13

PROBABILITY

KEY CONCEPT INVOLVED

1. Conditional Probability - Let E and F be two events of a random experiment, then, the probability of occurance of E under the condition that F has alredy occured and $\mathrm{P}(\mathrm{F}) \neq 0$ is called the conditional probability. It is denoted by $\mathrm{P}(\mathrm{E} / \mathrm{F})$
The conditional probability $P(E / F)$ is given by $P(E / F)=\frac{P(E \cap F)}{P(F)}$, When $P(F) \neq 0$
Properties of conditional probability -
(i) If F be an event of a sample space s of an experiment, then $\mathrm{P}(\mathrm{S} / \mathrm{F})=\mathrm{P}(\mathrm{F} / \mathrm{F})=1$

If A and B are any two events of a sample space S and F is an event of s such that $P(F) \neq 0$, then
(ii) $\mathrm{P}(\mathrm{A} \cup \mathrm{B} / \mathrm{F})=\mathrm{P}(\mathrm{A} / \mathrm{F})+\mathrm{P}(\mathrm{B} / \mathrm{F})-\mathrm{P}(\mathrm{A} \cap \mathrm{B} / \mathrm{F})$

IF A and B are disjoint event then $P(A \cup B / F)=P(A / F)+P(B / F)$
(iii) $\mathrm{P}(\overline{\mathrm{E}} / \mathrm{F})=1-\mathrm{P}(\mathrm{E} / \mathrm{F})$ or $\mathrm{P}\left(\mathrm{E}^{\prime} / \mathrm{F}\right)=1-\mathrm{P}(\mathrm{E} / \mathrm{F})$
2. Multiplication Theorem On Probability - Let E and F be two events associated with a sample space S. $P(E \cap F)$ denotes the probability of the event that both E and F occur, which is given by $\mathrm{P}(\mathrm{E} \cap \mathrm{F})=\mathrm{P}(\mathrm{E}) \mathrm{P}(\mathrm{F} / \mathrm{E})=\mathrm{P}(\mathrm{F}) \mathrm{P}(\mathrm{E} / \mathrm{F})$, provided $\mathrm{P}(\mathrm{E}) \neq 0$ and $\mathrm{P}(\mathrm{F}) \neq 0$
3. Independent Event -
(i) Events E and F are independent if $\mathrm{P}(\mathrm{E} \cap \mathrm{F})=\mathrm{P}(\mathrm{E}) \times \mathrm{P}(\mathrm{F})$
(ii) Two events E and F are said to be independent if $\mathrm{P}(\mathrm{E} / \mathrm{F})=\mathrm{P}(\mathrm{E})$ and $\mathrm{P}(\mathrm{F} / \mathrm{E})=\mathrm{P}(\mathrm{F})$ provided $\mathrm{P}(\mathrm{E}) \neq 0$ and $\mathrm{P}(\mathrm{F}) \neq 0$
(iii) Three events E, F and G are said to be independent or mutually independent if $P(E \cap F \cap G)=P(E) P(F) P(G)$.
4. Random Variable - A random variable is a real valued function whose domain is the sample space of random experiment.
5. Baye's Theorem - let $\mathrm{E}_{1}, \mathrm{E}_{2}$, \qquad , E_{n} be the x events forming a partition of sample space S i.e. $\mathrm{E}_{1}, \mathrm{E}_{2}$, $\cdots \cdots \cdots \cdots \cdots, \mathrm{E}_{\mathrm{n}}$ are pairwise disjoint and $\mathrm{E}_{1} \cup \mathrm{E}_{2} \cup \cdots \cdots \cdots \cdots \cdots \cup \mathrm{E}_{\mathrm{n}}=\mathrm{S}$ and A is any event of non - zero porbability, then $P\left(E_{i} / A\right)=\frac{P\left(E_{i}\right) P\left(A / E_{i}\right)}{\sum_{j=1}^{n} P\left(E_{j}\right) P\left(A / E_{j}\right)}$ for any $i=1,2,3, \ldots \ldots . ., n$
6. Bernoulli Trial - Trials of a random experiment are said to be Bernoulli's trials, if they satisfy the following conditions :
(i) The trials should be independent.
(ii) Each trial has exactly two outcomes ex- success or falilure.
(iii) The probability of success remains the same in each trial.
(iv) Number of trials is finite.
7. Mean of Random Variable - let X be a random variable whose possible values are $\mathrm{x}_{1}, \mathrm{x}_{2}, \cdots \cdots, \mathrm{x}_{\mathrm{n}}$ if $\mathrm{P}_{1}, \mathrm{P}_{2}, \cdots \cdots, \mathrm{P}_{\mathrm{n}}$ are the corresponding probabilities, then mean of X ,

$$
\mu=\sum_{i=1}^{n} x_{i} p_{i}=E(X)
$$

The mean of a random variables X is also called the expected value of X denoted by E (x).
8. Variance of a Random Variable - let X be a random variable with possible values $\mathrm{x}_{1} \mathrm{x}_{2}, \cdots \cdots \mathrm{x}_{\mathrm{n}}$ occur with probabilities are $p_{1}, p_{2}, \cdots \cdots p_{n}$ respectively.
let $\mu=\mathrm{E}(\mathrm{X})$ be the mean of X . The variance of X denoted by $\operatorname{var}(\mathrm{X})$ or σ_{x}^{2} is defined as
$\operatorname{Var}(X)$ or $\sigma_{x}^{2}=\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2} p_{i} \quad=E\left(x_{i}-\mu\right)^{2} \quad=E\left(X^{2}\right)-[E(X)]^{2}$
Standard Deviation, $\sigma_{x}=\sqrt{\operatorname{Var}(X)}$
9. Probability function - The probability of x success is denoted by $p(X=x)$ or $P(x)$ and is given by $P(x)=$ ${ }^{n} C_{x} q^{n-x} p^{x}, x=0,1,2, \cdots \cdots, n$ and $q=1-P$
The function $\mathrm{P}(\mathrm{x})$ is known as probability function of binomial distribution.

