2 INVERSE TRIGONOMETRIC FUNCTIONS

KEY CONCEPTINVOLVED

1. Functions
(i) \sin
(ii) \cos

Domain
R
R

Range

$[-1,1]$
$[-1,1]$
(iii) \tan
(iv) \cot
(v) sec
(vi) cosec
$R-\left\{x: x=(2 n+1) \frac{\pi}{2}, n \in z\right\}$
$R-\{x: x=n \pi, n \in z\}$
$\left.R-\left\{x: x=(2 n+1) \frac{\pi}{2}\right\} n \in z\right\}$
$\mathrm{R}-[-1,1]$
$R-\{x: x=n \pi, n \in z\}$
2. Inverse Function - If $f: X \rightarrow Y$ such that $y=f(x)$ is one-one and onto, then we define another function $g: Y \rightarrow X$ such that $x=g(y)$, where $x \in X$ and $y \in Y$ which is also one-one and onto. In such a case domain of $g=$ Range of f and Range of $g=$ domain of f
g is called inverse of f or $g=f^{-1}$
Inverse of $g=g^{-1}=\left(f^{-1}\right)^{-1}=f$.
3. Principal value Branch of function $\sin ^{-1}$ - It may be noted that for the domain $[-1,1]$ the range sould be any one of the intervals $\left[-\frac{3 \pi}{2}, \frac{-\pi}{2}\right],\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ or $\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right]$ corresponding to each interval we get a branch of the function $\sin ^{-1}$ the branch with range $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ is called the principal value branch.
Thus $\sin ^{-1}:[-1,1] \rightarrow\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$

4. Principal Value branch of function $\cos ^{-1}$ - Domain of the function $\cos ^{-1}$ is $[-1,1]$.

Its range is one of the intervals $(-\pi, 0),(0, \pi),(\pi, 2 \pi)$. etc. The branch with range $(0, \pi)$ is called the principal value branch of the function $\cos ^{-1}$ thus $\cos ^{-1}:[-1,1] \rightarrow[0, \pi]$

5. Principal Value branch of function $\tan ^{-1}$ - The function $\tan ^{-1}$ is defined whose domain is set of real numbers and range is one of the intervals $\left(\frac{-3 \pi}{2}, \frac{-\pi}{2}\right),\left(\frac{-\pi}{2}, \frac{\pi}{2}\right),\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$ etc.
Graph of the function is as shown in the adjoining figure the branch with range $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ is called the pricnipal value branch of function $\tan ^{-1}$. Thus $\tan ^{-1}: R \rightarrow\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$.

6. Principal Value branch of function $\operatorname{cosec}^{-1}$ - The function $\operatorname{cosec}^{-1}$ is defined on a function whose domain is $R-(-1,1)$ and the range is anyone of the interval $\left[\frac{-3 \pi}{2}, \frac{-\pi}{2}\right]-\{\pi\},\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]-\{0\},\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right]-\{\pi\}, \ldots \ldots$. The function corresponding to the range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]-\{0\}$ is called the principal value branch of $\operatorname{cosec}^{-1}$
Thus, $\operatorname{cosec}^{-1}: \mathrm{R}-(-1,1) \rightarrow\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]-\{0\}$

7. Principal value branch of function $\mathbf{s e c}^{-1}-\mathrm{The} \mathrm{sec}^{-1}$ is defined as a function whose domain is $R-(-1,1)$ and the range could be any of the intervals is, $[-p, 0]-\left\{\frac{-\pi}{2}\right\},[0, p]-\left\{\frac{\pi}{2}\right\},[\pi, 2 \pi]-\left\{\frac{3 \pi}{2}\right\} \ldots .$. etc. The branch corresponding to range $[0, \pi]-\left\{\frac{\pi}{2}\right\}$ is known as the principal value branch of $\sec ^{-1}$. Thus $\sec ^{-1}: \mathrm{R}-(-1,1) \rightarrow[0, \pi]-\left\{\frac{\pi}{2}\right\}$.
8. Principal Value branch of function $\cot ^{-1}-$ The $^{\cot ^{-1}}$ function is defined as the function whose domain is R and the range is any of the intervals. \qquad $(-\pi, 0)(0, \pi),(\pi, 2 \pi)$ etc. The branch corresponding to $(0, \pi)$ is called the principal value branch of the function $\cot ^{-1}$, then $\cot ^{-1}: \mathrm{R} \rightarrow(0, \pi)$

9.

