

a₁₁

3

MATRICES

KEY CONCEPT INVOLVED

 Matrices - A system of mn numbers (real or complex) arranged in a rectangular array of m rows and n columns is called a matrix of order m × n. An m × n matrix (to be read as 'm by n' matrix) An m × n matrix is written as

	a ₁₁	a ₁₂	 a _{1n}
	a ₂₁	a ₂₂	 a_{2n}
A =	:	÷	 ÷
	:	÷	 ÷
	a _{m1}	a_{m2}	 a _{mn}

The numbers a_{11} , a_{12} etc are called the elements or entries of the matrix. If A is a matrix of order m × n, then we shall write $A = [a_{ij}]_{m \times n}$ where, a_{ij} represent the number in the *i*-th row and *j*-th column.

2. Row Matrix - A single row matrix is called a row matrix or a row vector. e.g. the matrix $[a_{11}, a_{12}, \dots, a_{1n}]$ is a row matrix.

3. Column Matrix - A single column matrix is called a column matrix or a column vector. e.g. the matrix $\begin{bmatrix} a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}$ is a m × 1 column matrix.

- 4. Order of a Matrix A matrix having m rows and n columns is of the order $m \times n$. i.e. consisting of m rows and n columns is denoted by $A = [a_{ij}]_{m \times n}$.
- 5. Square Matrix If m = n, i.e. if the number of rows and columns of a matrix are equal, say n, then it is called a square matrix of order n.
- 6. Null or Zero Matrix If all the elements of a matrix are equal to zero, then it is called a null matrix and is denoted by $O_{m \times n}$ or 0.
- 7. **Diagonal Matrix** A square matrix, in which all its elements are zero except those in the leading diagonal is called a diagonal matrix, thus in a diagonal matrix, $a_{ii} = 0$, if $i \neq j$, e.g. the diagonal matrices of order 2 and 3

$$\operatorname{are} \begin{bmatrix} K_{1} & 0 \\ 0 & K_{2} \end{bmatrix}, \begin{bmatrix} K_{1} & 0 & 0 \\ 0 & K_{2} & 0 \\ 0 & 0 & K_{3} \end{bmatrix}$$

8. Scalar Matrix - A square matrix in which all the diagonal element are equal and all other elements equal to zero is called a scalar matrix.

i.e. in a scalar matrix
$$a_{ij} = k$$
 for $i = j$ and $a_{ij} = 0$ for $i \neq j$. Thus
$$\begin{vmatrix} K & 0 & 0 \\ 0 & K & 0 \\ 0 & 0 & K \end{vmatrix}$$
 is a scalar matrix.

https://www.evidyarthi.in

Unit Matrix or Identity Matrix - A square matrix in which all its diagonal elements are equal to 1 and all 9. other elements equal to zero is called a unit matrix or identity matrix.

Γ1	0]	1	0	0	
e.g. a unit or identity matrix of order 2 and 3 are $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	and	0	1	0	respectively.
[0	I	0	0	1	

- 10. Upper triangular Matrix A square matrix A whose elements $a_{ii} = 0$ for i > j is called an upper triangular matrix.
- 11. **Lower triangular Matrix** - A square matrix A whose elements $a_{ij} = 0$ for i < j is called a lower triangular matrix.
- 12. Equal Matrices - Two matrices A and B are said to be equal, written as A = B if (i) they are of the same order i.e. have the same number of rows and columns, and (ii) the elements in the corresponding places of the two matrices are the same.
- **Transpose of a matrix -** Let A be a $m \times n$ matrix then the matrix of order $n \times m$ obtained by changing its rows 13. into columns and columns into rows is called the transpose of A and is denoted by A' or A^T.
- 14. Negative of Matrix - Let $A = [a_{ij}]_{m \times n}$ be a matrix. Then the negative of the matrix A is defined as the matrix $[-a_{ij}]_{m \times n}$ and is denoted by -A.
- 15. Symmetric Matrix a square matrix A is said to be symmetric if A' = AThus a square matrix $A = [a_{ij}]$ is symmetric if $A = [a_{ij}]$ is symmetric if $a_{ij} = -a_{ji}$ for all values of i and j. **Skew-Symmetric Matrix -** A square matrix A is said to be skew-symmetric if A' = -A Thus a square matrix
- 16. A = $[a_{ij}]$ is skew-symmetric if $a_{ij} = -a_{ji}$ for all values of i and j. In particular $a_{ii} = -a_{ii} \Rightarrow 2a_{ii} = 0 \Rightarrow a_{ii} = 0$ i.e. all diagonal elements of a skew-symmetric matrix are o.
- 17. For any square matrix A with real number entries, A + A' is a symetric matrix and A A' is a skew symetric matrix.
- 18. Any square matrix can be expressed as the sum of a symetric and a skew symetric matrix.

If A be a square matrix, then we can write $A = \frac{1}{2}(A + A') + \frac{1}{2}(A - A')$, here $\frac{1}{2}(A + A')$ is symetric matrix

and $\frac{1}{2}(A \cap A)$ is skew symetric matrix.

19. Addition of Matrices - Let there be two matrices A and B of the same order $m \times n$. then the sum denoted by A + B is defined to be the matrix of order m \times n obtained by adding the corresponding elements of A and B.

