

INVERSE TRIGONOMETRIC FUNCTIONS

KEY CONCEPT INVOLVED

1.	Functions	Domain	Range
	(i) sin	R	[-1, 1]
(ii) cos	R	[-1, 1]
(i	ii) tan	$R - \{x : x = (2n+1)\frac{\pi}{2}, n \in z\}$	R
(i	v) cot	$R - \{x : x = n \pi, n \in Z\}$	R
(v) sec	$R - \{ x : x = (2n+1)\frac{\pi}{2} \} n \in z \}$	R – [–1, 1]
(1	i) cosec	$R - \{x : x = n \pi, n \in z\}$	R-[-1, 1]

(vi) cosec R- {x : x = n π, n ∈ z} R-[-1, 1]
2. Inverse Function - If f : X → Y such that y = f (x) is one-one and onto, then we define another function g : Y → X such that x = g (y), where x ∈ X and y ∈ Y which is also one-one and onto. In such a case domain of g = Range of f and Range of g = domain of f g is called inverse of f or g = f⁻¹ Inverse of g = g⁻¹ = (f⁻¹)⁻¹ = f.

3. Principal value Branch of function sin⁻¹ - It may be noted that for the domain [-1, 1] the range sould be any one of the intervals $\left[-\frac{3\pi}{2}, \frac{-\pi}{2}\right], \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ or $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$ corresponding to each interval we get a branch of the function sin⁻¹ the branch with range $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ is called the principal value branch. Thus sin⁻¹: [-1, 1] $\rightarrow \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$

$$x' \xrightarrow{-1} \begin{array}{c} y \\ 3\pi \\ 2 \\ \pi \\ 1 \\ 2 \\ 1 \\ 7 \\ 2 \\ 7 \\ y = \sin^{-1} x \end{array}$$

Principal Value branch of function cos⁻¹ - Domain of the function cos⁻¹ is [-1, 1]. Its range is one of the intervals (-π, 0), (0, π), (π, 2π). etc. The branch with range (0, π) is called the principal value branch of the function cos⁻¹ thus cos⁻¹ : [-1, 1] → [0, π]

5. Principal Value branch of function \tan^{-1} - The function \tan^{-1} is defined whose domain is set of real numbers and range is one of the intervals $\left(\frac{-3\pi}{2}, \frac{-\pi}{2}\right), \left(\frac{-\pi}{2}, \frac{\pi}{2}\right), \left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$ etc.

Graph of the function is as shown in the adjoining figure the branch with range $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ is called the pricinipal value branch of function \tan^{-1} . Thus $\tan^{-1} : \mathbb{R} \to \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$.

6. Principal Value branch of function cosec⁻¹ - The function cosec⁻¹ is defined on a function whose domain is R - (-1, 1) and the range is anyone of the interval $\left[\frac{-3\pi}{2}, \frac{-\pi}{2}\right] - \{\pi\}, \left[\frac{-\pi}{2}, \frac{\pi}{2}\right] - \{0\}, \left[\frac{\pi}{2}, \frac{3\pi}{2}\right] - \{\pi\}, \dots$. The function corresponding to the range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{0\}$ is called the principal value branch of cosec⁻¹

Thus, $\operatorname{cosec}^{-1} : \mathbb{R} - (-1, 1) \to \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] - \{0\}$

 $y = \csc^{-1} x$ 7. Principal value branch of function \sec^{-1} - The \sec^{-1} is defined as a function whose domain is R - (-1, 1) and the range could be any of the intervals is, $[-p, 0] - \left\{\frac{-\pi}{2}\right\}, [0, p] - \left\{\frac{\pi}{2}\right\}, [\pi, 2\pi] - \left\{\frac{3\pi}{2}\right\}$ etc. The branch corresponding to range $[0, \pi] - \left\{\frac{\pi}{2}\right\}$ is known as the principal value branch of \sec^{-1} . Thus $\sec^{-1} : R - (-1, 1) \rightarrow [0, \pi] - \left\{\frac{\pi}{2}\right\}$.

8. Principal Value branch of function \cot^{-1} - The \cot^{-1} function is defined as the function whose domain is R and the range is any of the intervals....... $(-\pi, 0) (0, \pi), (\pi, 2\pi)$ etc. The branch corresponding to $(0, \pi)$ is called the principal value branch of the function \cot^{-1} , then $\cot^{-1} : \mathbb{R} \to (0, \pi)$