Inverse function

$\sin ^{-1}$
$\cos ^{-1}$
$\operatorname{cosec}^{-1}$
$\sec ^{-1}$
$\tan ^{-1}$
$\cot ^{-1}$

Domain

$[-1,1]$
$[-1,1]$
$\mathrm{R}-(-1,1)$
$\mathrm{R}-(-1,1)$

R
R

Principal Value branch
$\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$
$[0, \pi]$
$\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]-\{0\}$
$[0, \pi]-\left\{\frac{\pi}{2}\right\}$
$\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$
$(0, \pi)$

CONNECTING CONCEPTS

1. (i) $\sin ^{-1} 1 / x=\operatorname{cosec}^{-1} x, x \geq 1, x \leq-1$
(ii) $\cos ^{-1} 1 / x=\sec ^{-1} x, x \geq 1, x \leq-1$
(iii) $\tan ^{-1} 1 / \mathrm{x}=\cot ^{-1} \mathrm{x}, \mathrm{x}>0$
(iv) $\operatorname{cosec}^{-1} 1 / x=\sin ^{-1} x, x \in[-1,1]$
(v) $\sec ^{-1} 1 / x=\cos ^{-1} x, x \in[-1,1]$
(vi) $\cot ^{-1} 1 / x=\tan ^{-1} x, x>0$
2. (i) $\sin ^{-1}(-x)=-\sin ^{-1} x, x \in[-1,1]$
(ii) $\tan ^{-1}(-x)=-\tan ^{-1} x, x \in R$
(iii) $\operatorname{cosec}^{-1}(-x)=-\operatorname{cosec}^{-1} x,|x| \geq 1$
(iv) $\cos ^{-1}(-x)=\pi-\cos ^{-1} x, x \in[-1,1]$
(v) $\sec ^{-1}(-x)=\pi-\sec ^{-1} x,|x| \geq 1$
(vi) $\cot ^{-1}(-x)=\pi-\cot ^{-1} x, x \in R$
3. (i) $\sin ^{-1} x+\cos ^{-1} x=\pi / 2, x \in[-1,1]$
(ii) $\tan ^{-1} x+\cot ^{-1} x=\pi / 2, x \in R$
(iii) $\operatorname{cosec}^{-1} \mathrm{x}+\sec ^{-1} \mathrm{x}=\pi / 2,|\mathrm{x}| \geq 1$
4. (i) $\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y}, x y<1$
(ii) $\tan ^{-1} x-\tan ^{-1} y=\tan ^{-1} \frac{x-y}{1+x y}, x y>-1$
(iii) $2 \sin ^{-1} x=\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right),-\frac{1}{\sqrt{2}} \leq x \leq \frac{1}{\sqrt{2}}$
(iv) $2 \cos ^{-1} x=\cos ^{-1}\left(2 x^{2}-1\right),-\frac{1}{\sqrt{2}} \leq x \leq 1$
(v) $2 \tan ^{-1} \mathrm{x}=\tan ^{-1} \frac{2 \mathrm{x}}{1-\mathrm{x}^{2}},-1<\mathrm{x}<1=\sin ^{-1} \frac{2 \mathrm{x}}{1+\mathrm{x}^{2}},|\mathrm{x}| \leq 1=\cos ^{-1} \frac{1-\mathrm{x}^{2}}{1+\mathrm{x}^{2}}, x \geq 0$