CONNECTING CONCEPTS

1. Partition of a sample space - A set of events $E_{1}, E_{2}, \cdots \cdots . E_{n}$ is said to represent a partition of sample S if
(i) $\mathrm{E}_{\mathrm{i}} \cap \mathrm{F}_{\mathrm{j}}=\phi$ if $\mathrm{i} \neq \mathrm{j}, \mathrm{i}, \mathrm{j}=1,2, \cdots \cdots, \mathrm{n}$
(ii) $E_{1} \cup E_{2} \cup E_{3} \cup \cdots \cdots, \cup E_{n}=S$
(iii) $\mathrm{P}\left(\mathrm{E}_{\mathrm{i}}\right)>0 \forall \mathrm{i}=1,2, \cdots \cdots$, n.
2. Theorem of total Probability - let $\alpha \mathrm{E}_{1}, \mathrm{E}_{2}, \cdots \cdots, \mathrm{E}_{\mathrm{n}} \gamma$ be a partition of sample spaces and each event has a non - zero probability If A be any event associated with S, then

$$
\begin{aligned}
& P(A)=P\left(E_{1}\right) P\left(A / E_{1}\right)+P\left(E_{2}\right) P\left(A / E_{2}\right)+P\left(E_{3}\right) P\left(A / E_{3}\right)+\cdots \cdots \cdot+P\left(E_{n}\right) P\left(A / E_{n}\right) \\
& P(A)=\sum_{i=1}^{n} P\left(E_{i}\right) P\left(A / E_{i}\right)
\end{aligned}
$$

3. A Few Terminologies-
(i) Hypothesis - When Baye's theorem is applied the events $\mathrm{E}_{1}, \mathrm{E}_{2}, \cdots \ldots \ldots \ldots . . . \mathrm{E}_{\mathrm{n}}$ are said to be hypothesis x .
(ii) Priori Porbability - The Porbabilites $\mathrm{P}\left(\mathrm{E}_{1}\right), \mathrm{P}\left(\mathrm{E}_{2}\right), \cdots \ldots \ldots \ldots . ., \mathrm{P}\left(\mathrm{E}_{\mathrm{n}}\right)$ are called priori.
(iii) Posteriori Porbabililty - The conditional probability $\mathrm{P}\left(\mathrm{E}_{\mathrm{i}} / \mathrm{A}\right)$ is known as the posteriori probability of hypothesis E_{i} where $\mathrm{i}=1,2,3$, \qquad ., n
4. Probability Distribution of a Random Variable - let real numbers $x_{1}, x_{2}, \cdots \cdots \cdots \cdots, x_{n}$ be the possible value of random variable and $p_{1}, p_{2}, \cdots \cdots \cdots \cdots \cdots, p_{n}$ be probability corresponding to each value of the random variable X. Then the probability distribution is

$$
\begin{array}{rll}
\mathrm{X}: & \mathrm{x}_{1} & \mathrm{x}_{2} \cdots \cdots \ldots \ldots \ldots \mathrm{x}_{\mathrm{n}} \\
\mathrm{P}(\mathrm{X}): & \mathrm{p}_{1} & \mathrm{p}_{2} \cdots \cdots \cdots \cdots \cdots \mathrm{p}_{\mathrm{n}} .
\end{array}
$$

(i) $\mathrm{p}_{\mathrm{i}}>0$ (ii) sum of porbabilites $\mathrm{p}_{1}+\mathrm{p}_{2}+\cdots \cdots \cdots \cdots \cdots+\mathrm{p}_{\mathrm{n}}=1$.
5. Binomial Distribution - Probability distribution of a number of successes, in an experiment consisting of n Bernoulli trials are obtanied by Binomial expansioin of $(q+p)_{n}$. Such a probability distribution is

X :	0	1	2 r	\ldots
$\mathrm{P}(\mathrm{X})$:	${ }^{\mathrm{n}} \mathrm{C}_{0} \mathrm{q}^{\mathrm{n}}$	${ }^{n} \mathrm{C}_{1} \mathrm{q}^{\mathrm{n}-1} \mathrm{P}$	${ }^{\mathrm{n}} \mathrm{C}_{2} \mathrm{q}^{\mathrm{n}-2} \mathrm{P}^{2}$	${ }^{n} \mathrm{C}_{\mathrm{r}} \mathrm{q}^{\mathrm{n}-\mathrm{r}} \mathrm{Pr}^{\text {r }}$	${ }^{n} \mathrm{C}_{\mathrm{n}} \mathrm{P}{ }^{\text {n }}$

This probability distribution is called binomial distribution with parameter n and p.
Where, p is the probability of success in each trial and q is the probability of not sucess in each trial.
$\therefore \quad \mathrm{p}+\mathrm{q}=1, \mathrm{q}=1-\mathrm{p}$