Thus if $A = [a_{ij}]_{m \times n}$ and $B = [b_{ij}]_{m \times n}$ then $A + B = [a_{ij} + b_{ij}]_{m \times n}$

- Scalar Multiplication of a Matrix Let $A = [a_{ij}]_{m \times n}$ be a matrix and K is a scalar. Then the matrix obtained 20. by multiplying each element of matrix A by K is called the scalar multiplication of matrix A by K and is denoted by KA or AK.
- Multiplication of Matrices Product of two matrices exists only if number of column of first matrix is equal 21. to the number of rows of the second. Let A be $m \times n$ and B be $n \times p$ matrices. Then the product of matrices A and B denated by A.B is the matrix of order $m \times p$ whose (i, j)th element is obtained by adding the products of corresponding elements of *i*th row of A and *j*th column of B.
- 22. Elementary Row Operations - The operations known as elementary row operations on a matrix are-
 - The interchange of any two rows of a matrix. (The notations $R_i \leftrightarrow R_i$ is used for the interchange of the *i*-th and *j*-th rows.)
 - (ii) The multiplication of every element of a row by a non-zero element (constant).
 - (The notations K.R_i is used for the multiplication of every element of *i*-th row by a constant K. (iii) The addition of the elements of a row, the product of the corresponding elements of any other row by
 - any non-zero constant. (The notation $R_i + K.R_i$ is generally used for addition to the elements of *i*-th row to the element of *j*-th row multiplied by the constant K (K \neq 0))
- 23. Invertible matrices If A is a square matrix of order m, and if there exists another square matrix B of the same order m, such that AB = BA = I, then B is called the Inverse matrix of A and it is denoted by A^{-1} . In that care A is said to be invertible.

- 24. If A and B are invertible matrices of the same order, then $(AB)^{-1} = B^{-1}$. A⁻¹.
- **25.** Inverse of a matrix by elementry operations Let X, A and B be matrices of, the same order such that X = AB. In order to apply a sequence of elementry row operations on the matrix equation X = AB, we will apply these row operations simultaneously on X and on the first matrix A of the product AB on RHS. Similarly, in order to apply a sequence of elementry column operations on the matrix equation X = AB, we will apply, these operations simultaneously on X and on the second matrix B of the product AB on RHS. In view of the above discussion, we conclude that if A is a matrix such that A^{-1} exists, then to find A^{-1} using elementry row operations, write A = IA and apply a sequence of row operation on A = IA till we get, I = BA. The matrix and apply a sequence of column operations on A = AI till we get, I = BA. The matrix and apply a sequence of column operations on A = AI till we get, I = AB.

Remark - In case, after applying one or more elementry row (column) operations on A = IA (A = AI). If we obtain all zero in one or more rows of the matrix A on L.H.S., that A^{-1} does not exist.

CONNECTING CONCEPTS

1. The elements a_{ij} of a matrix for which i = j are called the diagonal elements of a matrix and the line along which all these elements lie is called the principal diagonal or the diagonal of the matrix.

2. Properties of transpose of the matrices-

- (i) (A+B)' = A' + B'
- (ii) (KA)' = KA', where K is constant
- (iii) (AB)' = B'A'
- (iv) (A')' = A
- 3. Properties of Matrix addition-
 - (i) Matrix Addition is Commutative If A and B be two $m \times n$ matrices, then A + B = B + A
 - (ii) Matrix Addition is Associative If A, B and C be three $m \times n$ matrices, then
 - $(\mathbf{A} + \mathbf{B}) + \mathbf{C} = \mathbf{A} + (\mathbf{B} + \mathbf{C})$

4. Properties of Multiplication of a Matrix by a Scalar-

- (i) If K_1 and K_2 are scalars and A be a matrix, then $(K_1 + K_2)A = K_1A + K_2A$.
- (ii) If K_1 and K_2 are scalars and A be a matrix, then $K_1(K_2A) = (K_1K_2)A$.
- (iii) If A and B are two matrices of the same order and K, a scalar, then K(A + B) = KA + KB.
- (iv) If K_1 and K_2 are two scalars and A is any matrix then $(K_1 + K_2) A = K_1 A + K_2 A$.
- (v) If A is any matrix and K be a scalar.
- then (-K) A = -(KA) = K(-A). 5. Properties of Matrix Multiplication -
 - (i) Associative law for Multiplication If A, B and C be three matrices of order $m \times n$ and $n \times p$ and $p \times q$, respectively, then (AB) C = A (BC).
 - (ii) **Distributive Law -** If A, B, C be three matrices of order $m \times n$, $n \times p$ and $n \times q$ respectively. then $A \cdot (B + C) = A \cdot B + A \cdot C$
 - (iii) Matrix Multiplication is not commutative. i.e. $A \cdot B \neq B \cdot A$
 - (iv) The existence of multiplicative Identity : For every square matrix A, there exists an identity matrix of same order such that IA = AI = A.
- 6. If A be any $n \times n$ square matrix, then

 $\mathbf{A} \cdot (\mathbf{Adj} \mathbf{A}) = (\mathbf{Adj} \mathbf{A}) \cdot \mathbf{A} = |\mathbf{A}| \cdot \mathbf{I}_{\mathbf{n}}$

where I_n is an $n \times n$ unit matrix

7.

- (i) Only square matrix can have inverse
 - (ii) The matrix $B = A^{-1}$, will also be a square matrix of same order A.
 - (iii) The square matrix A is said to be invertible if A^{-1} exists.
- 8. Every invertible matrix possesses a unique inverse.