

5

CONTINUITY AND DIFFERENTIABILITY

KEY CONCEPT INVOLVED

- 1. Continuity A real valued function f(x) of variable x defined on an interval I is said to be continuous at $x = a \in I$, $\lim f(x)$ exists, is finite and is equal to f(a).
 - $\therefore \quad \lim_{h \to 0} f(a+h) = \lim_{h \to 0} f(a-h) = f(a), \text{ where 'h' is a very small +ve quantity.}$
- 2. A function f (x) is said to be continuous in an interval I, if it is continuous at each point of the interval.
- 3. Discontinuity A function said to be discontinuous at a point x = a, if it is not continuous at this point. This point x = a where the function is not continuous is called the point of discontinuity.
- 4. Suppose f and g be two real functions continuous at a real number c, then
 - (i) f + g is continuous at x = c
 - (ii) f g is continuous at x = c
 - (iii) $f \cdot g$ is continuous at x = c
 - (iv) $\frac{f}{g}$ is continuous at x = c, (provided g (c) \neq 0)
- 5. (i) If g is a continuous function, then $\frac{1}{g}$ is also continuous.
 - (ii) Suppose f and g are real valued functions such that (fog) is defined at c. If f and g is continuous at c then (fog) is also continuous at c.
- 6. Differentiability The concept of differentiability has been introduced in the lower class let f be a real function and c is a point in its domain. The derivative f'(c) of f at c is defined as $\lim_{h\to 0} \frac{f(c+h) f(c)}{h}$, provided limit exists

Thus, $f'(c) = \frac{d}{dx} [f(x)]_c$. f'(x) is defined as $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$

Every differentiable function is continuous.

- 7. Algebra of Derivatives Let u, v be the function of x.
 - (i) $(u \pm v)' = u' \pm v'$
 - (ii) (uv)' = u'v + uv'

(iii)
$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$
, where $v \neq 0$.

8. Chain Rule - If f and g are differentiable functions in their domain, then fog (x) or f g (x) is also differentiable and (fog)' (x) = f' g (x) × g' (x)

More easily if
$$y = f(u)$$
 and $u = g(x)$, then $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$

If y is a function of u, u is a function of v and v is a function of x then $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dv} \times \frac{dv}{dx}$.

9. Implicit functions - An equation in the form f(x, y) = 0 in which y is not expressible in terms of x is called as an implicit function of x and y.

Both sides of equations are differentiated term wise with respect to x then from this equation $\frac{dy}{dx}$ is obtained. It may be noted that when a function of y occurs, then differentiate it w.r.t. y and multiply it by $\frac{dy}{dx}$

→ x

 $\frac{1}{dx}$

Collect the terms containing $\frac{dy}{dx}$ at one side and find $\frac{dy}{dx}$

- **10.** Exponential function The exponential function with positive base b > 1, is the function $y = b^x$.
 - (i) The graph of $y = 10^x$ is
 - (ii) Domain = R
 - (iii) Range = R^+
 - (iv) The point (0, 1) always lies on the graph.
 - (v) It is an increasing function
 - (vi) As $x \to -\infty y \to 0$

(vii)
$$\frac{d}{dx} a^x = a^x \log_e a$$
, $\frac{d}{dx} e^x = e^x$.

- **11.** Logarithmic function Let b > 1 be a real number. $b^x = a$ may be written as $\log_b a = x$.
 - (i) The graph of $y = \log_{10} x$ is
 - (ii) Domain = R^+
 - (iii) Range = R
 - (iv) It is an increasing function.
 - (v) As $x \to 0, y \to -\infty$.
 - (vi) The function $y = e^x$ and $y = log_e x$ are the mirror images of each other

(vii)
$$\frac{d}{dx}(\log_a x) = \frac{1}{x}\log_a e, \frac{d}{dx}\log_e x = \frac{1}{x}$$

y
y
y = $\log_{10} x$
x'
o
y'
(1, 0)
x

12. Derivatives of functions in Parametric form - The set of equations x = f(t), y = g(t) is called the parametric form of an equation.

Now, $\frac{dx}{dt} = f'(t), \frac{dy}{dt} = g'(t), \quad \therefore \quad \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \text{ or } \frac{g'(t)}{f'(t)}$

13. Second order derivative- let y = f(x) then $\frac{dy}{dx} = f'(x)$

If f'(x) is differentiable, then it is again differentiated and get

$$\frac{d}{dx}\left(\frac{dy}{dx}\right) \text{ or } \frac{d^2y}{dx^2} = f''(x)$$

 $\frac{d^2y}{dx^2}$ or f''(x) is called the second derivative of y or f(x) with respect to x.

14. Rolle's Theorem - Let $f : [a, b] \rightarrow R$ be continuous an closed interval [a, b] and differentiable an open interval (a, b) such that f(a) = f(b) where a, b are real numbers, then there must exists at least one value $c \in (a, b)$ of x, such that f'(c) = 0.

We observe that f(a) = f(b), There exists two point c_1 and $c_2 \in (a, b)$ such that $f'(c_1) = 0$ and $f'(c_2) = 0$, i.e. Tangent at c_1 and c_2 are parallel to x-axis.

15. Mean Value Theorem- Let $f : [a, b] \to R$ be a continuous function on the closed interval [a, b] and differentiable in the open interval (a, b), then there must exists at least one value $c \in (a, b)$ of x, such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Here, $\frac{f(b)-f(a)}{b-a}$ is the slope of secant drawn between A [a, f (a)] and B [b, f (b)]. There is at least one point $c \in (a, b)$ of x where slope of the tangent at x = c is parallel to chord AB.

CONNECTING CONCEPTS

Some common type functions as constant function, Identity function, implicit function, Modulus function, Exponential function, and logarithmic function are continuous in their domains.

- **1.** Every polynomial function is differentiable at each $x \in R$.
- **2.** The exponential function a^x , a > 0, is differentiable at each $x \in R$

- **3.** Every constant function is differentiable at each $x \in R$.
- 4. The logarithmic function is differentiable at each point in its demain.
- 5. Trigonometric and inverse-trigenometric functions are differentiable in their domains.
- 6. The sum, difference, product and quotient of two differentiable functions is differentiable
- 7. The composition of differentiable function is differentiable function.
- 8. (i) $\log_{b} pq = \log_{b} p + \log_{b} q$

(ii)
$$\log_{b} \frac{p}{q} = \log_{b} p - \log_{b} q$$

(iii) $\log_{b} p^{x} = x \log_{b} p$
(iv) $\log_{a} p = \frac{\log_{b} p}{\log_{b} a}$

9. Derivativs of Inverse Trigonometric Functions.

Functions	Domain	Derivative
$\sin^{-1}x$	[-1, 1]	$\frac{1}{\sqrt{1-x^2}}$
$\cos^{-1} x$	[-1,1]	$\frac{-1}{\sqrt{1-x^2}}$
$\tan^{-1} \mathbf{x}$	R	$\frac{1}{1+x^2}$
$\cot^{-1}x$	R	$\frac{-1}{1+x^2}$
$\sec^{-1} x$	$(-\infty, -1] \cup [1, \infty)$	$\frac{1}{x\sqrt{x^2-1}}$
cosec ⁻¹ x	$(-\infty, -1) \cup [1, \infty)$	$\frac{-1}{x\sqrt{x^2-1}}$