eVidyarthi FREE Education

CHAPTER 11

GENERAL KEY CONCEPTS

1. Distance Formula : Distance between two points $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and $\mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$,

$$
\mathrm{AB}=\sqrt{\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}+\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)^{2}}
$$

2. Section Formula :
(i) If a point R divides the line segment joining the points $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and $\mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ in the ratio $\mathrm{m}: \mathrm{n}$ internally, then

$$
\mathrm{R} \frac{\mathrm{mx}_{2} \mathrm{nx}_{1}}{\mathrm{~m} \mathrm{n}}, \frac{\mathrm{my}_{2} \mathrm{ny}_{1}}{\mathrm{~m} \mathrm{n}}, \frac{\mathrm{mz}_{2} \mathrm{nz}_{1}}{\mathrm{~m} \mathrm{n}}
$$

(ii) If a point R divides the line segment joining the points $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and $\mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ in the ratio m : n externally, then

$$
\mathrm{R} \frac{\mathrm{mx}_{2} \mathrm{nx}_{1}}{\mathrm{~m} n}, \frac{\mathrm{my}_{2} \mathrm{ny}_{1}}{\mathrm{~m} n}, \frac{\mathrm{mz}_{2} \mathrm{nz}_{1}}{\mathrm{~m} n}
$$

3. Mid-point Formula : If R be the mid point of the line segment joining the points $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$.

$$
\mathrm{R} \quad \frac{\mathrm{x}_{1} \mathrm{x}_{2}}{2}, \frac{\mathrm{y}_{1} \mathrm{y}_{2}}{2}, \frac{\mathrm{z}_{1} \quad \mathrm{z}_{2}}{2}
$$

4. Centroid of the triangle whose vertices are $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right)$ and $\left(x_{3}, y_{3}, z_{3}\right)$ is

$$
\left(\frac{\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}}{3}, \frac{\mathrm{y}_{1}+\mathrm{y}_{2}+\mathrm{y}_{3}}{3}, \frac{\mathrm{z}_{1}+\mathrm{z}_{2}+\mathrm{z}_{3}}{3}\right)
$$

CONNECTING CONCEPTS

1. To locate the position of a point in three dimensional space, we consider a rectangular coordinate system of three mutually perpendicular lines as the coordinate axes. These axes are called x, y and z -axes.
2. The three planes determined by the pair of axes are the coordinate planes called XY, YZ and ZX-planes.

The three coordinate planes divide the space into eight parts known as octants.
The coordinates of a point P in three dimensional geometry is always written in the form of triplet like (x , y, z. Here x, y and z are the distances of the point P from the $Y Z, Z X$ and XY-plane.
The co-ordinate of a point in three dimensional space are also the distances from the origin of the feet of the perpendicular drawn from the point on the respective co-ordinate axes.
3. The sign of the coordinates of a point is determined by the octant in which the point lies.

$\frac{\text { Octant }}{\text { Coordinates }}$	I	II	III	IV	V	VI	VII	VIII
x	+	-	-	+	+	-	-	+
y	+	+	-	-	+	+	-	-
z	+	+	+	+	-	-	-	-

4. (i) Any point on x -axis is of the form $(\mathrm{x}, 0,0)$
(ii) Any point on y-axis is of the form $(0, y, 0)$
(iii) Any point on z -axis is of the form $(0,0, \mathrm{y})$
5. The distance of the point (x, y, z) from the origin is given by $\sqrt{x^{2}+y^{2}+z^{2}}$
