{2}},|\overrightarrow{\mathrm{~b}}|=\sqrt{\mathrm{b}_{1}^{2}+\mathrm{b}_{2}^{2}+\mathrm{b}_{3}^{2}} \quad \therefore \quad \cos \theta=\frac{\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{~b}}}{|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}|}=\frac{\mathrm{a}_{1} \mathrm{~b}_{1}+\mathrm{a}_{2} \mathrm{~b}_{2}+\mathrm{a}_{3} \mathrm{~b}_{3}}{\sqrt{\mathrm{a}_{1}^{2}+\mathrm{a}_{2}^{2}+\mathrm{a}_{3}^{2} \cdot \sqrt{\mathrm{~b}_{1}^{2}+\mathrm{b}_{2}^{2}+\mathrm{b}_{3}^{2}}}}
$$

(ii) $\vec{a} \cdot \vec{b}$ is commutative i.e., $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}$
(iii) If α is a scalar, then $(\alpha \vec{a}) \cdot \vec{b}=\alpha(\vec{a} \cdot \vec{b})=\vec{a} \cdot(\alpha \vec{b})$

7. Properties of Vector Product of two Vectors (Cross Product) -

(i) (a) If $\vec{a}=0$ or $\vec{b}=0$, then $\vec{a} \times \vec{b}=0$
(b) If $\vec{a} \| \vec{b}$, then $\vec{a} \times \vec{b}=0$
(ii) $\vec{a} \times \vec{b}$ is not commutative
i.e. $\vec{a} \times \vec{b}=\vec{b} \times \vec{a}$, but $\vec{a} \times \vec{b}=-\vec{b} \times \vec{a}$
(iii) If \vec{a} and \vec{b} represent adjacent sides of a parallelogram, then its area $|\vec{a} \times \vec{b}|$
(iv) If \vec{a}, \vec{b} represent the adjacent sides of a triangle, then its area $=\frac{1}{2}|\vec{a} \times \vec{b}|$
(v) Distributive property $\vec{a} \times(\vec{b}+\vec{c})=\vec{a} \times \vec{b}+\vec{a} \times \vec{c}$
(a) If α be a scalar, then $\quad \alpha(\vec{a} \times \vec{b})=(\alpha \vec{a}) \times \vec{b}=\vec{a} \times(\alpha \vec{b})$
(b) If $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$, and $\vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$

$$
\text { Then, } \vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

8. If $\alpha_{1} \beta_{1} \gamma$ are the direction angles of the vector $\vec{a}=\left(a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}\right)$. Then direction cosines of \vec{a} are given as

$$
\cos \alpha=\frac{a_{1}}{|\vec{a}|}, \quad \cos \beta=\frac{a_{2}}{|\vec{a}|}, \quad \cos \gamma=\frac{a_{3}}{|\vec{a}|}
$$

9. Scalar Product of Two Vectors (Dot Product) - Scalar Product of two vectors \vec{a} and \vec{b} is defined as $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$
where θ is the angle between $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}\left(0 \leq \theta<\frac{\pi}{2}\right)$
(i) When $\theta=0$, then $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}|$. Also $\vec{a} \cdot \vec{a} a \cdot a=a^{2}$

$$
\therefore \quad \hat{\mathrm{i}} \cdot \hat{\mathrm{i}}=\hat{\mathrm{j}} \cdot \hat{\mathrm{j}}=\hat{\mathrm{k}} \cdot \hat{\mathrm{k}}=1
$$

(ii) When $\theta=\frac{\pi}{2}, \vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \frac{\pi}{2}=0$

